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Clinical Perspective 38 

What is new? 39 

A machine learning predictive model developed with a high-resolution meteorological 40 

dataset and chronological and geographical variables predicted the daily incidence of 41 

out-of-hospital cardiac arrest (OHCA) in the U.S. population with high precision. The 42 

predictive accuracy at the state level was greater in medium and high-temperature areas 43 

than in the low-temperature area.  44 

 45 

What are the clinical implications? 46 

This predictive model revealed complex associations between meteorological, 47 

chronological, and geographic variables in relation to predicting daily incidence of 48 

OHCA. It might be useful for public health strategies in temperate regions, for example, 49 

by providing a warning system for citizens and emergency medical services agencies on 50 

high-risk days.   51 
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Abstract 52 

Background: Despite advances in pre- and post-resuscitation care, percentage of 53 

survival to hospital discharge after out-of-hospital cardiac arrest (OHCA) was extremely 54 

low. Development of an accurate system to predict the daily incidence of OHCA might 55 

provide a significant public health benefit. Here, we developed and validated a machine 56 

learning (ML) predictive model for daily OHCA incidence using high-resolution 57 

meteorological, chronological, and geographical data. 58 

Methods: We analyzed a dataset from the United States that combined an OHCA 59 

nationwide registry, high-resolution meteorological data, chronological data, and 60 

geographical data. We developed a model to predict daily OHCA incidence with a 61 

training dataset for 2013–2017 using the eXtreme Gradient Boosting algorithm. A 62 

dataset for 2018–2019 was used to test the predictive model. The main outcome was the 63 

predictive accuracy for the number of daily OHCA events, based on root mean squared 64 

error (RMSE), mean absolute error (MAE), and mean absolute percentage error 65 

(MAPE). In general, a model with MAPE less than 10% is considered highly accurate. 66 

Results: Among the 446,830 OHCAs of non-traumatic cause where resuscitative efforts 67 

were initiated by a 911 responder, 264,916 in the training dataset and 181,914 in the 68 

testing dataset were included in the analysis. The ML model with combined 69 
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meteorological, chronological, and geographical data had high predictive accuracy in 70 

relation to nationwide incidence rate per 100,000 at the nationwide level) in the training 71 

dataset (RMSE, 0.016; MAE, 0.013; and MAPE, 7.61%) and in the testing dataset 72 

(RMSE, 0.018; MAE, 0.014; and MAPE, 6.52%).  73 

Conclusions: A ML predictive model using comprehensive daily meteorological, 74 

chronological, and geographical data allows for highly precise estimates of OHCA 75 

incidence in the United States. 76 

271 / 300 words 77 

 78 

Keywords 79 

Prediction, out-of-hospital cardiac arrest, machine learning, meteorology 80 

  81 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.08.23289698doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.08.23289698


7 

 

The estimated global incidence of out-of-hospital cardiac arrest (OHCA) treated by 82 

emergency medical service (EMS) is 62.0 per 100,000 person-years, with a specific 83 

incidence of 53.1 per 100,000 person-years in North America.1 Despite advances in pre- 84 

and post-resuscitation care, a recent systematic review showed that survival to hospital 85 

discharge after OHCA was extremely low, at 8.8% (95% confidence interval [CI], 8.2–86 

9.4%).2 Prevention and early reaction in the prehospital setting are important for 87 

improving the prognosis of patients with OHCA. Development of an accurate system to 88 

predict the daily incidence of OHCA might provide a significant public health benefit. 89 

Several studies have shown associations between ambient temperature and 90 

cardiovascular events3-6 and between day of week or season and cardiovascular events.7-
91 

12 However, many of those studies used conventional linear regression, which might not 92 

be suitable for assessing the influence of ambient temperature on OHCA incidence and 93 

handling large amounts of high-resolution meteorological data. To date, meteorological 94 

and chronological data have not been applied to real-world practice. Machine learning 95 

(ML) can use advanced analytics to integrate multiple quantitative variables and 96 

identify associations not identified with conventional one-dimensional statistical 97 

approaches, which might allow us to develop a predictive model. Recently, our team 98 

developed a ML predictive model for daily OHCA incidence based on combined 99 
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meteorological and chronological data with high accuracy for the Japanese population.13 100 

In this study, we develop and validated the ML predictive model for robust 101 

estimation of daily OHCA incidence of cardiac origin for the U.S. population; the 102 

United States is close in latitude to Japan. This model was evaluated using the OHCA 103 

dataset from the Cardiac Arrest Registry to Enhance Survival (CARES) from the United 104 

States,14 as well as comprehensive meteorological data from National Aeronautics and 105 

Space Administration (NASA), chronological data, and geographic data. 106 

 107 

Methods 108 

The study was approved by the University of Michigan Hospital’s institutional review 109 

board (HUM00189913). The requirement for written informed consent was waived 110 

because the researchers only analyzed deidentified (anonymized) data. 111 

 112 

Data source for out-of-hospital cardiac arrest data 113 

OHCA data was provided by CARES, which is a prospective multicenter registry of 114 

patients with OHCA from 30 state-based registries, the District of Columbia, and more 115 

than 45 community sites in 16 additional U.S. states. It has a catchment area of 116 

approximately 175 million residents in 2021 (Figure 1). The design of the registry, 117 
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which was established by the U.S. Centers for Disease Control and Prevention and 118 

Emory University, has been previously described.14 Patient-level data were collected by 119 

EMS agencies using standardized international Utstein definitions for clinical variables 120 

and outcomes to ensure uniformity.  121 

CARES includes non-traumatic OHCAs where resuscitative efforts were 122 

initiated by a 911 responder. The following patient information was collected and 123 

analyzed in this study: age, sex, etiology of arrest (i.e., presumed cardiac etiology, 124 

respiratory/asphyxia, drowning/submersion, electrocution, exsanguination/hemorrhage, 125 

drug overdose, or others), and location of cardiac arrest. Each patient in the CARES 126 

registry was geocoded to a U.S. county based on the ZIP code for the location of the 127 

OHCA through a crosswalk file from the U.S. Department of Housing and Urban 128 

Development. Data were submitted in two ways: via a data entry form on the CARES 129 

website (https://mycares.net/) or daily uploads from an EMS agency’s electronic patient 130 

care record system. The CARES analyst (R.A.-A.) reviewed records for completeness 131 

and accuracy. Details of the registry are described in the Supplemental Materials. 132 

 133 

Meteorological data 134 

We analyzed meteorological data from NASA’s North American Land Data 135 
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Assimilation System, which provides hourly gridded data with 12-km spatial 136 

resolution.15, 16 Meteorological variables included average daily values of ambient 137 

temperature (°C), precipitation (mm), relative humidity (%), and wind speed (m/s) 138 

during the study period. Those values were averaged by EMS agency areas.  139 

 140 

Chronological and geographical data 141 

Chronological variables included year (2013 was considered year 0), month (February 142 

to December as categorical variables, with January as the referent), day of the week 143 

(with Sunday as the referent), holidays, start and end of daylight saving time, and 144 

holiday season from December 24 to January 1 (categorical variable with a value of 0 or 145 

1).  146 

Geographical data were collected at the census tract level included median age 147 

(four categories: <35, 35–39, 40–44, and ≥45 year, near its quartiles), proportion of men 148 

(two categories: <50% or ≥50%, which approximate the median), race (proportion of 149 

Blacks [three categories: <1%, 1–6%, and ≥6%, near its tertiles], proportion of Asians 150 

[three categories: <1%, 1–2%, and ≥3%, near its tertiles]), proportion of individuals 151 

with a high school diploma or higher (three categories: <55%, 55–60%, 60–64%, and 152 

≥65%, near its quartiles), unemployment rate (four categories: <4%, 4–4.9%, 5–6%, and 153 
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≥6%, near its quartiles), percentage of individuals living below the poverty level (four 154 

categories: <7%, 7–10%, 11–14%, and ≥15%, near its quartiles), average household size 155 

(four categories: <2.4, 2.4–2.55, 2.56–2.69, and ≥2.7, near its quartiles), and population 156 

per square mile (four categories: <500, 500–1,699, 1700–3,200, and 3,200 and over, 157 

near its quartiles). The geographical data at the census tract level were merged into EMS 158 

agency areas. In cases where an EMS agency area was covered by multiple census tract 159 

areas, we used the geographical from the tract with the highest number of OHCA cases 160 

among the several tract areas. 161 

 162 

Data management and development of predictive models 163 

We matched the CARES data, meteorological data, chronological data, and geographic 164 

data between January 1, 2013, and December 31, 2019 at the hourly level based on the 165 

time of the emergency call. We classified data from January 1, 2013 to December 31, 166 

2017 in this merged dataset as the training dataset for developing the predictive model. 167 

Of EMS agencies in the training dataset, 30% were used as the validation dataset for 168 

selecting hyperparameters. Data from January 1, 2018 to December 31, 2019 were used 169 

as the testing dataset for assessing whether the predictive model can work in other 170 

years. 171 
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To develop predictive model for the daily incidence of OHCA, we used the 172 

eXtreme Gradient Boosting (XGBoost) gradient boosting algorithm.17, 18 We selected 173 

XGBoost hyperparameters that maximized prediction performance in the validation 174 

dataset. In other words, we minimized root mean squared error (RMSE) by developing a 175 

model in the dataset between 2013 and 2017 in 70% of the participating agency areas 176 

and checking its prediction performances according to its hyperparameters in the 177 

validation dataset (i.e., data between 2013 and 2017 in the remaining 30% of agency 178 

areas). Population size for each agency area was included in the XGBoost algorithm as 179 

an offset term. We assessed prediction performance of the model developed with the 180 

testing dataset (i.e., data between 2018 and 2019 from all participating agency areas).  181 

 182 

Primary and secondary outcomes 183 

The primary outcome was predictive accuracy of OHCA incidence rate per 100,000 at 184 

nationwide level of the predictive model based on RMSE, mean absolute error (MAE), 185 

and mean absolute percentage error (MAPE), which are generally used as measures of 186 

predictive accuracy for a forecasting method. The secondary outcome was predictive 187 

accuracy of OHCA incidence rate per 100,000 at the state level, which was limited to 24 188 

state-based registries. 189 
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 190 

Statistical analysis 191 

We performed a third-step analysis. First, we examined the concordance between the 192 

predicted incidence of OHCA based on the ML model and the observed incidence of 193 

OHCA in the testing dataset. Next, we investigated important predictors for predicting 194 

the OHCA incidence in the developed prediction model. Finally, we assessed the 195 

predictive accuracy of the ML model stratified into low-, intermediate-, and high-196 

temperature areas, further divided into summer (June–August) and winter (December–197 

February). Low-, intermediate-, and high-temperature areas were defined as regions 198 

with mean ambient temperature in the 25th percentile or lower, in the 25–75th 199 

percentiles, and 75th percentile or higher, respectively. 200 

The characteristics of the present dataset were summarized with medians and 201 

interquartile ranges (IQRs) for continuous variables, and numbers and percentages for 202 

categorical variables by area and day in the training and testing datasets. We evaluated 203 

the predictive accuracy of the predictive models based on RMSE, MAE, and MAPE 204 

between predicted values calculated with the predictive models and observed daily 205 

OHCA incidence at the EMS agency level. RMSE and MAE reflect the average 206 

magnitude of differences between predicted values and observed values. RMSE and 207 
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MAE can range from zero to infinity. Lower RMSE and MAE values indicate higher 208 

predictive performance. MAPE is an average of the absolute values of errors divided by 209 

observed values. MAPE ranges from zero to infinity. Lower MAPE values indicate 210 

higher model predictive performance. In general, MAPE less than 10% is considered 211 

highly accurate predicting.19 Formulas are as follows; 212 

 213 

RMSE = ට෌ ሺ|𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 െ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒|ଶ௡

௧ୀଵ
/𝑁ሻ 214 

MAE =  
ଵ

௡
∑ |𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 െ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒|௡

௧ୀଵ  215 

MAPE = 
ଵ

௡
 ෍

|௢௕௦௘௥௩௘ௗ ௩௔௟௨௘ି௣௥௘ௗ௜௖௧௘ௗ ௩௔௟௨௘|

௢௕௦௘௥௩௘ௗ ௩௔௟௨௘
∗ 100

௡

௧ୀଵ
 216 

 217 

To show important predictors of the OHCA incidence in the developed 218 

prediction model, we used the Shapley Additive Explanations (SHAP) values 219 

summarizing contribution of each predictor to the predicted value of an instance.20 For a 220 

given set of feature values, a SHAP value reflects how much a single variable, in the 221 

context of its interaction with other variables, contributes to the difference between the 222 

actual prediction and the mean prediction. 223 

All statistical analyses were performed with R statistical software, version 4.1.2 224 

(https://www.R-project.org/) and the xgboost package for R, version 1.5.0.1 225 
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(https://CRAN.R-project.org/package=xgboost). Missing values for continuous and 226 

categorical variables were, respectively, imputed by a median value for each continuous 227 

variable and treated as a missing category. These missing procedures work well when 228 

using XGBoost due to the nature of decision tree algorithms.  229 

 230 

Results 231 

Characteristics of the training and testing datasets 232 

From the CARES registry, 446,830 EMS-treated OHCAs of non-traumatic cause 233 

between 2013 and 2019 were matched with meteorological data; there were 264,916 234 

cases in the training dataset. There were 181,914 cases in the testing dataset. The 235 

characteristics of the datasets are summarized in Table 1. Between 2013 and 2019, the 236 

median annual incidence of OHCA increased from 58.6 to 76.3 per 100,000 person-237 

years. The median age of OHCA onset increased from 64 (IQR, 52–77) to 65 years 238 

(IQR, 53–76). The proportion of males increased from 61% to 62%. 239 

The median of the mean ambient temperature within a day decreased from 240 

8.9°C (IQR, −0.1 to 18.1) to 7.9°C (IQR, −0.7 to 18.3) in the low-temperature area. This 241 

trend was not observed in the intermediate or high-temperature areas. Differences 242 

between maximum and minimum ambient temperatures within a day (diurnal 243 
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temperature range) increased from 9.4°C (6.8–12.1) to 9.6°C (7.0–12.4) in the low-244 

temperature area, from 9.2°C (6.5–11.8) to 9.9°C (7.4–12.7) in the intermediate-245 

temperature area, and from 10.3°C (7.8–12.7) to 10.6°C (7.8–3.6) in the high-246 

temperature area. Relative humidity also increased throughout the study period in all 247 

areas. The incidence of OHCA by meteorological condition is shown in Figure 2. 248 

 249 

Predictive performance of the models 250 

Predicted and observed incidence of OHCA with a cardiac origin for each model are 251 

shown in Figure 3. The ML-predicted model, which incorporated meteorological, 252 

chronological, and geographical variables, was able to accurately predict daily 253 

fluctuations and a significant increase in OHCA incidence at the nationwide level, 254 

demonstrating good concordance between predicted and observed values. The error rate 255 

was less than 0.05 per 100,000 persons per day. The predictive accuracy of the models 256 

is shown in Table 2. At the nationwide level, the ML predictive model had high 257 

predictive accuracy in the training dataset (RMSE, 0.016; MAE, 0.013; and MAPE, 258 

7.61%) and the testing dataset (RMSE, 0.018; MAE, 0.014; and MAPE, 6.52%). At the 259 

state level, the model had RMSE of 0.216 and MAE of 0.128 with the training dataset 260 

and RMSE of 0.209 and MAE of 0.131 with the testing dataset. At the agency level, the 261 
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model had RMSE of 1.018 and MAE of 0.287 with the training dataset and RMSE of 262 

1.290 and MAE of 0.343 with the testing dataset. 263 

 264 

Contribution of each predictor to the predicted value of OHCA incidence  265 

Importance of meteorological, chronological, and geographical variables in the ML 266 

predictive model is shown in Figure 4. In general, geographical and meteorological 267 

variables contributed more to the ML model than chronological variables. With regards 268 

to meteorological variables, lower mean ambient temperature within a day was the 269 

variable most strongly contributing to the predicted OHCA incidence, followed by 270 

mean relative humidity and larger diurnal temperature range. Among chronological 271 

variables, year, day of week, and holiday contributed more strongly to the predicted 272 

OHCA incidence than month, but their contributions were relatively small. Among 273 

geographic variables, percentage of Black persons, percentage of individuals living 274 

under the poverty level, unemployment rate, median age, and population per square 275 

mile contributed strongly to the predicted OHCA incidence. 276 

 277 

Predictive performance based on annual average of daily mean ambient 278 

temperature 279 
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We compared the predictive accuracy of the ML model stratified by annual average of 280 

ambient temperature (Table 3). Population and OHCA incidence per 100,000 person-281 

years were higher in the high-temperature area, followed by the intermediate-282 

temperature area and low-temperature area. Predictive accuracy was higher in the 283 

intermediate- and high-temperature areas than in the low-temperature area in the 284 

training and testing datasets, as was OHCA incidence. However, there was not much 285 

difference in the predictive accuracy between summer and winter in any area. 286 

 287 

Discussion 288 

In this study, using an ML predictive model developed with the combination of 289 

meteorological, chronological, and geographic variables, we successfully predicted the 290 

daily incidence of OHCA due to a cardiac origin in the United States with high 291 

precision at the nationwide, state, and agency level, respectively. Lower mean ambient 292 

temperature within a day and larger difference between maximum and minimum 293 

ambient temperatures within a day were strongly associated with daily OHCA 294 

incidence. 295 

An association between ambient temperature and incidence of cardiovascular 296 

events has been previously reported.3-10 However, since these studies focused on 297 
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ambient temperature or season alone, diversity in climate (comprehensive 298 

meteorological variables), chronological variables, and geography were not considered. 299 

Recently, our team reported that an ML predictive model for OHCA incidence in Japan 300 

based on a comprehensive meteorological dataset and chronological variables had high 301 

predictive accuracy.13 In the present study, when geographical data were added to the 302 

predictive model, we achieved a higher predictive accuracy in the U.S. population than 303 

in the Japanese population (MAPE, 6.52% vs. 7.79%). Notably, patients with OHCA in 304 

the United States were more likely to be younger (64 vs. 80 years) or male (62% vs. 305 

57%) than patients with OHCA in Japan. When chronological and geographic data were 306 

added to the model, the association between OHCA incidence and meteorological 307 

conditions can be more widely generalizable for the general population, even in 308 

countries with a different OHCA profile as long they are at a similar latitude range. 309 

We found that geographic data as well as race, socioeconomic disparities, and 310 

age are strongly associated with OHCA incidence in a SHAP analysis. However, while 311 

geographic characteristics were related to differences between counties, they are not 312 

relevant to daily fluctuations in OHCA incidence because those variables do not change 313 

throughout the year. For meteorological variables, mean ambient temperature in a day 314 

and a larger diurnal temperature range were associated with the incidence of OHCA 315 
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with a cardiac origin. Wolf et al., who analyzed 9,801 patients from a cardiovascular 316 

disease registry in Germany, reported that a drop in ambient temperature of 10°C or 317 

more within a day and ambient temperature itself are associated with myocardial 318 

infarction.5 A similar trend was observed recently in our study of a ML predictive model 319 

for OHCA in the Japanese population.13 The present results were also consistent with 320 

the previously described relationship between ambient temperature and OHCA 321 

incidence. Race and socioeconomic disparities might emphasize the relationship 322 

between meteorological conditions and OHCA incidence. 323 

The predictive accuracy of the model was generally lower at the state level than 324 

at the nationwide level. Our ML predictive model had variations in predictive accuracy 325 

across states. Analyses stratified by annual average ambient temperature showed that 326 

predictive accuracy was the lowest in the low-temperature area, while the season 327 

variable (summer or winter) did not substantially change predictive accuracy. These 328 

results were partially explained by the population in the participating area. Collecting 329 

more samples improves our ML model. In addition, populations residing in the low-330 

temperature area might be more habituated and better able to cope with climate change, 331 

such as through building insulation and lifestyle habits. Curriero et al. reported a 332 

latitude dependence of the temperature–mortality relationship in their analysis based on 333 
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11 eastern cities in the United States.21 More effective adaption to colder temperature 334 

was observed in cities that are further north. In order to be more practical, it needs to be 335 

further improved to predict OHCA incidence within a medical catchment area. Weather 336 

forecasts can predict meteorological conditions approximately 10 days ahead. Thus, a 337 

predictive model based on meteorological data might allow EMS agencies and hospitals 338 

to prepare and reallocate medical resources, which leads to more rapid transport and 339 

advanced post-arrest care. A future prospective study to evaluate the effectiveness of 340 

this approach is needed. 341 

This study has several inherent limitations. First, although the CARES registry is 342 

the largest database of OHCA in the United States, it covered approximately 53% of 343 

catchment areas as of 2022. CARES only includes EMS-treated OHCA. This 344 

underestimates the overall incidence of OHCA, but is most relevant population on 345 

which to focus public health interventions. Second, our data did not address the 346 

potential variability in patients’ preexisting medical conditions. Third, the predictability 347 

of future OHCA events will depend on the accuracy of meteorological data. Finally, 348 

external testing in other developed countries was not performed. 349 

 350 

Conclusion 351 
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An ML predictive model using multiple meteorological, chronological, and 352 

geographical variables could predict the incidence of OHCA with a cardiac origin with 353 

high precision in the U.S. population. This predictive model might be useful for public 354 

health prevention strategies in temperate regions, which can also be applied even in 355 

countries with a different OHCA profile. 356 
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Figure legends 385 

Figure 1. States and communities participating in CARES 386 

CARES denotes Cardiac Arrest Registry to Enhance Survival. 387 

 388 

Figure 2. Incidence of out-of-hospital cardiac arrest by meteorological condition 389 

The plots indicate the mean daily OHCA incidence per 100,000 persons. 390 

OHCA denotes out-of-hospital cardiac arrest. 391 

 392 

Figure 3. Observed versus predicted incidence of out-of-hospital cardiac arrest 393 

The light blue lines indicate the observed total number of out-of-hospital cardiac arrests 394 

per day in the United States. The yellow lines indicate the predicted number based on 395 

combined meteorological, chronological, and geographical variables. 396 

Apr denotes April; Jan, January; Jul, July; Oct, October. 397 

 398 

Figure 4. Importance of meteorological, chronological, and geographical variables 399 

in a machine learning predictive model  400 

This figure shows a variable importance plot for meteorological variables (red), 401 

chronological variables (blue), and geographical variables (black) in a machine learning 402 
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predictive model using XGBoost. The yellow to purple dots in each row represent low 403 

to high values for each predictor normally scaled. The x-axis shows the Shapley value, 404 

indicating the variable’s impact on the model. Positive SHAP values tend to drive 405 

predictions toward an OHCA event and negative SHAP values tend to drive the 406 

prediction toward no OHCA event. 407 

* In the model, 2013 was considered year 0. 408 

OHCA denotes out-of-hospital cardiac arrest; SHAP, Shapley Additive Explanations; 409 

XGBoost, eXtreme Gradient Boosting. 410 
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Table 1. Characteristics of daily data in the training dataset (2013–2017) and testing 411 

dataset (2018–2019)  412 

 
Variable 

Training dataset 
(n=264,916) 

Testing dataset 
(n=181,914) 

 2013–2015 2016–2017 2018–2019 
Demographic variables    
Number of participating EMS 
agencies 

575 845 1222 

OHCA incidence, 
per 100,000 person-years 

58.6 70.4 76.3 

Patient characteristics    
Age, years, median (IQR) 64 (52, 77) 64 (52, 76) 65 (53, 76)
 Male sex, n (%) 81,903 (61) 86,761 (62) 115,674 (62)
 Race, n (%)    
  White 61,961 (46) 67,537 (48) 94,518 (51)
  Black 27,408 (20) 31,402 (22) 43,049 (23) 
  Asian 2,531 (2) 2,903 (2) 4,046 (2) 
Hispanic/Latino 7,952 (6) 7,506 (5) 12,199 (7) 
  Other 34,529 (26) 31,074 (23) 32,212 (17) 
First documented rhythm, n (%)    
  Shockable 27,547 (20) 26,599 (19) 34,718 (19)
  Non-shockable 106,823 (79) 113,810 (81) 151,279 (81)
Meteorological variables    
Ambient temperature, °C     
Mean value within a day    
Low-temperature area 8.9 (−0.1, 18.1) 9.6 (0.2, 18.0) 7.9 (−0.7, 18.3) 
Intermediate temperature area 11.9 (4.5, 19.5) 11.9 (4.4, 19.4) 11.6 (3.99, 20.0) 
High-temperature area 17.4 (10.8, 24.0) 17.1 (10.7, 23.3) 17.6 (10.7, 24.5) 

Differences between maximum 
and minimum values within a 
day 

   

Low-temperature area 9.4 (6.8, 12.1) 8.8 (6.1, 11.2) 9.6 (7.0, 12.4)
  Intermediate temperature area 9.2 (6.5, 11.8) 9.0 (6.2, 11.6) 9.9 (7.4, 12.7)
  High-temperature area 10.3 (7.8, 12.7) 9.6 (7.1, 12.0) 10.6 (7.8, 13.6)
Precipitation during the 
previous hour, mm 

   

Low-temperature area 0.00 (0.00, 0.06) 0.00 (0.00, 0.09) 0.00 (0.00, 0.09) 
  Intermediate temperature area 0.00 (0.00, 0.07) 0.00 (0.00, 0.09) 0.00 (0.00, 0.10) 
  High-temperature area 0.00 (0.0, 0.10) 0.00 (0.00, 0.05) 0.00 (0.00, 0.05) 
Wind speed, m/s    
Low-temperature area 3.2 (2.1, 4.5) 3.5 (2.3, 4.8) 3.4 (2.2, 4.8) 

  Intermediate temperature area 3.0 (2.0, 4.3) 3.4 (2.3, 4.7) 3.2 (2.2, 4.5) 
  High-temperature area 3.1 (2.2, 4.2) 3.2 (2.2, 4.3) 3.1 (2.1, 4.3)
Relative humidity, %    
Low-temperature area 70.8 (55.5, 81.6) 77.6 (70.2, 84.7) 78.7 (69.9, 85.5)

  Intermediate temperature area 74.0 (62.2, 82.8) 75.8 (67.7, 83.7) 77.9 (69.8, 84.5)
  High-temperature area 69.3 (55.7, 79.1) 72.3 (63.3, 81.0) 74.1 (61.7, 82.1)

Continuous values are presented as medians (IQR). 413 

*See eFigure 1 in the Supplement for more information. 414 

†Snowfall values were calculated for the winter (December–February). 415 

IQR denotes interquartile range; hPa, hectopascal; OHCA, out-of-hospital cardiac arrest.  416 
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Table 2. Performance of the predictive model for out-of-hospital cardiac arrest 417 

based on combined meteorological and chronological data 418 

Measure of predictive model performance Training dataset Testing dataset 
Primary outcomes   
Nationwide level   
RMSE, incidence rate per 100,000 per day 0.016 0.018 
MAE by day, incidence rate per 100,000 per day 0.013 0.014 
MAPE by day, % a 7.61 6.52 

Secondary outcomes   
State level b   
RMSE, incidence rate per 100,000 per day 0.216 0.209 
MAE by day, incidence rate per 100,000 per day 0.128 0.131 
MAPE by day, % a NA NA 

Agency level   
RMSE, incidence rate per 100,000 per day 1.018 1.290 
MAE by day, incidence rate per 100,000 per day 0.287 0.343 
MAPE by day, % a NA NA 

a. In general, MAPE <10% is considered highly accurate predicting; 10–20%, good predicting; 419 

20–50%, reasonable predicting; and >50%, inaccurate predicting.22 MAPE could not be 420 

calculated at the state or agency level because there were days with no cardiac arrests. 421 

b. State-level calculations were limited to 24 states that participated in state-based data collection 422 

through 2017 (training dataset). 423 

MAE denotes mean absolute error; MAPE, mean absolute percentage error; ML machine learning; 424 

NA, not applicable; RMSE, root mean squared error. 425 

 426 
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Table 3. Accuracy of the predictive model for out-of-hospital cardiac arrest stratified by temperature 427 

a. RMSEs and MAEs are shown as incidence rate per 100,000 per day. 428 

b. In general, MAPE <less than 10% is considered highly accurate predicting; 10–20%, good predicting; 20–50%, reasonable predicting; and >50%, 429 

inaccurate predicting.22 430 

Measure of predictive 
model performance 

Low-temperature area 
(25th percentile) 

Intermediate-temperature area 
(25–75th percentile) 

High-temperature area 
(75th percentile) 

Training dataset Testing dataset Training dataset Testing dataset Training dataset Testing dataset 

Number of participating EMS 
agencies 228 417 455 496 228 309 

Population 11,956,637 21,604,072 43,947,825 45,568,174 48,807,506 63,166,710 

OHCA incidence, 
per 100,000 person-years 52.5 69.2 64.0 78.1 66.8 77.4 

All seasons       

RMSE a 0.043 0.034 0.023 0.027 0.024 0.024 

MAE by day a 0.035 0.027 0.019 0.021 0.019 0.019 

MAPE by day, % b 31.82 14.64 11.81 9.36 10.78 8.92 

Summer       

RMSE a 0.041 0.031 0.023 0.024 0.022 0.023 

MAE by day a 0.033 0.025 0.018 0.019 0.017 0.019 

MAPE by day, % b 31.97 15.14 12.81 9.89 11.12 9.12 

Winter       

RMSE a 0.045 0.037 0.025 0.034 0.026 0.026 

MAE by day a 0.036 0.029 0.019 0.026 0.021 0.021 

MAPE by day, % b 29.15 13.70 10.91 10.53 10.24 8.74 
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MAE denotes mean absolute error; MAPE, mean absolute percentage error; ML, machine learning; RMSE, root mean squared error. 431 

 432 

  433 
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