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ABSTRACT: 
 

Background: Chronic kidney disease (CKD) is a genetically complex disease determined by an interplay of 

monogenic, polygenic, and environmental risks. Most forms of monogenic kidney diseases have incomplete 

penetrance and variable expressivity. It is presently unknown if some of the variability in penetrance can be 

attributed to polygenic factors.  

 

Methods: Using the UK Biobank (N=469,835 participants) and the All of Us (N=98,622 participants) datasets, 

we examined two most common forms of monogenic kidney disorders, autosomal dominant polycystic kidney 

disease (ADPKD) caused by deleterious variants in the PKD1 or PKD2 genes, and COL4A-associated 

nephropathy (COL4A-AN caused by deleterious variants in COL4A3, COL4A4, or COL4A5 genes). We used 

the eMERGE-III electronic CKD phenotype to define cases (estimated glomerular filtration rate (eGFR) <60 

mL/min/1.73m2 or kidney failure) and controls (eGFR >90 mL/min/1.73m2 in the absence of kidney disease 

diagnoses). The effects of the genome-wide polygenic score (GPS) for CKD were tested in monogenic variant 

carriers and non-carriers using logistic regression controlling for age, sex, diabetes, and genetic ancestry. 

 

Results: As expected, the carriers of known pathogenic and rare predicted loss-of-function variants in PKD1 or 

PKD2 had a high risk of CKD (ORmeta=17.1, 95% CI: 11.1-26.4, P=1.8E-37). The GPS was comparably 

predictive of CKD in both ADPKD variant carriers (ORmeta=2.28 per SD, 95%CI: 1.55-3.37, P=2.6E-05) and 

non-carriers (ORmeta=1.72 per SD, 95% CI=1.69-1.76, P< E-300) independent of age, sex, diabetes, and genetic 

ancestry. Compared to the middle tertile of the GPS distribution for non-carriers, ADPKD variant carriers in the 

top tertile had a 54-fold increased risk of CKD, while ADPKD variant carriers in the bottom tertile had only a 

3-fold increased risk of CKD. Similarly, the GPS was predictive of CKD in both COL4-AN variant carriers 

(ORmeta=1.78, 95% CI=1.22-2.58, P=2.38E-03) and non-carriers (ORmeta=1.70, 95%CI: 1.68-1.73 P<E-300). 

The carriers in the top tertile of the GPS had a 2.5-fold higher risk of CKD while the risk for carriers in the 

bottom tertile was similar to the middle tertile of non-carriers. 

 

Conclusions: Variable penetrance of kidney disease in ADPKD and COL4-AN is partially explained by 

differences in polygenic risk profiles. Accounting for polygenic factors has the potential to improve risk 

stratification in monogenic kidney disease and may have implications for genetic counseling. 
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INTRODUCTION: 
 
Common complex traits are determined by a combination of genetic and environmental risk factors. A small 

subset of common human diseases is caused by rare monogenic variants with relatively large effects that cause 

disease by disrupting a specific disease-related pathway1,2. However, monogenic disease variants typically have 

incomplete penetrance that is often attributable to environmental and other inherited factors. Genome-wide 

polygenic scores (GPS) have emerged as a powerful approach to quantifying the contribution of polygenic 

effects3-24. Recent studies suggested that such scores could, to some degree, explain variable penetrance of 

several monogenic disorders, including familial hypercholesterolemia, hereditary breast, and ovarian cancer, 

and Lynch syndrome25. However, the interplay of monogenic and polygenic risk has not been previously 

studied in the context of kidney disease.  

 

Chronic kidney disease (CKD) is a common condition that affects more than 10% of the population worldwide 
26. CKD represents a genetically complex and highly heterogeneous phenotype. Monogenic disorders account 

for up to 9.3% of all-cause CKD27 with autosomal dominant polycystic kidney disease (ADPKD) and Alport 

syndrome, Thin Basement Membrane Disease, and Hereditary Nephritis, collectively known as collagen type 

IV-alpha-associated nephropathies (COL4A-AN) representing the most common forms of monogenic kidney 

diseases. ADPKD is caused by dominant mutations in the PKD1 gene on chromosome 16 or the PKD2 gene on 

chromosome 4. The disease affects all ancestral groups with an overall prevalence of approximately 1 in 

1,00028. The second most common group of inherited nephropathies, COL4A-AN, are caused by mutations in 

COL4A3, COL4A4, or COL4A5 genes. COL4A-AN is characterized by glomerular basement defects 

manifesting with hematuria and renal dysfunction. Biallelic inheritance causes Alport syndrome, a rare and 

more severe disease characterized by hematuria, early-onset kidney failure, and deafness. However, monoallelic 

carriers of pathogenic variants also have a higher risk of hematuria and CKD. The penetrance of both ADPKD 

and COL4A-AN is highly variable, even within the same pedigrees. In this study, we hypothesize that 

polygenic background may partially explain the observed variability in the penetrance of these disorders.  

 

We hypothesize that while monogenic variants exert large effects by perturbing an essential disease pathway, 

polygenic risk factors can either ameliorate or exacerbate this effect by altering a broader array of mechanisms 

related to CKD. We have previously developed a GPS for CKD with validated performance across diverse 

ancestries29. Here, we test if the GPS modifies the risk of CKD among carriers of pathogenic ADPKD and 

COL4A-AN variants through combined analysis of exome/genome sequencing, SNP microarray, and electronic 

health record (EHR) data for a total of 568,457 participants from the UK Biobank and the All of Us study.  
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METHODS 

 

Study design 

This cross-sectional study involves a combined analysis of the UK Biobank (UKBB) and All of Us cohorts 

(AoU) cohorts. All participants provided informed consent to participate in genetic studies. Each cohort was 

first analyzed separately, and cohort-specific results were combined using fixed effects meta-analysis.  

 
UK Biobank (UKBB) 

The UK Biobank is a longitudinal cohort of individuals ages 40-69 years at enrollment, recruited between 2006 

and 2010 across the United Kingdom30. The individuals recruited to UKBB signed an electronic consent to 

allow a broad sharing of their anonymized data for health-related research. UKBB generated and released SNP 

microarray, exome sequence, and structured EHR data for 469,835 participants. The cohort is 54% female, with 

a mean age of 57 years, and the composition is 94% Europeans, 2% West or Southeast Asians, and 2% African 

ancestry by self-report30 (Table 1). 

 

SNP Microarray data 

The details of the UKBB microarray genotyping, imputation, and quality control are available elsewhere30. 

Briefly, using the UKBB Axiom Array (N=438,427) and UK BiLEVE Axiom Array (N=49,950), a total of 

488,377 participants have been genotyped for 805,426 overlapping markers. The 1000 Genomes, UK10K, and 

Haplotype Reference Consortium (HRC) reference panels were all used in conjunction to perform genome-wide 

imputation using IMPUTE2 software31,32. We performed post-imputation quality control analyses as described 

in our previous work based on this dataset,29 retaining 9,233,643 common (i.e., Minor Allele Frequency (MAF) 

> 0.01), high-quality (imputation R2 > 0.80) variants for the purpose of GPS calculation. 

 

Exome sequencing 

The exome sequencing (ES) dataset was generated for N=469,835 UKBB participants as previously 

described33,34. Briefly, ES was performed at the Regeneron Genetics Center using 75 base pair pared-end reads 

with 10 base pair index reads on the Illumina NovaSeq 6000; the reads were mapped to the Genome Reference 

Consortium Human Reference 38 (GRCh38) using the BWA-MEM command for each sample. WeCall was 

used to identify variants in gVCFs, which were then aggregated with GLnexus into a joint-genotyped and multi-

sample project-level VCF (pVCF). SNV and indel genotypes called threshold read depth (DP) were less than 7 

and 10, respectively. Subsequent variant-level filters include at least one homozygous variant carrier; or at least 

one heterozygous variant carrier with an allele balance greater than 0.15 for SNVs and 0.20 for indels33,34. We 

accessed and analyzed the latest data through the UKBB Research Analysis Platform (RAP) on DNAnexus. For 
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the purpose of this study, we applied additional variant-level filters that included genotype quality (GQ) >90, 

depth of coverage (DP) >10, and MAF less than or equal to 0.00001 for ADPKD and 0.001 for COL4A-AN 

variants in the UKBB and GNOMAD database for each ancestry35.  

 

Genetic ancestry analysis 

We used the UKBB genotype array data to perform principal component analysis (PCA). We first pruned the 

genotype data using the plink command ‘--indep-pairwise 500 50 0.05’. We then used FlashPCA36 based on 

35,091 pruned variants. We merged the UKBB samples with 2,504 participants of 1000 Genomes Project (1KG 

phase 3)37 and kept only shared variants between the two datasets. Then, we used a random forest machine 

learning based on 10 principal components to train ancestry classifiers using 1KG labeled data. Finally, we then 

used the trained model to predict the genetic ancestry of the UKBB samples (Supplementary Figure 1 (a, b)).  

 

All of Us (AoU) 

The AoU research program launched recruitment in 2018 across 340 sites across the United States and over 

372,380 participants were enrolled by 2022. AoU combines participant-derived data from surveys such as self-

reported health information, physical measurements, electronic health records, and biospecimens. We analyzed 

the AoU data on Workbench, a cloud-based environment38. The first data release included N=98,622 

participants with complete SNP microarray and genome sequencing data as well as phenotype information. The 

participants included 60% female, the mean age was 55 years and consisted of 53% European, 4% Asian, and 

21% Black/African American race by self-report. In addition, 17% of the cohort self-reported having 

Hispanic/Latinx ethnicity (Table 1).  

 

SNP Microarray genotype data 

All participants were genotyped with the Illumina Global Diversity Array (GDA). This microarray contains 

1,904,679 SNVs and 44,172 indels. First, we performed genome-wide imputation analysis on the Workbench 

platform. Before imputation, we excluded all variants with MAF < 0.005 (671,685 variants) or genotype 

missingness rate > 0.05 (41,526 variants). We successfully lifted over genomic positions from human GRCh38 

(hg38) to GRCh19 (hg19) for 96% of SNPs. We then adopted the TopMed pre-imputation quality control (QC) 

pipeline to correct allele designations and additionally remove poorly mapping variants39. After QC, we used 

1,191,468 variants for imputation. To reduce RAM usage and increase speed, we split the 165,208 subjects with 

microarray data into 8 equal batches and then imputed each batch separately. After pre-phasing with EAGLE 

v.240, we imputed missing genotypes using Minimac431 and 1KG phase 3v541 reference panel. A total of 

43,371,225 autosomal variants were imputed in 165,208 individuals (Supplementary Table 1). We then 

merged the eight batches based on position using VCFtools software with the command ‘vcftools --gzvcf --
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positions --recode --recode-INFO-all –stdout’. MAFs for the imputed markers were closely correlated 

(correlation coefficient (r) = 0.96) with the MAFs for the 1KG dataset.  

 

Genetic ancestry analysis 

Similar to the UKBB data, we first pruned the genetic data using the command ‘--indep-pairwise 500 50 0.05’ 

in PLINK42 and used N=36,358 pruned variants for kinship and ancestry analysis. Using KING software43, we 

removed 270 samples with pairwise kinship coefficients>0.35. We then merged our AoU samples with 1KG 

samples, kept only SNPs in common between the two datasets, calculated PCs for the 1KG samples, and 

projected each of our samples onto those PCs. We then used a random forest-based machine learning approach 

to assign a continental ancestry group to each AoU sample. Briefly, we trained and tested the random forest 

algorithm on 1KG subjects with known labels. We trained the random forest model using 10 PCs as a labeled 

feature matrix. Then we used our trained random forest model to predict the genetic ancestries for the AoU 

dataset (Supplementary Table 2 and Supplementary Figure 1 (c, d)).  

 

Whole genome sequencing 

We utilized 98,622 whole genome sequencing (GS) data released on March 15, 2020. The detailed description 

of GS is available elsewhere44. Briefly, the GS data were generated with NovaSeq 6000. DRAGEN v3.4.12 

(Illumina) was used for genome alignment and calling, providing 702,668,125 SNVs for 98,622 samples with 

mean coverage greater or equal to 30x and >90% of bases at 20x coverage. The GS data is available in the All 

of Us workbench in the Hail matrix. We extracted all variants in PKD1, PKD2, COL4A3, COL4A4, and 

COL4A5 genes in VCF format using the following hail command in Jupyter Notebook:  

 

‘Gene_intervals = ['chr16:2.10M-2.15M', 'chr4:87M-89M','chr2:220M-235M','chrX:107M-109M']  

mt = hl.filter_intervals( 

  mt, [hl.parse_locus_interval(x,) 

  for x in Gene_intervals]) 

hl.export_vcf(mt, output_location, tabix=True)’ 

 

We then converted the vcf format data to the bed/bim/fam format using PLINK software42.  

 

Rare variant quality control, filtering, and classification 

We analyzed genetic variants in protein-coding regions of two ADPKD genes (PKD1 and PKD2) and three 

COL4A-AN genes (COL4A3, COL4A3, and COL4A5) in the UKBB and AoU datasets. We first removed 

variants with low genotype quality (GQ<90), depth of coverage (DP<10), and synonymous variants. Next, we 
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filtered variants based on frequency in any ancestral groups across the UKBB, AoU, and gnomAD datasets45, 

excluding variants with MAF>0.00001 for PKD1 and PKD2 (considering the autosomal dominant inheritance 

of ADPKD) and MAF>0.001 for COL4A3, COL4A4, and COL4A5 (considering the recessive inheritance of the 

most severe COL4A-AN phenotypes). We next used a range of prediction scores to define qualifying variants 

(QV), as recently proposed46. First, we identified all rare predicted loss of function (pLOF) variants, including 

stop-gain, frameshift, stop-lost, start-lost, and essential splice variants as defined previously46. Second, we 

classified rare missense variants as deleterious if they met the following strict criteria: 1) Revel score >0.7047 

and 2) variants predicted as damaging by the consensus of five predictors: Sorting Intolerant from Tolerant 

(SIFT)48, Polymorphism Phenotyping v2 (PolyPhen2) HDIV and PolyPhen2 HVAR49; likelihood ratio test 

(LRT)50; and MutationTaster51. After defining the lists of pLOFs and predicted deleterious missense variants, 

we intersected these variants with ClinVar and Varsome databases and excluded all variants previously reported 

as ‘Benign’ (B) or ‘Likely Benign’ (LB) by at least one of these databases52,53. Third, we identified all 

additional rare variants reported as ‘Pathogenic’ (P) or ‘Likely Pathogenic’ (LP) by at least two independent 

ClinVar submitters (accessed on 11/13/22). To increase the specificity, we excluded any variants with a conflict 

of reported pathogenicity or those submitted to ClinVar by only a single submitter. Based on these annotations, 

we then analyzed the data defining carrier status by three distinct variant classification models: the most 

stringent model (M1) included only pLOF and reported ‘P’ variants as defined above; model 2 (M2) was 

relaxed also to include pLOF, ‘P’, and ‘LP’ variants; and model 3 (M3) was further relaxed to include pLOF, 

and all deleterious missense variants predicted as deleterious by all 5 algorithms, with revel score > 0.7, and not 

previously classified as ‘B’ or ‘LB’ by ClinVar. For COL4A-AN analyses, we additionally analyzed a biallelic 

(recessive) inheritance by defining homozygous or compound heterozygous (COL4A3 and COL4A4) or 

hemizygous (for COL4A5 in males) genotypes for the qualifying variants. The list of observed qualifying 

variants included under each model is provided in Supplemental Data 1 and 2.  

 

Genome-wide Polygenic Score (GPS) 

We used our validated GPS for CKD that was previously optimized for trans-ancestry performance29. The score 

was calculated using the PLINK command ‘--bfile --score sum --out’ based on imputed genotype data. The GPS 

distribution was ancestry-adjusted for mean and variance based on 1KG reference, normal standardized, and 

additionally adjusted for APOL1 risk genotype as previously proposed (Supplementary Figure 2)29. The 

APOL1 risk alleles were imputed for all subjects, and the risk genotype was defined under a recessive model as 

G1G1, G2G2, or G1G2 risk allele combinations across all datasets (Supplementary Table 3).  
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CKD phenotyping and case-control definitions 

We used our validated CKD e-phenotyping algorithm to define CKD cases and controls54. All cases had either 

estimated glomerular filtration rate (eGFR) below 60 ml/min/1.73 m2 (by 2009 CKD-EPI equation55) or 

received renal replacement therapy (dialysis or kidney transplant). All controls had eGFR greater than 

90 ml/min/1.73 m2 and no evidence of CKD based on diagnostic or procedure billing codes. Additional 

covariates included age, sex, diabetes (type I or type II), and significant principal components of ancestry, 

similar to our published GPS validation studies29. 

 
Predictive performance 

The predictive performance of the GPS was assessed using standardized metrics as recently proposed by 

ClinGen56, including area under the receiver operating characteristics curve (AUROC), variance explained (R2), 

and effect size (OR) per standard deviation of the GPS distribution in controls. We used the pROC R package to 

calculate AUROC. For effect size estimation, we used logistic regression (glm function in R) with CKD status 

as an outcome and standardized GPS as a predictor with adjustment for age, sex, diabetes mellitus (type I or 

type II), genotype/imputation batch, and four PCs of ancestry, similar to prior studies29. Similarly, the 

association of a carrier status with CKD was tested using a logistic regression with CKD case status as an 

outcome and carrier status as a predictor, controlling for age, sex, diabetes, batch, and ancestry PCs. The same 

logistic model with the included GPS and carrier status terms was used to test the GPS-by-carrier status 

interaction. To compare GPS effect sizes between carriers and non-carriers, we derived ORs (and 95% CIs) of 

CKD, comparing each tertile of the GPS distribution in the carriers to the reference middle (2nd) tertile of the 

GPS for noncarriers in each cohort. For all analyses, we used R version 4.2.2 (2022-10-31).  

 

Meta-PheWAS 

We performed a phenome-wide association analysis for ADPKD and COL4A-AN variant carriers in both AoU 

and UKBB datasets. The 165,208 genotyped and imputed AoU participants had 12,945 International 

Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes that were first mapped to 

1,817 distinct phecodes. Similarly, there were 10,221 ICD-9 codes for UK Biobank participants (N=460,363) 

with imputed genotype data that mapped to 1,817 distinct phecodes. Phenome-wide associations were performed 

using the PheWAS R package57. The package uses two ICD-9 codes occurrences within a given phecode grouping 

to define a case and pre-defined “control” groups for each phecode. All 1,817 phecodes were tested using logistic 

regression with case-control status as the outcome and genotype, sex, age, batch, and five principal components 

of ancestry as predictors. We then performed fixed effects Meta-PheWAS of AoU and UKBB datasets using the 

PheWAS R package. We set the Bonferroni corrected statistical significance threshold for phenome-wide 

significance at 2.75E-05 (0.05/1,817 phecodes tested). 
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RESULTS 
The summary of our analytical approach is provided in Figure 1 as a flowchart. Using our electronic 

phenotyping algorithms, we defined a total of 10,081 CKD cases and 266,724 controls in the UKBB and 11,820 

CKD cases and 22,763 controls in the AoU dataset among those participants with both high-quality sequence 

and SNP microarray data available. 

 

Autosomal Dominant Polycystic Kidney Disease (ADPKD) 
We first identified all PKD1 and PKD2 variants that were either pLoF or reported as ‘P’ by at least two ClinVar 

submitters without conflicts (model M1). A total of 172 and 34 carriers of such variants were found in the 

UKBB and AoU, corresponding to the overall prevalence of approximately 0.036% and 0.034%, respectively. 

We performed a Meta-PheWAS analysis of both UKBB and AoU datasets to assess phenome-wide associations 

of M1 variants (Figure 2a). The top associated phecode was “Cystic Kidney Disease” with OR=295.7 (95%CI: 

214.3-408.0, P=9.0E-263), as expected. We also detected significant associations with a variety of CKD-related 

phecodes, including “End-stage renal disease”, OR=52.8 (95%CI: 31.2-89.3, P=2.1E-49) and “Kidney replaced 

by transplant” OR=112.1 (95%CI: 71.5-175.7, P=4.9E-94), as well as multiple other renal and extra-renal 

complications of ADPKD (Supplemental Data 3), confirming that M1 variant definitions have robust 

phenotypic signatures across both biobanks. We also tested the effects of these variants on the risk of CKD, as 

defined by our phenotyping algorithm, after adjustment for age, sex, diabetes, batch, and ancestry 

(Supplementary Table 4). In the meta-analysis of both cohorts, the risk of CKD was 17-fold higher in the 

ADPKD M1 variant carriers compared to non-carriers (OR: 17.1, 95%CI: 11.1-26.4, P=1.8E-37).  

 

We next investigated the effect of polygenic background on the risk of CKD by computing our previously 

validated GPS for CKD29 in all UKBB and AoU participants. After APOL1 and ancestry adjustments, the 

polygenic score was standard normal-distributed across ancestries in both UKBB and AoU datasets 

(Supplementary Figure 2). Because this risk score has not been previously tested in AoU participants, we first 

confirmed that the GPS was indeed associated with increased risk of CKD in this dataset (OR per SD=1.39, 

95%CI: 1.36-1.43, P=5.9E-125, adjusted for age, sex, diabetes, batch, and genetic ancestry). All participants 

were then stratified based on their ADPKD QV carrier status, and the effects of the GPS were re-examined 

within each stratum across both UKBB and AoU datasets combined. In the meta-analysis, the OR per SD of the 

GPS was 2.28 (95%CI: 1.55-3.37, P=2.7E-05) in the M1 QV carriers compared to 1.72 (95%CI: 1.69-1.76, 

P<E-300) in the non-carriers (Table 2). Despite the trend for a greater effect of the GPS among the carriers, the 

GPS-by-carrier interaction test was not statistically significant in either cohort or in the combined meta-

analysis.  
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We next estimated the CKD risk for each tertile of the GPS distribution among the M1 variant carriers 

compared to the middle tertile of the non-carriers (i.e., reflecting average risk) across both AoU and UKBB 

(Figure 3 and Supplementary Table 5). Among the QV carriers, we observed a clear gradient of CKD risk as 

a function of GPS, ranging from OR=3.03 (95%CI 1.03-8.95, P=4.4E-02) for the lowest tertile to OR=54.4 

(95%CI 26.1-113.0, P=9.6E-27) for the highest tertile of polygenic risk. These results demonstrate that the GPS 

significantly alters the penetrance of ADPKD M1 qualifying variants. 

 

In the subgroup analyses, we examined QVs in PKD1 and PKD2 separately and observed similar patterns of 

GPS effects within each of the gene-defined subgroups (Supplementary Figure 3). Similarly, we examined 

QVs by variant type (truncating vs. missense) and observed a consistent pattern of GPS effects for both 

subgroups (Supplementary Figure 4). Lastly, we investigated the effect of the GPS on the risk of CKD among 

ADPKD carriers defined under alternative QV models (M2 and M3, Supplementary Table 5). Similar results 

on the penetrance of CKD were observed, demonstrating that our findings were also robust to less stringent QV 

definitions. 

 

Collagen IV Alpha Associated Nephropathy (COL4A-AN) 

We next examined the effect of GPS on the risk of CKD in the carriers of COL4A-AN variants compared to the 

average risk of non-carriers. In this analysis, we used a less stringent MAF<0.001 for variant filtering, 

considering that the most severe phenotype of COL4A-AN is observed under a recessive model. Under M1, we 

defined a total of 1,435 carriers in the UKBB and 310 carriers in the AoU dataset, corresponding to the overall 

prevalence of approximately 0.31% and 0.32%, respectively.  

 

In the Meta-PheWAS analysis for M1 carriers across both UKBB and AoU datasets (Figure 2 (b)), the top 

associated phecode was “Hematuria” with OR=2.3 (95% CI: 2.0-9.6, P=4.8E-48). Other phenome-wide-

significant associations included “Kidney replaced by transplant” (OR=3.1, 95%CI: 2.0-23.8, P=3.8E-07), 

“Nephritis, nephrosis, renal sclerosis” (OR=2.34, 95%CI: 1.81-10.39, P=4.1E-11), “Proteinuria” (OR=3.94, 

95%CI: 2.77-51.6, P=1.6E-14) and “Chronic glomerulonephritis, NOS” (OR=2.98, 95%CI: 1.92-19.7, P=9.0E-

07). The complete list of phenotypic associations is provided as Supplemental Data 4. Compared to non-

carriers, the M1 QV carriers had a 37% increased risk of CKD as defined by our e-phenotype (OR=1.37, 

95%CI: 1.13-1.64, P=8.5E-04), M2 carriers had 25% increased risk (OR=1.25, 95%CI: 1.00-1.56, P=4.9E-02), 

and M3 carriers had 48% increased risk (OR=1.48, 95%CI: 1.23-1.77, P=2.6E-05) in the combined meta-

analysis under a dominant model (Supplementary Table 6). In comparison, the M3 recessive genotype was 

associated with a 3.38-fold higher risk (OR=3.38, 95%CI: 1.88-6.08, P=4.7E-05).  
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We next investigated the effect of polygenic background on the risk of CKD among M1 QV carriers compared 

to noncarriers. Similar to ADPKD, the GPS had a significant effect on the risk of CKD among both COL4A-

AN carriers (OR per SD of GPS = 1.78, 95%CI: 1.22-2.58, P=2.4E-03) and non-carriers (OR per SD of GPS 

=1.70, 95%CI: 1.68-1.73, P<E-300) in the meta-analysis (Table 3). There was no significant GPS-by-carrier 

interaction (P=8.1E-01). Similar to ADPKD, we observed a gradient of CKD risk as a function of the GPS 

among M1 carriers, from no increased risk (OR=1.01, 95%CI 0.63-1.86, P=7.8E-01) for the lowest GPS tertile 

to a 2.5-fold higher risk (OR=2.53, 95%CI 1.66-3.85, P=1.4E-05) for the top GPS tertile when compared to the 

middle tertile of non-carriers (Figure 4).  
 

We also explored the recessive model by testing for GPS effects among individuals with the M3 risk genotype 

(QV homozygotes, compound heterozygous, or COL4A5 hemizygous males). For individuals with the risk 

genotype, the top tertile of the GPS conveyed a 6.73-fold higher risk of CKD (OR=6.73, 95%CI: 2.59-17.5, 

P=8.8E-05), while the bottom tertile conveyed a 2.29-fold higher risk of CKD (OR=2.29, 95%CI 0.64-8.12, 

P=2.0E-01) compared to the middle tertile of individuals without the risk genotype (Figure 5).  

 

Our sensitivity analyses included alternative variant models (Supplementary Table 7) and individual analyses 

of autosomal (COL4A3 and COL4A4) and sex-linked (COL4A5) genes (Supplementary Table 8). These 

analyses confirmed the direction-consistent effect of the GPS across all different subgroups. We note that 

recessive analyses for M1 and M2 models were underpowered due to the low overall frequency of recessive 

genotypes defined under these models. 

 

DISCUSSION: 
Our large-scale analyses of UKBB and AoU datasets demonstrated that polygenic background affects the risk of 

kidney disease among individuals with the most common forms of monogenic kidney disorders. This effect was 

most pronounced in the individuals with known pathogenic or rare pLOF variants in PKD1 or PKD2. The 

bottom tertile of the GPS was associated with a 3-fold increased risk among these individuals compared to the 

middle tertile of non-carriers (average risk), while the top tertile was associated with a 54-fold increased risk of 

CKD. Similar but less extreme patterns of polygenic effects were also observed for COL4A-AN. The carriers of 

known pathogenic or rare pLOF variants in COL4A-AN genes in the bottom tertile of the GPS had no increased 

risk of CKD, while the individuals in the top GPS tertile had a 3-fold higher risk of CKD compared to non-

carriers. Under the recessive model, the risk was 2-fold higher and nearly 6-fold higher for the bottom and top 

tertile of the GPS, respectively, compared to the average risk of non-carriers. 
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While our analyses suggest that the GPS significantly affects the penetrance of ADPKD and COL4A-AN, we 

recognize that our study has limitations. First, significant demographic differences exist between the UKBB and 

the AoU participants. The UKBB participants are older (mean age 56.5 years, range 40-69 years) and 

predominantly (94%) of European ancestry, while the AoU participants are younger (mean age 54.9 years, 

range 18-89 years) and have more diverse ancestral backgrounds (57% non-European). Because the risk of 

CKD increases with age, these differences may be partially responsible for a lower effect estimate for the GPS 

in the AoU compared to the UKBB dataset. Moreover, current catalogues of “P” and “LP” variants are more 

comprehensive for European compared to non-European populations. Thus, we are also more likely to 

misclassify pathogenic variants in the AoU dataset compared to the UKBB dataset, and such misclassification 

could also reduce the observed effect sizes.  

 

Second, we were able to investigate only the two most common forms of monogenic kidney diseases, ADPKD 

and COL4A-AN. Similar patterns of GPS effects observed in these very different disorders suggest that our 

findings may be generalizable to other less frequent monogenic kidney diseases. However, much larger datasets 

would be needed to validate this hypothesis.  

 

Third, we are aggregating qualifying variants across all known genes for ADPKD or COL4-AN. However, the 

penetrance of kidney disease is known to vary according to a specific gene (e.g., PKD2 vs. PKD1) or a specific 

mutation type (e.g., missense vs. truncating variants). We performed sensitivity analyses to address this issue 

and our analyses by gene and variant type demonstrated consistent patterns of GPS effects across all subgroups. 

At the same time, we note that some of our subgroup analyses were underpowered. For example, PKD2 

mutations account for only ~15-20% of ADPKD cases and lead to a less severe disease compared to PKD158, 

impacting our power for individual analysis of this gene. Similarly, we do not have adequate power to define 

GPS effects under recessive inheritance using our most stringent (M1 and M2) models in COL4-AN. Thus, our 

biallelic analysis was limited to the M3 model. 

 

Fourth, there are notable limitations when it comes to kidney disease phenotyping in large biobanks that relate 

to ascertainment biases, the cross-sectional nature of data, the non-random missingness of EHR diagnoses, and 

the inability to perform manual chart reviews to confirm the diagnosis. These and other limitations of our e-

phenotyping strategy have been discussed elsewhere54. At the same time, the notable strength of our 

phenotyping approach is the fact that we are able to combine structured billing code data with all of the 

available laboratory tests to not only identify CKD cases but also to stage kidney disease severity with a high 

degree of confidence. Lastly, we recognize several important limitations of the GPS for CKD that was used here 

as a proxy for polygenic effects. These limitations have previously been described in depth elsewhere29. The 
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effects of monogenic kidney disease demonstrated here will need to be re-assessed once more powerful 

polygenic scores for CKD become available. 

 
In summary, in our combined analysis of SNP microarray, exome/genome sequencing, and EHR data, we 

observed significant additive effects of monogenic and polygenic factors on the risk of kidney disease across 

two large-scale biobanks. We demonstrated that in both ADPKD and COL4-AN, the risk of CKD could be 

either attenuated or amplified by the polygenic profile. We conclude that polygenic risk scores could be 

potentially used to improve our current risk stratification of patients with ADPKD and COL4-AN. Testing these 

findings in other forms of inherited kidney disorders will require further studies. 
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Data availability 

The UKBB genotype and phenotype data are available through the UKBB web portal at 

https://www.ukbiobank.ac.uk/. The AoU genotype, WGS, and phenotype data are available through the AoU 

researcher workbench at https://www.researchallofus.org/data-tools/workbench/.  

 

Code availability 

The CKD phenotype software is available from the Phenotype Knowledge Database at 

https://phekb.org/phenotype/chronic-kidney-disease. The CKD GPS score equation is available through the 

PGS catalog at https://www.pgscatalog.org/publication/PGP000269/ and the Kiryluk Lab website: 

http://www.columbiamedicine.org/divisions/kiryluk/study_GPS_CKD.php. 
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Figure 1: Overview of the workflow for the analysis of phenotype and genotype data. 
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Figure 2: Meta-PheWAS for (a) ADPKD M1 variant carriers and (b) COL4A-AN M1 variant carriers. 
This meta-analysis includes combined data from 460,360 UKBB and 74,350 AoU participants, with both 
genotype and phenotype data available. Both analyses were performed under the dominant inheritance model 
and adjusted for age, sex, diabetes, batch, and ancestry. The red horizontal lines indicate a phenome-wide 
significance level after accounting for the number of phecodes tested (P=2.8E-05). Y-axis: -log10(P-value) 
from fixed effects meta-analysis. P-values are two-sided and provided without accounting for multiple testing. 
X-axis: system-based phecode groupings. An upward-pointing triangle indicates increased odds for a given 
phecode, downward-pointing triangle indicates reduced risk.  
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Figure 3. Polygenic effects on the risk of CKD among ADPKD M1 variant carriers (dominant model): (a) 
M1 qualifying variant filtering strategy; (b) CKD risk for each polygenic risk score tertile compared to the 
middle tertile of non-carriers (average population risk). The analysis includes N=262,435 UKBB participants 
(Ncases=9,565 and Ncontrols=252,870) and N=34,603 AoU participants (Ncases=11,830 and Ncontrols=22,773). The	
non-carriers	with	intermediate	polygenic	scores	(middle	tertile)	served	as	the	reference	group	for	all	
calculations. X-axis shows Odds Ratios; the dotted vertical line corresponds to the OR=1.0 (no change in risk 
compared to the reference). P-values correspond to the fixed effects meta-analysis between UKBB and AoU 
cohorts. P-values are two-sided and are not corrected for multiple testing. GPS: Genome-wide Polygenic Score. 
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Figure 4. Polygenic effects on the risk of CKD among M1 carriers of COL4A-AN variants (dominant 
model): (a) M1 qualifying variant filtering strategy; (b) CKD risk for each polygenic score tertile compared to 
the middle tertile in non-carriers (average population risk). The analysis includes N=262,435 UKBB 
participants (Ncases=9,565 and Ncontrols=252,870) and N=34,603 AoU participants (Ncases=11,830 and 
Ncontrols=22,773). The non-carriers with intermediate polygenic risk (middle tertile) served as the reference 
group for all calculations. X-axis shows odds ratios; the dotted vertical line corresponds to the OR=1.0 (no 
change in risk compared to the reference). P-values correspond to the fixed effects meta-analysis between the 
two cohorts. P-values are two-sided and are not corrected for multiple testing. GPS: Genome-wide Polygenic 
Score. 
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Figure 5. Polygenic effects on the risk of CKD among biallelic carriers of COL4A-AN M3 variants 
(recessive model): (a) M3 qualifying variant filtering strategy; (b) CKD risk for each polygenic risk score 
tertile compared to the middle tertile in non-carriers (average population risk). The analysis includes N=262,435 
UKBB participants (Ncases=9,565 and Ncontrols=252,870) and N=34,603 AoU participants (Ncases=11,830 and 
Ncontrols=22,773). The non-carriers with intermediate polygenic score (middle tertile) served as the reference 
group for all calculations. X-axis shows odds ratios; the dotted vertical line corresponds to the OR=1.0 (no 
change in risk compared to the reference). P-values correspond to the fixed effects meta-analysis between the 
two cohorts. P-values are two-sided and are not corrected for multiple testing. GPS: Genome-wide Polygenic 
Score. 
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Table 1: M1, M2, and M3 variant carriers and their characteristics in the UKBB and AoU datasets. The 
counts include only individuals with a valid phenotype (case/control) label that was included in the analyses. 
Note that the non-carrier group is common to all three variant models and excludes any M1, M2, and M3 
variant carriers. 

Cohorts N Total  N Cases (%) N Controls (%) Female Diabetes Mean Age in Years (Range) 
UK Biobank 277,165 10,123 (3.6%) 267,042 (96.4%) 54% 6% 56.5 (40-69) 

ADPKD M1 Carriers 115 36 (31.3%) 79 (68.7%) 60% 11% 54.6 
ADPKD M2 Carriers 125 39 (31.2%) 86 (68.8%) 62% 11% 53.7 
ADPKD M3 Carriers 256 45 (17.5%) 211 (82.5%) 56% 7% 54.4 
ADPKD Non-carriers 264,158 9,565 (3.6%) 252,870 (96.4%) 55% 6% 54.6 

COL4-AN M1 Carriers 1,214 62 (5.1%) 1,152 (94.9%) 55% 7% 54.9 
COL4-AN M2 Carriers 1,350 65 (4.8%) 1,285 (95.2%) 55% 7% 54.5 
COL4-AN M3 Carriers 1,830 100 (5.4%) 1,730 (94.6%) 57% 7% 54.5 
COL4-AN Non-carriers 264,239 9,646 (3.6%) 254,593 (96.4%) 54% 6% 56.5 

All of Us 34,603 11,830 (3.41%) 22,773 (96.59%) 60% 11% 54.9 (18-89) 
ADPKD M1 Carriers 7 5 (71.4%) 2 (28.6%) 71% 14% 60.5 
ADPKD M2 Carriers 14 5 (35.7%) 9 (64.3%) 64% 14% 59.6 
ADPKD M3 Carriers 11 7 (63.3%) 4 (36.7%) 73% 27% 64.7 
ADPKD Non-carriers 34,588 11,820 (3.4%) 22,768 (96.6%) 60% 11% 54.1 

COL4-AN M1 Carriers 78 37 (47.4) 41 (52.6%) 58% 23% 56.0 
COL4-AN M2 Carriers 106 47 (44.3%) 59 (55.7%) 65% 21% 54.5 
COL4-AN M3 Carriers 226 72 (31.8%) 154 (68.2%) 65% 20% 54.4 
COL4-AN Non-carriers 34,539 11,800 (3.4%) 22,739 (96.6%) 60% 11% 54.9 
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Table 2: Performance metrics for the GPS in ADPKD M1, M2, and M3 carriers and non-carriers in the 
meta-analysis of UKBB and AoU cohorts. OR adjusted for age, sex, diabetes, PCs of ancestry, and 
genotyping array or batches; AUC was calculated for the full model (GPS and covariates) and for GPS alone 
without covariates (crude); variance explained was calculated for the GPS alone by estimating variance 
explained by the full model (GPS and covariates) minus the variance explained by the covariates-only model. P-
values are two-sided and not corrected for multiple testing. CI: Confidence Intervals. 
 

ADPKD 
variants 

Cases/controls OR (95% CI), P-value AUC full model 
(95%CI) 

AUC crude 
(95%CI) 

Variance 
explained 

Non-carrier      
 21,901/275,638 1.72 (1.69-1.76), P<E-300 0.78 (0.78-0.78) 0.62 (0.62-0.62) 0.039 

M1      
 41/81 2.28 (1.55-3.37), P=2.6E-05 0.96 (0.92-1.00) 0.69 (0.59-0.79) 0.128 

M2      
 44/95 2.21 (1.37-3.58), P=3.3E-05 0.97 (0.93-1.00) 0.70 (0.60-0.80) 0.103 

M3      
 52/215 5.25 (2.31-11.9), P=7.4E-05 0.97 (0.94-1.00) 0.69 (0.60-0.78) 0.076 
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Table 3: Performance metrics for the GPS in COL4A-AN M1, M2, and M3 carriers and non-carriers in the 
meta-analysis of UKBB and AoU; OR adjusted for age, sex, diabetes, PCs of ancestry, and genotyping array or 
batches; AUC was calculated for the full model (GPS and covariates) and for GPS alone without covariates 
(crude); variance explained was calculated for the GPS alone by estimating variance explained by the full model 
(GPS and covariates) minus the variance explained by the covariates-only model. P-values are two-sided and 
not corrected for multiple testing. CI: Confidence Intervals. 
 

COL4A-AN 
variants 

Cases/controls OR (95% CI), P-value AUC full model  
(95%CI) 

AUC crude 
(95%CI) 

Variance 
explained 

Non-carrier      
 21,901/275,638 1.70 (1.68-1.73), P<E-300 0.77 (0.77-0.77) 0.63 (0.63-0.63) 0.038 

M1      
 99/1193 1.78 (1.22-2.58), P=2.4E-03 0.94 (0.91-0.97) 0.59 (0.52-0.65) 0.019 

M2      
 112/1,344 2.47 (1.56-3.94), P=1.3E-04 0.93 (0.90-0.96) 0.62 (0.56-0.68) 0.014 

M3      
 172/1,884 1.93 (1.26-2.95), P=2.3E-03 0.89 (0.86-0.92) 0.60 (0.55-0.65) 0.019 
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Supplementary Figure 1. PCA projections of the study participants from the UKBB (top) and AoU (bottom) 
against the 1000 G reference populations: (a) UKBB (N = 460,360) and (c) AoU (N = 165,208) participants 
plotted against the reference 1000 G populations (N = 2,504), (b) machine learning-assigned ancestry for the 
UKBB and (d) the AoU datasets. X-axis: PC1; Y-axis: PC2; AFR: African; AMR: Admixed American; EAS: 
East Asian; EUR: European; and SAS: South Asian. 
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Supplementary Figure 2. Genome-wide Polygenic Score (GPS) distributions by ancestry in the UKBB and 
AoU datasets: (a) unadjusted and (b) ancestry-adjusted GPS in UKBB (N = 460,360); (c) unadjusted and (d) 
ancestry-adjusted GPS in AoU (N = 165,208). EUR: European, AFR: African, AMR: Admixed American, EAS: 
East Asian, and SAS: South Asian. 
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Supplementary Figure 3. Polygenic effects on the risk of CKD in M1 variant carriers for (a) PKD1 
(Ntotal=109) and (b) PKD2 (Ntotal=63) genes analyzed individually. Each polygenic risk score tertile for carriers 
was compared to the middle tertile of non-carriers (average population risk). X-axis shows Odds Ratios, the 
dotted vertical line corresponds to the OR=1.0 (no change in risk compared to the reference). Two-sided P-
values derived from fixed effects meta-analysis are not adjusted for multiple testing. CI: Confidence Intervals. 
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Supplementary Figure 4. Polygenic effects on the risk of CKD in M1 variant carriers for (a) ADPKD pLOF 
variants (Ntotal=111) and (b) ADPKD missense variants (Ntotal=47) were analyzed individually. Each polygenic 
risk score tertile for carriers was compared to the middle tertile of non-carriers (average population risk). X-axis 
shows Odds Ratios, the dotted vertical line corresponds to the OR=1.0 (no change in risk compared to the 
reference). Two-sided P-values derived from fixed effects meta-analysis are not adjusted for multiple testing. 
CI: Confidence Intervals. 
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Supplementary Table 1. Imputation of the AoU dataset using phase 3 1000 Genomes project reference panel 
(all populations): numbers of variants per chromosome before and after imputation by minor allelic frequency 
(MAF) and imputation quality (R2). 

 
 
 
  
 

 

 
 

 
 
 
 
 
 
 
 
 

Chromosomes Array SNPs 
Imputed SNPs 

(MAF>=0.00 and 
R2>=0) 

Imputed SNPs 
(MAF=0.001 and 

R2=0.30) 

Imputed SNPs 
(MAF=0.001 and 

R2=0.80) 

Imputed SNPs 
(MAF=0.01 and 

R2=0.80) 

1 89688 3738240 2040921 1509280 909349 

2 99772 4057613 2231592 1704713 1003370 

3 84384 3355939 1879863 1455774 863987 

4 76774 3338265 1899659 1474223 876432 

5 69273 3032422 1704339 1320209 766074 

6 82492 2954410 1694019 1328952 799683 

7 63934 2753497 1539955 1158989 694545 

8 60000 2651561 1470694 1135036 669886 

9 49556 2063096 1121854 842974 505766 

10 56241 2334090 1296803 986085 595717 

11 56476 2333242 1286023 978430 581944 

12 53025 2242720 1256253 945606 572855 

13 40542 1661700 944885 726461 434997 

14 36097 1535592 841576 636776 383314 

15 35262 1404164 757414 555375 335228 

16 38698 1549316 822821 591403 358495 

17 33636 1345835 721632 495211 307640 

18 33408 1319629 739218 551084 334086 

19 24882 1084535 585112 379198 247001 

20 27606 1047613 577463 420925 258119 

21 16391 653791 353514 253922 159090 

22 16388 652195 343797 234264 148765 

Total 1,144,525 43,371,225 26,109,407 19,684,890 11,806,343 
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Supplementary Table 2: Genetic ancestry of the AoU dataset based on supervised machine learning with 
labeled phase 3 1000 Genomes project reference panel for training. 

 
Ancestry  N (%)  Age 

(Mean in years) 
Sex 

(% Female) 
EUR (European) 94,376 (57) 58.82 60.03 

AFR (African) 36,380 (22) 51.90 57.68 

AMR (Admixed American) 28,807 (17) 47.73 67.89 

EAS (East Asian) 3,940 (2) 47.04 63.76 

SAS (South Asian) 1,705 (1) 45.76 50.35 

Total 165,208 50.25 59.94 
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Supplementary Table 3: Overall frequencies of APOL1 G1 and G2 risk alleles and risk genotypes by ancestry 
and cohort. 

 
Dataset Ancestry APOL1- 1072A>G 

(rs73885319) 
APOL1- 1200T>G 

(rs60910145) 
APOL1-1212- del6 

(rs71785313) 
APOL1 risk 

genotype (G1G1, 
G1G2, or G2G2) 

UKBB 
     

 
African (AFR) 0.28 0.28 0.15 0.12  
Europeans (EUR) 3.75E-05 1.96E-04 2.91E-05 <0.01 

AoU 
     

 
African (AFR) 0.233 0.232 0.139 0.12  
Admixed American (AMR) 0.022 0.022 0.018 0.003  
Europeans (EUR) 7.58E-04 7.58E-04 5.19E-04 <0.01 
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Supplementary Table 4: The effect of ADPKD qualifying variant (QV) carrier status on the risk of CKD 
in the UK Biobank and the All of Us datasets. The ORs were adjusted for age, sex, diabetes, PCs of ancestry, 
and genotyping array or batch; the two-sided P-values correspond to the association tests of carrier status as a 
predictor of CKD and are not corrected for multiple testing; M1 includes only pLOF, and ‘P’ variants 
(Ntotal=122 carriers); M2 includes pLOF, ‘P’, and ‘LP’ variants (Ntotal=139 carriers); M3 includes pLOF and all 
deleterious missense variants as defined by 5 prediction algorithms, Revel >0.7, and not previously classified as 
‘B’ or ‘LB’ by ClinVar (Ntotal=267 carriers). All comparisons are made in reference to the common group of 
non-carriers (Ntotal=297,539). CI: Confidence Intervals. 
 
  

ADPKD M1 carriers 
OR (95%CI), P 

ADPKD M2 carriers 
OR (95%CI), P 

ADPKD M3 carriers 
OR (95%CI), P 

UKBB 18.2 (11.5-28.6), P=5.1E-36 17.3 (11.1-27.0), P=4.8E-36  7.1 (4.95-10.2), P=1.8E-26 
AoU 8.36 (1.84-37.4), P=5.9E-03 6.11 (1.47-25.4), P=1.3E-02 3.13 (0.70-14.1), P=1.4E-01 

Meta-analysis 17.1 (11.1-26.4), P=1.8E-37 15.8 (10.3-24.2), P=5.2E-37 6.77 (4.76-9.60), P=1.0E-26 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 

 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 10, 2023. ; https://doi.org/10.1101/2023.05.07.23289614doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.07.23289614
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 5: Effects of GPS on the risk of CKD in the ADPKD M1, M2, and M3 variant carriers 
in the meta-analysis of UKBB and AoU. All effect estimates were calculated in reference to the middle tertile of 
non-carriers (average risk) and were adjusted for age, sex, diabetes, PCs of ancestry, and genotyping array or 
batches. Two-sided P-values correspond to fixed effects meta-analysis and are not corrected for multiple testing. 

 
Model Cases/Controls OR (95% CI), P-value GPS Tertile OR (95% CI), P-value 

Noncarrier     
 21,901/275,638 1.72 (1.69-1.76), P<E-300 Tertile 1 0.62 (0.59-0.65), P=3.9E-96 
   Tertile 2               Reference 
   Tertile 3 1.82 (1.75-1.89), P=3.4E-208 

M1     
 41/81 2.28 (1.55-3.37), P=2.7E-05 Tertile 1 3.03 (1.03-8.95), P=4.4E-02 
 

  
Tertile 2 35.8 (16.8-76.4), P=2.0E-20 

 
  

Tertile 3 54.4 (26.2-113.1), P=9.6E-27 
M2     

 44/95 2.21 (1.37-3.58), P=3.3E-05 Tertile 1 4.99 (1.94-12.8), P=8.6E-04 
   Tertile 2 24.1 (11.5-50.5), P=3.0E-17 
   Tertile 3 49.4 (24.0-101.6), P=3.1E-26 

M3     
 52/215 5.25 (2.31-11.9), P=7.4E-05 Tertile 1 1.89 (0.77-4.63), P=1.6E-01 
   Tertile 2 8.52 (4.73-15.3), P=8.8E-13 
   Tertile 3 21.8 (12.4-38.1), P=4.7E-27 
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Supplementary Table 6: The effect of COL4A-AN qualifying variant (QV) carrier status on the risk of 
CKD in the UK Biobank and the All of Us datasets. The ORs were adjusted for age, sex, diabetes, PCs of 
ancestry, and genotyping array or batch; the two-sided P-values correspond to the association tests of carrier 
status as a predictor of CKD and are not corrected for multiple testing; M1 includes only pLOF, and ‘P’ variants 
(Ntotal=1,292 carriers); M2 includes pLOF, ‘P’, and ‘LP’ variants (Ntotal=1,458 carriers); M3 includes pLOF and 
all deleterious missense variants as defined by 5 prediction algorithms, Revel >0.7, and not previously classified 
as ‘B’ or ‘LB’ by ClinVar (Ntotal=2,056 carriers); M3 recessive model (Ntotal=127) includes biallelic carriers of 
M3 variants for COL4A3 or COL4A4, or M3 hemizygous males. All comparisons are made in reference to the 
common group of non-carriers (Ntotal=298,778). 
 

Datasets COL4A-AN M1 carriers  
OR (95%CI), P 

COL4A-AN M2 carriers  
OR (95%CI), P 

COL4A-AN M3 carriers  
OR (95%CI), P 

COL4A-AN M3 recessive  
OR (95%CI), P 

UKBB 1.41 (1.15-1.74), P=1.1E-03 1.34 (1.03-1.73), P=3.0E-02 1.55 (1.26-1.92), P=5.0E-05 3.10 (1.66-5.78), P=4.2E-04 

AoU 1.21 (0.82-1.79), P=3.3E-01 1.05 (0.67-1.61), P=8.2E-01 1.29 (0.90-1.85), P=1.6E-01 6.69 (1.23-36.4), P=2.8E-02 

Meta 1.37 (1.13-1.64), P=8.5E-04 1.25 (1.00-1.56), P=4.9E-02 1.48 (1.23- 1.77), P=2.6E-05 3.38 (1.88-6.08), P=4.7E-05 
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Supplementary Table 7: Effects of GPS in the COL4-AN M1, M2, and M3 variant carriers in the meta-
analysis of UKBB and AoU. All effect estimates were calculated in reference to the middle tertile of non-
carriers (average risk) and were adjusted for age, sex, diabetes, PCs of ancestry, and genotyping array or 
batches. Two-sided P-values correspond to fixed effects meta-analysis and are not corrected for multiple testing. 

 

Model Cases/Controls OR (95% CI), P-value GPS Tertile OR (95% CI), P-value 

Noncarrier     
 21,446/277,332 1.70 (1.68-1.73), P<E-300 Tertile 1 0.61 (0.59-0.64), P=2.5E-98 
   Tertile 2                Reference 
   Tertile 3 1.82 (1.75-1.89), P=8.1E-210 

M1     
 99/1,193  1.78 (1.22-2.58), P=2.4E-03 Tertile 1 1.08 (0.63-1.86), P=7.7E-01 
 

  
Tertile 2 1.66 (1.03-2.68), P=3.7E-02 

 
  

Tertile 3 2.53 (1.66-3.85), P=1.4E-05 
M2     

 112/1,344 2.47 (1.56-3.94), P=1.3E-04 Tertile 1 0.66 (0.40-1.07), P=9.6E-02 
   Tertile 2 1.26 (0.84-1.88), P=5.3E-01 
   Tertile 3 2.55 (1.83-3.56), P=3.1E-08 

M3     
 172/1,884  1.93 (1.26-2.95), P=2.3E-03 Tertile 1 1.10 (0.57-2.12), P=7.7E-01 
   Tertile 2 1.45 (0.82-2.55), P=2.0E-01 
   Tertile 3 2.77 (1.73-4.46), P=2.7E-05 

M3 (recessive)  
 21/106 1.19 (0.69-2.07), P=5.2E-01 Tertile 1 2.29 (0.64-8.12), P=2.0E-01 
   Tertile 2 2.71 (0.97-7.59), P=5.6E-02 
   Tertile 3 6.73 (2.59-17.5), P=8.8E-05 
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Supplementary Table 8: GPS effect estimates for each COL4A gene under the M1 model. Only UKBB 
data included due to low case counts in the AoU dataset. The P-values are two-sided and not adjusted for 
multiple testing. 
 

Gene Cases/controls OR (95% CI), P-value GPS Tertile OR (95% CI), P-value 
COL4A3      

12/211 1.37 (0.60-3.14), P=4.5E-01 Tertile 1 1.70 (0.65-4.43), P=2.8E-01  
  Tertile 2 1.20 (0.36-3.98), P=7.7E-01    

Tertile 3 2.00 (0.70-5.72), P=1.9E-01 
COL4A4      

16/313  1.49 (0.73-3.03), P=2.7E-01 Tertile 1 0.86 (0.264-2.78), P=7.9E-01  
  Tertile 2 1.69 (0.70-4.05), P=2.3E-01 

   Tertile 3 2.23 (0.98-5.06), P=5.6E-02 
COL4A3 or 4     
 28/524 1.91 (0.90-4.09), P=9.3E-02 Tertile 1 0.94 (0.41-2.18), P=8.8E-01 
   Tertile 2 1.54 (0.78-3.02), P=2.1E-01 
   Tertile 3 2.43 (1.31-4.52), P=5.0E-03 

COL4A5      
3/32  1.97 (0.18-21.10), P=5.7E-01 Tertile 1 3.46 (0.40-29.8), P=2.5E-01  

  Tertile 2 1.35E-04 (2.6E-82-7.0E73), P=9.2E-01 
   Tertile 3 11.0 (2.02-60.2), P=5.6E-03 
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