Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Defining and emulating target trials of the effects of postexposure vaccination using observational data

View ORCID ProfileChristopher Boyer, View ORCID ProfileMarc Lipsitch
doi: https://doi.org/10.1101/2023.05.03.23289471
Christopher Boyer
1Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christopher Boyer
  • For correspondence: cboyer@hsph.harvard.edu
Marc Lipsitch
1Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
2Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marc Lipsitch
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Postexposure vaccination has the potential to prevent or modify the course of clinical disease among those exposed to a pathogen. However, due to logistical constraints, postexposure vaccine trials have been difficult to implement in practice. In place of trials, investigators have used observational data to estimate the effectiveness or optimal timing window for postexposure vaccines, but the relationship between these analyses and those that would be conducted in a trial is often unclear. Here, we define several possible target trials for postexposure vaccination and show how, under certain conditions, they can be emulated using observational data. We emphasize the importance of the incubation period and the timing of vaccination in trial design and emulation. As an example, we specify a protocol for postexposure vaccination against mpox and provide a step-by-step description of how to emulate it using data from a healthcare database or contact tracing program. We further illustrate some of the benefits of the target trial approach through simulation.

Competing Interest Statement

In the past 24 months, ML has received grant support from Pfizer and consulting income from Janssen. He is Senior Advisor to the CDC's Center for Forecasting and Outbreak Analytics, but this contribution is in his academic role and does not necessarily express the views of any government entity.

Funding Statement

This work was funded by Morris-Singer Fund's gift to the Center for Communicable Disease Dynamics

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Footnotes

  • Based on comments from anonymous reviewers we have updated the manuscript with - Clarifying terminology: we changed most references to vaccine efficacy to vaccine effectiveness throughout, given that, ultimately, we are interested in using observational data obtained under "real-world" vaccination settings. However we added a note to alert the reader to this choice in terminology. - More specific guidance on steps for estimation and identifiability conditions: in the web appendix we include a discussion of the identifiability conditions for the different designs as well as detailed step-by-step guide for emulating the trial designs discussed and estimating VE. - Additional simulations: in the web appendix we now include simulations illustrating the other target trial designs mentioned in the main text, instead of just the fixed enrollment period design.

Data Availability

Code and data are available at: https://github.com/boyercb/pep-target-trials

https://github.com/boyercb/pep-target-trials

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted September 06, 2023.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Defining and emulating target trials of the effects of postexposure vaccination using observational data
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Defining and emulating target trials of the effects of postexposure vaccination using observational data
Christopher Boyer, Marc Lipsitch
medRxiv 2023.05.03.23289471; doi: https://doi.org/10.1101/2023.05.03.23289471
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Defining and emulating target trials of the effects of postexposure vaccination using observational data
Christopher Boyer, Marc Lipsitch
medRxiv 2023.05.03.23289471; doi: https://doi.org/10.1101/2023.05.03.23289471

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (271)
  • Allergy and Immunology (557)
  • Anesthesia (135)
  • Cardiovascular Medicine (1769)
  • Dentistry and Oral Medicine (238)
  • Dermatology (173)
  • Emergency Medicine (316)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (662)
  • Epidemiology (10812)
  • Forensic Medicine (8)
  • Gastroenterology (594)
  • Genetic and Genomic Medicine (2960)
  • Geriatric Medicine (288)
  • Health Economics (534)
  • Health Informatics (1933)
  • Health Policy (836)
  • Health Systems and Quality Improvement (745)
  • Hematology (293)
  • HIV/AIDS (633)
  • Infectious Diseases (except HIV/AIDS) (12525)
  • Intensive Care and Critical Care Medicine (696)
  • Medical Education (300)
  • Medical Ethics (87)
  • Nephrology (324)
  • Neurology (2808)
  • Nursing (152)
  • Nutrition (433)
  • Obstetrics and Gynecology (559)
  • Occupational and Environmental Health (597)
  • Oncology (1473)
  • Ophthalmology (444)
  • Orthopedics (172)
  • Otolaryngology (257)
  • Pain Medicine (190)
  • Palliative Medicine (56)
  • Pathology (381)
  • Pediatrics (868)
  • Pharmacology and Therapeutics (367)
  • Primary Care Research (338)
  • Psychiatry and Clinical Psychology (2646)
  • Public and Global Health (5383)
  • Radiology and Imaging (1016)
  • Rehabilitation Medicine and Physical Therapy (597)
  • Respiratory Medicine (727)
  • Rheumatology (330)
  • Sexual and Reproductive Health (290)
  • Sports Medicine (279)
  • Surgery (327)
  • Toxicology (48)
  • Transplantation (150)
  • Urology (126)