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Abstract 24 

Objectives To assess the longitudinal development of humoral immunity in children and 25 

adolescents during the COVID-19 pandemic, with a particular focus on how anti-spike IgG 26 

antibodies and neutralising response changed during the first Omicron peak (December 2021 27 

to May 2022). 28 

 29 

Design Prospective school-based study during the COVID-19 pandemic (June 2020 to July 30 

2022) including five testing rounds with corresponding cross-sectional cohorts and a 31 

longitudinal cohort who participated in at least four rounds. 32 

 33 

Setting 55 randomly selected schools in the Canton of Zurich, Switzerland. 34 

 35 

Participants Between 1875 to 2500 children and adolescents per testing round and 751 in the 36 

longitudinal cohort. 37 

 38 

Main outcome measures Development of SARS-CoV-2 seroprevalence, anti-spike IgG 39 

antibodies and neutralising antibody response over time, persistence of antibodies and 40 

variation of antibody levels in individuals only infected, vaccinated or with hybrid immunity 41 

during the early Omicron period. 42 

 43 

Results By July 2022 96.9% (95% credible interval [CrI] 95.2 to 98.1%) of children and 44 

adolescents had anti-spike IgG antibodies against SARS-CoV-2. The substantial increase in 45 

seroprevalence during the first peak of the Omicron wave was largely driven by primary 46 
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infections in mostly unvaccinated children under the age of 12 (28.4% [95% CrI 24.2 to 33.2%] 47 

in December 2021, to 95.7% [95% CrI 93.4 to 97.4%] in July 2022). This stands in contrast to 48 

adolescents aged 12 years and older (69.4% [95% CrI 64.0 to 75.4%] in December 2021 to 49 

98.4% [95% CrI 97.3 to 99.2%] in July 2022), who were eligible for vaccination since June 2021. 50 

Children and adolescents with hybrid immunity or immunity from vaccination had high anti-51 

spike IgG titres (median Mean Fluorescence Intensity (MFI) ratio of 136.2 [Inter Quartile Range 52 

[IQR]: 121.9 to 154.3] and 127.6 [IQR: 114.1 to 151.0]) and strong neutralising responses (e.g., 53 

anti-Omicron 98.9% [95% Confidence Interval [CI] 96.0 to 99.7%] and 81.6% [95% CI 74.9 to 54 

86.9%]). Meanwhile, infected but unvaccinated children and adolescents had substantially 55 

lower anti-spike IgG titres (median MFI ratio of 54.8 [IQR: 22.8 to 89.8]) and neutralising 56 

responses (e.g., anti-Omicron 64.9% [95% CI 59.8 to 69.7%]). 57 

 58 

Conclusion These findings show that the Omicron wave and the rollout of vaccines led to 59 

almost 100% seropositivity and boosted anti-spike IgG titres and neutralising capacity in 60 

children and adolescents. This was particularly driven by unvaccinated children (<12 years), 61 

who became seropositive due to the highly infectious Omicron variant. Nevertheless, during 62 

the entire study period parents of only one adolescent reported hospital stay of less than 24 63 

hours related to a possible acute infection. 64 

 65 

Key words: SARS-CoV-2, COVID-19, children, adolescents, school, longitudinal, 66 

seroprevalence, humoral immunity, neutralising antibodies 67 

  68 
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Introduction 69 

Monitoring the evolution of seroprevalence and assessing changes in humoral immunity 70 

against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) in children and 71 

adolescents over time is important to understand how the pandemic evolved and to inform 72 

public health measures including vaccination strategies as well as preventive measures at 73 

school.  74 

Several serological studies were conducted to detect SARS-CoV-2 infections in children and 75 

adolescents and to determine seroprevalence at different times of the pandemic [1–6]. 76 

However, little is known about the development and persistence of those antibodies over time 77 

as most studies were cross-sectional [1–5] and there is only limited data from longitudinal 78 

studies assessing the humoral immunity in children and adolescents [7]. A systematic review 79 

[7] reported persistence of cellular and humoral immunity in the pre-Omicron period lasting 80 

for at least 10 to 12 months in children and adolescents. Meanwhile, few studies [8, 9] focused 81 

on immune responses following Omicron, addressing neutralising activity and differentiating 82 

between natural infection, vaccination, or both [10]. 83 

Many countries started to administer COVID-19 vaccines to children and adolescents in 2021 84 

to 2022, after trials demonstrated the effectiveness of the COVID-19 vaccine against re-85 

infection [11, 12] or severe disease [13], and vaccination was approved by the Food and Drug 86 

Administration and European Medicines Agency. In Switzerland, the COVID-19 vaccine was 87 

available for adolescents aged 12 years and older by mid 2021 and for children aged 5 to 11 88 

years in early 2022 [14].  89 

In the beginning of 2022, the high incidence of SARS-CoV-2 infections in children and 90 

adolescents due to the highly infectious Omicron variant despite the rollout of vaccines raised 91 
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concerns [15–17]. In that period, the coincidence of incomplete immunisation of youth and 92 

the highly transmissible Omicron variant affected the evolution of seroprevalence and the 93 

longitudinal development of the humoral immunity in children and adolescents. 94 

 95 

In this observational school-based study, we aimed to assess the longitudinal development of 96 

the humoral immunity in children and adolescents during the COVID-19 pandemic with a 97 

particular focus on how anti-spike IgG antibodies and neutralising response changed during 98 

the first Omicron peak in the context of (re-)infections, vaccinations, or their combination. 99 

  100 
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Method 101 

Study setting & design 102 

The Ciao Corona study is embedded in a nationally coordinated research network Corona 103 

Immunitas in Switzerland [18]. The protocol of the study was registered prospectively 104 

(ClinicalTrials.gov identifier: NCT04448717) [19], and seroprevalence results of the first four 105 

Ciao Corona testing rounds can be found elsewhere [20–23]. This repeated cross-sectional 106 

analysis is based on a prospective cohort study, using data from children and adolescents who 107 

participated at multiple timepoints. The study took place in the canton of Zurich with its 108 

around 1.52 million (18% of the Swiss population) ethnically and linguistically diverse 109 

inhabitants and comprises rural as well as urban regions.  110 

In March 2020, the first restrictions and preventive measures were announced from the Swiss 111 

Federal Office of Public Health. Schools closed on 16 March 2020 and partially reopened on 112 

10 May 2020, with a combination of in-person and online teaching. On 7 June 2020, schools 113 

resumed usual in-person teaching with certain preventive measures (e.g., contact tracing 114 

systems within schools, mandatory face mask for school personnel, distancing regulation). 115 

Implementation of restrictions varied across schools. For adolescents of 12 years or older, 116 

masks were mandatory starting from October 2020 and for children between 9 to 11 years 117 

starting from January 2021. This was implemented due to an increase in the incidence of SARS-118 

CoV-2 infections, signaling a second pandemic wave. Throughout summer 2021, masks were 119 

no longer mandatory for children and adolescents. However, they were reinstated for all 120 

school children and adolescents from December 2021 to mid-February 2022 during the first 121 

peak of the Omicron wave. Adolescents of 16 years or older were allowed to get vaccinated 122 
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starting from May 2021, adolescents between 12-15 years of age since mid-June 2021 and 123 

children between 5 and 11 years of age from January 2022 [14]. 124 

 125 

Population 126 

We randomly selected primary schools in the canton of Zurich and invited for each primary 127 

school the secondary school that was the closest geographically. The number of invited 128 

schools per district corresponded to the population size of the 12 districts. Out of 156 invited 129 

schools, both public and private (around 10%), 55 schools agreed to participate. Classes were 130 

randomly selected and stratified by school level: grades 1-2 (6 to 8 years old children) of lower 131 

school level, grades 4-5 (9 to 11 years old children) of middle school level, and grades 7-9 (12 132 

to 14 years old adolescents) of upper school level. All children and adolescents in the randomly 133 

selected classes were eligible to participate in any of the testing rounds, irrespective of 134 

whether they participated at baseline. 135 

 136 

Timeline of testing 137 

Venous blood samples were collected in five testing rounds. The first testing round (T1) was 138 

performed in June/July 2020, the second (T2) in October/November 2020, the third (T3) in 139 

March/April 2021, the fourth (T4) in November/December 2021 and the last fifth (T5) testing 140 

round in June/July 2022. As shown in the study participant flow chart (Figure 1), we followed 141 

corresponding repeated cross-sectional cohorts and a longitudinal cohort. The longitudinal 142 

cohort consisted of children and adolescents participating in the last (T5) and at least three 143 

previous testing rounds. In addition, we only included children and adolescents where the 144 

seroconversion from one to the subsequent testing round was detectable.  145 
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 146 

Serological testing and neutralisation assay 147 

In all five testing rounds, we visited children and adolescents in schools and collected venous 148 

blood samples. To detect SARS-CoV-2 specific antibodies against spike and nucleocapsid 149 

proteins we used the Sensitive Anti-SARS-CoV-2 Spike Trimer Immunoglobulin Serological 150 

(SenASTrIS) test [24]. This Luminex assay measures the binding of IgG antibodies to the 151 

trimeric SARS-CoV-2-spike and nucleocapsid proteins, obtaining the Mean Fluorescence 152 

Intensity (MFI) ratio. Test results were considered seropositive if MFI ratios were equal to or 153 

above the cutoff of 6 for both anti-spike IgG and anti-nucleocapsid IgG, based on which the 154 

test has a 98% specificity and 99% sensitivity [24]. Test validation was performed in different 155 

cohorts of pre-pandemic plasma of adults and children and SARS-CoV-2 infected people [24]. 156 

We used a cell-free and virus-free assay to detect SARS-CoV-2 neutralising antibodies against 157 

the Wildtype SARS-CoV-2, Delta, and Omicron variants, by measuring the proportion of 158 

antibodies preventing the binding of the angiotensin-converting enzyme 2 receptor to the 159 

receptor binding domain of the trimer spike protein of the different SARS-CoV-2 variants [25]. 160 

Neutralising activity was quantified by the half maximal inhibitory concentration (IC50), 161 

defining values of 50 or higher as positive [25]. 162 

 163 

Questionnaire 164 

Online questionnaires were sent to participants at enrolment and repeatedly every 3 to 6 165 

months over the duration of the study, collecting information on sociodemographic 166 

characteristics, chronic conditions, and vaccination status. Vaccination status of children and 167 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.08.23289517doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.08.23289517
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

  9 

 

adolescents was either self-reported by children and adolescent on the day of testing in 168 

schools or reported by parents/caregivers in online questionnaires. 169 

 170 

Groups of children and adolescent according to seropositivity and exposure status 171 

To assess the evolution of anti-spike IgG and neutralising antibody titres, we divided children 172 

and adolescents from the longitudinal cohort into four groups according to their vaccination 173 

and infection status. Children and adolescent never testing positive for anti-spike IgG were 174 

categorised as seronegative, unvaccinated children and adolescent ever testing positive for 175 

anti-spike IgG as infected, vaccinated children and adolescent testing negative for anti-spike 176 

IgG prior to vaccination and never testing positive for anti-nucleocapsid IgG as vaccinated, and 177 

children and adolescents testing seropositive before getting vaccinated, or were vaccinated 178 

and tested positive for anti-nucleocapsid-IgG antibodies as hybrid.  179 

 180 

Statistical Analysis 181 

We performed descriptive analysis for participants’ characteristics and antibody titres, by 182 

reporting median (interquartile range) or count (percentage). Neutralising activity was 183 

visualised using a log10-transformation of scales. The Wilson method was used to calculate 184 

95% confidence intervals (95% CI) of proportions [26]. We divided the study population into 185 

children being younger than 12 years and adolescents of 12 years and older, based on 186 

different vaccination policies for younger and older children and adolescents in Switzerland 187 

[14]. 188 

 189 

 190 
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We used Bayesian logistic regression to estimate the seroprevalence with 95% credible 191 

intervals (95% CrI), using a model which accounts for the sensitivity and specificity of the SARS-192 

CoV-2 antibody test and the cohort’s hierarchical structure. The Bayesian approach also 193 

allowed to adjust for geographic district of the school, sex, and school grade of the child, and 194 

included random effects for school levels (lower, upper, and middle). We used 195 

poststratification weights to adjust for the population size of the particular school level and 196 

the geographic district. Further details regarding the Bayesian model and weighting approach 197 

can be found elsewhere [20]. 198 

Seroprevalence in the first three rounds (T1 to T3) was only referring to unvaccinated children 199 

and adolescents since vaccination was only available since June 2021 (rounds T4-T5, see Figure 200 

1). For T4 and T5, we conducted the analysis of seroprevalence for two groups: a) the 201 

unvaccinated children and adolescents, and b) all participating children and adolescents. 202 

 203 

To determine anti-spike IgG antibody decay times, we included all participants that 204 

seroconverted at any testing round and of whom at least one follow-up serology was 205 

performed. We excluded a) individuals who never tested seropositive for anti-spike IgG 206 

antibody, b) who had no follow-up assessment after testing seropositive, c) those who were 207 

vaccinated and d) those with potential reinfection, defined by the presence of anti-208 

nucleocapsid IgG or any increase in anti-spike IgG titres between two testing points. To 209 

estimate the slope of antibody decay, we limited the data to the first seropositive result (the 210 

closest and therefore likely highest MFI ratio after an infection) and all following timepoints, 211 

and then realigned the time axis to begin at the first seropositive result for each individual as 212 

done by others [27–29]. We then fit the univariable mixed-effects linear decay model for the 213 
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natural logarithm of the titres, with random intercepts for each participant. We used the 214 

formula (ln(0.5)/ β) to estimate the half-life (λ) in days, with β being the coefficient for time 215 

deriving from the fitted model [27–29]. In the primary analysis, we estimated the anti-spike 216 

IgG half-life in children and adolescents considering a time window of 365 days. Additionally, 217 

we performed a sensitivity analysis, estimating the half-life over a time window of 220 days, 218 

to ensure comparability with other published studies [8, 29–33]. Compared to other studies 219 

that used even shorter time windows for estimating the half-life, we chose a time window of 220 

220 days due to the timing of our testing rounds. 221 

 222 

The analyses were performed with R programming language [34], including the RSTAN 223 

package to fit the Bayesian models [35].  224 

 225 

  226 
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Results 227 

1. Participant Characteristics 228 

Throughout the study, we tested between 1876 and 2500 children and adolescents at each 229 

testing round between June 2020 and July 2022. Figure 1 shows the flowchart of participating 230 

schools and children and adolescents, and valid serological test results at each testing round. 231 

Table 1 presents the baseline characteristics of the study population for the repeated cross-232 

sectional as well as for the longitudinal cohort (Supplementary Table 1 for more details on 233 

chronic conditions). During the entire study period, three seropositive tested children and 234 

adolescents reported hospital stays of less than 24 hours, of which one was possibly related 235 

to an acute SARS-CoV-2 infection. 236 

 237 
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 238 

Figure 1: Flowchart of participants. Newly enrolled children and adolescents did not participate in previous rounds. 239 
*Longitudinal cohort consists of children and adolescents participating in the last (T5) and at least three other testing rounds. 240 
Yrs: years.  241 
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Table 1: Baseline characteristics of the study population at each testing round. Yrs: years; a: Predominant variant of concern 242 
in Switzerland ( >50% of circulating VOC in Switzerland); b) unique number of children and adolescents tested throughout the 243 
entire study period; c) number of children and adolescents tested per round; d: details on chronic conditions can be found in 244 
Supplement Table 1; e: grouped into <12 years and ≥12 years, since in Switzerland, adolescents ≥12 years of age could get 245 
vaccinated since mid-June 2021 and children between 5 and 11 years of age from January 2022; *median (interquartile range) 246 

 T1 T2 T3 T4 T5 

Timeframe of 

testing 

Jun/Jul 2020 Oct/Nov 2020 Mar/Apr 2021 Nov/Dec 2021 Jun/Jul 2022 

Predominant 

VOC a 

Wildtype Wildtype Alpha Delta Omicron 

 

REPEATED CROSS-SECTIONAL COHORTS 

N unique b 4251     

N tested c 2473 2500 2450 1875 2105 

Age* (yrs) 12 (6-17) 12 (7-17) 12 (7-17) 12 (7-17) 12 (7-18) 

Sex (n, % male) 1197 (48%) 1211 (48%) 1165 (48%) 884 (47%) 990 (47%) 

Age group 

<12yr 

≥12yr 

 

1450 (59%) 

1023 (41%) 

 

1298 (52%) 

1202 (48%) 

 

1144 (47%) 

1306 (53%) 

 

945 (50%) 

930 (50%) 

 

1011 (48%) 

1094 (52%) 

Existence of 

any chronic 

condition d 

546 (24%) 551 (24%) 536 (24%) 375 (23%) 412 (23%) 

Vaccinated e 

Overall 

<12yr 

≥12yr 

 

0 

 

0 

 

0 

 

475/1876 (25%) 

0 

475/930 (51%) 

 

913/2105 (43%) 

283/1011 (28%) 

630/1094 (58%) 

Questionnaires 

completed 
2211 (89%) 2030 (81%) 1898 (77%) 1461 (78%) 1499 (71%) 

 

LONGITUDINAL COHORT 

N unique b 751     

N tested c 695 725 738 722 751 
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Age* (yrs) 10 (6-15) 11 (7-16) 11 (7-16) 12 (8-17) 12 (8-17) 

Sex (n, % male) 326 (43%) 341 (45%) 352 (47%) 341 (45%) 355 (47%) 

School level 

<12yr 

≥12yr 

 

496 (71%) 

199 (29%) 

 

492 (68%) 

233 (32%) 

 

465 (63%) 

273 (37%) 

 

377 (52%) 

345 (48%) 

 

325 (43%) 

426 (56%) 

Chronic 

conditions d 
150 (21%) 161 (22%) 163 (22%) 159 (22%) 166 (23%) 

Vaccinated 

Overall 

<12yr 

≥12yr 

 

0 

 

0 

 

0 

 

184/722 (25%) 

0 

184/345 (53%) 

 

345/751 (46%) 

93/325 (29%) 

252/426 (59%) 

Questionnaires 

completed 
678 (90%) 647 (86%) 636 (85%) 610 (81%) 515 (69%) 

 247 

  248 
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2. Repeated cross-sectional cohorts: Development of seroprevalence 249 

Figure 2 shows the seroprevalence of children and adolescents for each timepoint of testing. 250 

Seroprevalence increased with each testing round in children and adolescents. Between T4 251 

(Nov/Dec 2021) and T5 (Jun/Jul 2022) seroprevalence increased from 46.4% [95% credible 252 

interval [CrI] 42.6-51.0%] to 96.9% [95% CrI 95.2-98.1%] in the overall study population and 253 

from 31.3% [95% CrI 27.5-35.9%] to 95.8% [95% CrI 93.1-97.8%] among unvaccinated children 254 

and adolescents. At T4, 25.3% of all children and adolescents were vaccinated (all of whom 255 

were ≥12yrs old), and at T5 43.4% (28% of children <12 and 58% of adolescents ≥12yrs old) 256 

(see Table 1). When stratifying according to age, children below the age of 12 had a bigger 257 

increase in seroprevalence between T4 and T5 (28.4% [95% CrI 24.2-33.2%] to 95.7% [95% CrI 258 

93.4-97.4%], respectively) compared to adolescents of 12 years or more (69.4% [95% CrI 64.0-259 

75.4%] to 98.4% [95% CrI 97.3-99.2%], respectively) (Supplementary Table 2). 260 

 261 

 262 
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 263 

Figure 2: Evolution of the incidence of diagnosed SARS-CoV-2 infections in Switzerland and participants’ seroprevalence from 264 
June 2020 to July 2022 using the cross-sectional cohort. Unvaccinated (light blue): unvaccinated children and adolescents 265 
across all 5 testing rounds; overall (dark blue): all children and adolescents participating; grey: predominant variant of concern 266 
in Switzerland (>50% of VOC circulating); *Seroprevalence was adjusted for school level, sex and district and test sensitivity 267 
and specificity. 268 
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3. Longitudinal Cohort: Trajectory of Anti-spike IgG Antibodies 270 

Figure 3 shows the trajectory of anti-spike IgG antibodies using the longitudinal cohort (n = 271 

386) excluding children and adolescents who never tested seropositive throughout all five 272 

testing rounds (n= 37) and children and adolescents who seroconverted between T4 (Nov/Dec 273 

2021) and T5 (Jun/Jul 2022) (n= 328). We categorised participants into four groups according 274 

to their time of seroconversion, e.g., group 1 seroconverted before T1 (Jun/Jul 2020), group 2 275 

seroconverted between T1 (Jun/Jul 2020) and T2 (Oct/Nov 2020), group 3 seroconverted 276 

between T2 (Oct/Nov 2020) and T3 (Mar/Apr 2021), and group 4 seroconverted between T3 277 

(Mar/Apr 2021) and T4 (Nov/Dec 2021). Anti-spike IgG antibodies remained detectable 6 278 

months (T4 to T5: 99% (n= 208/210)), 12 months (T3 to T5: 99% (n= 113/114)), 18 months (T2 279 

to T5: 93% (n= 28/30)) or 24 months (T1 to T5: 69% (n= 22/32)) in children and adolescents 280 

after seroconversion, respectively. At T5, antibodies were still detectable in 99% (n= 384/386) 281 

of all children and adolescents who seroconverted in any previous testing round 282 

(Supplementary Figure 1 shows the MFI ratio converted to U/ml for Roche Elecsys anti-spike 283 

IgG (WHO measure)). Anti-spike IgG titres increased with each testing round either by 284 

reinfection, vaccination, or a combination of the two. A first increase in antibody titres 285 

occurred between T3 and T4, coinciding with the introduction of vaccination in this age group 286 

in Switzerland. The highest increase in titres, visualised by the most substantial colour change 287 

in Figure 3, occurred between T4 and T5 when Omicron became the predominant VOC.  288 

To better understand the duration of protection of infection-elicited antibodies in children 289 

and adolescents, we evaluated the decay of anti-spike IgG. In a subpopulation of unvaccinated 290 

children and adolescents, excluding all children and adolescents with potential reinfection 291 
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(detected by the presence of anti-nucleocapsid IgG or any increase in titres between two 292 

testing points), we estimated the anti-spike IgG antibody half-life after following them up for 293 

365 days. The anti-spike IgG half-life estimate for this primary analysis was 305 days [95% CI 294 

263-363 days] (Supplementary Figure 2A). For the sensitivity analysis, considering a time 295 

window of 220 days of follow up, the half-life estimate was 220 days [95% CI 170-312 days] 296 

(Supplementary Figure 2B).  297 
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 298 

Figure 3: Individual trajectories of anti-spike IgG (anti-S IgG) mean fluorescence intensity (MFI) ratios over time separated by 299 
first incidence of seropositive result (n= 386). S-IgG+: Anti-Spike IgG positive MFI ratio; 1) S-IgG+ since T1: n= 32; 2) S-IgG+ 300 
since T2: n= 30; 3) S-IgG+ since T3: n= 114; 4) S-IgG+ since T4: n= 210. Children and adolescents seroconverting from T4 to T5 301 
are not shown (n= 328). Grey denotes seronegative anti-spike IgG result (≤6 U/ml). Colour denotes seropositive anti-spike IgG 302 
result with different level titres. White colour indicates no blood result available. 37 children and adolescent tested 303 
seronegative throughout all five testing rounds are not shown in the figure. 304 
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4. Effect of the Omicron Wave 308 

4.1. Longitudinal Cohort: Evolution of Anti-spike-IgG Antibodies 309 

Figure 4 shows the evolution of anti-spike IgG antibodies in groups of children and adolescents 310 

separated by their serology and exposure status (i.e., seronegative, only infected, only 311 

vaccinated, with hybrid immunity) at T4 (Nov/Dec 2021) and followed to T5 (Jun/Jul 2022). 312 

This was the time when Omicron started to be the dominant VOC until the end of the first 313 

large infection peak (Figure 2). Children and adolescents with hybrid immunity and who were 314 

only vaccinated showed similarly high titre levels at T4 or T5, whereas infected but 315 

unvaccinated children and adolescents showed considerably lower titres (Supplementary 316 

Table 3 or 4). Yet, titres of all groups increased from T4 to T5 on average. The highest increase 317 

in titres was seen in children and adolescents who were infected or seronegative in T4 and 318 

received their first vaccination between T4 and T5. The smallest increase and the lowest titres 319 

in T4 and T5 were observed in children and adolescents who were previously seronegative 320 

and had their first SARS-CoV-2 infection (Supplementary Figure 3 and Supplementary Table 4 321 

and 5 shows the MFI ratio converted to U/ml for Roche Elecsys anti-spike IgG (WHO measure)). 322 

 323 

To detect and quantify infections or reinfections between T4 (Nov/Dec 2021) to T5 (Jun/Jul 324 

2022), we tested anti-nucleocapsid IgG antibodies, as they were expressed only after a SARS-325 

CoV-2 infection and not after a vaccination. By mid 2022, more infections or reinfections 326 

happened in unvaccinated children and adolescents (74%) than in vaccinated (27%), indicating 327 

that vaccinated children and adolescents were likely better protected against an infection 328 

(Supplementary Table 6). 329 
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 330 

Figure 4: Evolution of anti-spike IgG MFI ratios between T4 (Nov/Dec 2021) and T5 (June/July 2022) among seronegative, 331 
infected, vaccinated children and adolescents, and those with hybrid immunity at T4 shown as violin plots display mirrored 332 
density for each titre value (continuous distribution). For example, the top left panel represents 38 children and adolescents, 333 
who had median MFI titre of 107.1 in T4 (blue) and increased to median MFI titre of 133.1 in T5 (red)". Negative denotes 334 
seronegative at T4, Infected denotes seropositive but not yet vaccinated, Vaccinated denotes vaccinated participants, but 335 
negative in previous rounds and without evidence for anti-nucleocapsid IgG response. Children and adolescents with hybrid 336 
immunity were seropositive before getting vaccinated, or were vaccinated and tested positive for anti-nucleocapsid-IgG 337 
antibodies. Titre levels at T4 and at T5 are shown in blue and orange, respectively. Boxplots in panels show the median and 338 
interquartile range (IQR; whisker: 1.5 IQR). 60 children and adolescents are not shown in the figure (n=31 seronegative at T4 339 
and T5, n=29 no data at T4). 340 
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4.2. Longitudinal Cohort: Evolution of the Neutralising Antibodies 342 

Figure 5 shows the development of neutralising antibodies against different SARS-CoV-2 343 

variants (Wildtype, Delta, and Omicron) between T4 (Nov/Dec 2021) and T5 (Jun/Jul 2022). 344 

We again separated participants into the four different groups according to their serology at 345 

T4 and exposure status (i.e., seronegative, only infected, only vaccinated, or with hybrid 346 

immunity). In general, neutralising activity increased in all groups between T4 and T5. The 347 

neutralising response was proportionally higher, but comparable in those with hybrid 348 

immunity and vaccination only (e.g., anti-Omicron at T5 98.9% [95% CI 96.0-99.7%] and 81.6% 349 

[95% CI 74.9-86.9%], respectively, Supplementary Table 3), but lower in infected participants 350 

(e.g., anti-Omicron at T5 64.9% [95% CI 59.8-69.7%]). The neutralising response at T5 was 351 

higher for infected children and adolescents at T4 (Figure 5i) compared to seronegative 352 

children and adolescents at T4 (Figure 5l, Supplementary Table 7 shows detailed test results).  353 

Overall, neutralising response was highest against anti-Wildtype, followed by anti-Delta and 354 

anti-Omicron, except in children and adolescent getting newly infected between T4 to T5 355 

(Figure 5l), where anti-Omicron showed highest neutralising response, followed by anti-356 

Wildtype and anti-Delta. 357 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.08.23289517doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.08.23289517
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

 

  24 

 

 358 

Figure 5: Evolution of neutralising antibody half maximal inhibitory concentrations (IC50) between T4 (Nov/Dec 2021) and T5 359 
(June/July 2022) among negative, infected, vaccinated children and adolescents, and those with hybrid immunity shown by 360 
violin plots display mirrored density for each NAB IC50 value (continuous distribution). Negative denotes seronegative at T4, 361 
Infected denotes seropositive but not yet vaccinated, Vaccinated denotes vaccinated participants, but negative in previous 362 
rounds and without evidence for anti-nucleocapsid IgG response. Children and adolescents with hybrid immunity were 363 
seropositive before getting vaccinated, or were vaccinated and tested positive for anti-nucleocapsid IgG antibodies. Dotted 364 
line indicates NAB IC50 value threshold (50) for half maximal inhibitory concentrations (IC50) for neutralising activity. Children 365 
and adolescents with NAB IC50 values above the threshold are assumed to have 50% or higher neutralisation capacity. 366 
Boxplots in panels show the median and interquartile range (IQR; whisker: 1.5 IQR). 60 children and adolescents are not shown 367 
in the figure (n=31 seronegative at T4 and T5, n=29 no data at T4). 368 
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Discussion 371 

Throughout the course of the Ciao Corona study from June 2020 to July 2022, seroprevalence 372 

increased with each further circulating VOC and uptake of vaccination in children and 373 

adolescents. By July 2022 despite incomplete uptake of vaccination (58% in those ≥12 years, 374 

28% in <12 years), 96.9% [95% CrI 95.2-98.1%] of all children and adolescents had anti-spike 375 

IgG antibodies against SARS-CoV-2 and most children under the age of 12 became seropositive 376 

during the Omicron wave despite low vaccination uptake. Also, 93% of children and 377 

adolescents who seroconverted early in the pandemic were persistently seropositive for up 378 

to 18 months. Furthermore, vaccinated children and adolescents regardless of prior infection 379 

had high to very high anti-spike IgG titres and proportionally higher neutralising response, 380 

compared to unvaccinated but infected children and adolescents who showed lower SARS-381 

CoV-2 anti-spike IgG titres and neutralising responses.  382 

 383 

We found a sharp increase in seroprevalence from 46.4% in T4 (Nov/Dec 2021) to 96.9% in T5 384 

(Jun/Jul 2022), and anti-spike IgG antibody titre levels in seropositive participants were overall 385 

higher at T5 compared to the beginning of the COVID-19 pandemic. While this is not surprising 386 

for those receiving a vaccination, mostly adolescents of 12 years or more, it is remarkable that 387 

also most without vaccination, i.e., children below the age of 12, became seropositive. This is 388 

likely attributable to the overall high incidence of SARS-CoV-2 infections in the first half of 389 

2022, where the highly transmissible Omicron variant that was able to evade both natural and 390 

vaccine-induced immunity became dominant [15–17]. These findings are consistent with 391 

other international studies in children and adolescents also reporting high seroprevalence and 392 

titre levels by mid 2022 [4, 36–38]. However, seroprevalence is dependent on the course of 393 
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the pandemic, the circulating VOC, geographical region, and the uptake of vaccines, which is 394 

why great variability in seroprevalence estimates were stated across different reports [39]. 395 

 396 

In our study, children and adolescents who seroconverted early in the COVID-19 pandemic, 397 

were persistently seropositive for up to 18 months. Several studies reported on duration of 398 

persistence of antibodies after a SARS-CoV-2 infection in children and adolescents. Some 399 

studies reported that anti-spike IgG levels decrease within 4 to 6 months [40, 41], whereas 400 

others showed that they remained detectable up to 9 to 18 months [9, 42, 43].  401 

We likewise estimated that the anti-spike IgG half-life was 305 days in children and 402 

adolescents overlooking a window of 365 days. The half-life estimate of our sensitivity analysis 403 

using a time window of 220 days, was comparable to those of adults reporting between 145 404 

to 238 days [8, 29–33]. Data on anti-spike IgG half-life in children and adolescents is limited 405 

and results are controversial, ranging from faster decay of anti-spike IgG antibodies [8] to 406 

similar [9] waning between children and adults. Thus, the estimate of half-life in our primary 407 

analysis was higher than that of the sensitivity analysis and also higher than what has 408 

previously been reported in adults. Several factors may explain these differences including the 409 

unknown timepoint of infection, differential missingness due to immune function, as well as 410 

differing assumptions made in the analyses. In particular, the sensitivity analysis with the 411 

shorter time window covered only the early time after infection in which a faster decay of 412 

antibodies takes place, while the primary analysis covered the period of a full year including 413 

both the initial fast decline of antibodies followed by a period in which the decay was much 414 

slower and steadier [8, 9]. 415 

 416 
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Comparing the four groups, we found that anti-spike IgG antibody titres and neutralising 417 

response were higher in children and adolescents with hybrid immunity or vaccination only 418 

compared to only infected children and adolescents in July 2022. Neutralising capacity was 419 

proportionally higher against all VOC in children and adolescents with hybrid immunity or who 420 

were vaccinated compared to children and adolescents being only infected. We may have 421 

underestimated the proportion of children and adolescents with hybrid immunity, considering 422 

that anti-nucleocapsid IgG antibodies wane quickly and are also less expressed among 423 

vaccinated individuals [44–46]. Therefore, we likely missed infections in early 2022 if anti-424 

nucleocapsid IgG were undetectable despite infection. However, since anti-spike IgG titres and 425 

neutralisation were similar among those vaccinated or with hybrid immunity in comparison 426 

with adults [37, 47–49], it is unlikely that this would have relevantly changed our findings. 427 

Numerous studies demonstrate that adults with high antibody titres and neutralising activity 428 

are protected against developing a severe course of SARS-CoV-2 disease [50–52]. Because only 429 

one adolescent had a hospital stay of less than 24 hours likely related to a SARS-CoV-2 430 

infection, it remains unclear whether the findings in adults of higher protection against severe 431 

disease by vaccination and/or hybrid immunity can also be translated to children and 432 

adolescents. A study to test this hypothesis in youth would require an extremely large 433 

population-based study, as children and adolescents have a severe course of disease in less 434 

than 1 %, far less than observed in adults [53, 54].  435 

 436 

Our findings show that the overall humoral and population immunity is high in children and 437 

adolescents in Switzerland. Policy makers and healthcare professionals in Switzerland closely 438 

followed our study and considered these findings to guide their decisions on public health 439 
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recommendations and pandemic-related measures for children and adolescents. Repeated 440 

discussions of our results with cantonal and national public health authorities contributed to 441 

the decision of the Swiss Federal Office of Public Health that vaccination for youth below the 442 

age of 16 was no longer recommended, and all preventive measures regarding children and 443 

adolescents were lifted [55]. 444 

 445 

The Ciao Corona study is unique and one of few large longitudinal studies in youth [9, 37, 43]. 446 

We were able to reflect the time periods of the circulation of the major SARS-CoV-2 variants 447 

(Wildtype, Alpha, Delta, and Omicron) during our five testing rounds between June 2020 and 448 

July 2022. Also, serological testing allowed us to detect children and adolescents with 449 

asymptomatic SARS-CoV-2 infection. With the longitudinal cohort we were able to assess 450 

temporal changes in humoral activity during the COVID-19 pandemic. Furthermore, our study 451 

is the first to show the proportion of children and adolescents with neutralising antibodies 452 

based on a large school-based study.  453 

However, some limitations need to be considered when interpreting the findings of this study. 454 

First, the exact timing of SARS-CoV-2 infections in children and adolescents is not known in 455 

sero-epidemiological studies. Thus, infection could have occurred days to months before a 456 

participant tested seropositive in our study. Second, we may have misclassified some children 457 

and adolescents when classifying them into the four different groups. Vaccination status was 458 

self-reported by the study participants or their parents. This could have led to an over- or 459 

underestimation of seroprevalence and differences in antibodies in the groups, due to recall 460 

bias. Differentiation between children and adolescents with hybrid immunity or vaccination 461 

only was based on the presence of SARS-CoV-2 anti-nucleocapsid IgG antibodies. Since the 462 
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anti-nucleocapsid IgG antibodies response is weaker when vaccinated (as shown in different 463 

studies [44–46]), we likely underestimated children and adolescents with hybrid immunity. 464 

Third, the estimation of anti-spike IgG half-life bears the limitations that the decay was 465 

calculated using the first seropositive result and the time between our testing rounds varied 466 

between 4 to 8 months. Due to the missing information on the exact timepoint of infection, 467 

we set the peak at the first seropositive result to measure the decline in anti-spike IgG. 468 

However, this approach may possibly underestimate maximum antibody titers and enhancing 469 

variability of measured values. Consequently, we may have overestimated the half-life in 470 

children and adolescents. Fourth, persistence of anti-spike IgG antibodies over 24 months in 471 

69% of children and adolescents may be underestimated due to false positive serological 472 

results at T1 (Jun/Jul 2020) when SARS-CoV-2 prevalence was low [56]. 473 

 474 

 475 

Conclusion: 476 

In this study, we highlighted the importance of serological studies as a COVID-19 monitoring 477 

tool and the development of humoral immunity in children and adolescents. Our findings 478 

show that the Omicron wave and the rollout of vaccines led to almost 100% seropositivity and 479 

boosted seroprevalence and anti-spike IgG antibody titres (by infection, reinfection, and/or 480 

vaccination) as well as led to better neutralising capacity in children and adolescents. 481 

Especially during the first peak of the Omicron wave, most unvaccinated children under the 482 

age of 12 became seropositive compared to adolescents of 12 years and older, who had access 483 

to vaccines since June 2021. Nevertheless, during the entire study period parents of three 484 
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children and adolescents reported a hospital stay of less than 24 hours, of which one was 485 

possibly related to an acute SARS-CoV-2 infection. 486 

 487 
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