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Abstract 

Most regression models estimate an exposure’s association with the mean value of the outcome, 

but quantifying how an exposure affects the entire outcome distribution is often important (e.g., 

when the outcome has non-linear relationships with risk of other adverse outcomes). Quantile 

regressions offer a powerful way of estimating an exposure’s relationship with the outcome 

distribution but remain underused in epidemiology. We introduce quantile regressions and then 

present an empirical example in which we fit mean and quantile regressions to investigate the 

association of educational attainment with later-life systolic blood pressure (SBP). We use data 

on 8,875 US-born respondents aged 50+ years from the Health and Retirement Study. More 

education was negatively associated with mean SBP. Conditional and unconditional quantile 

regressions both suggested a negative association between education and SBP at all levels of 

SBP, but the absolute magnitudes of these associations were higher at higher SBP quantiles 

relative to lower quantiles. While all estimators showed more education was associated with a 

leftward shift of the SBP distribution, quantile regression results additionally revealed that 

education may have reshaped the SBP distribution through larger protective associations in the 

right tail, thus benefiting those at highest risk of cardiovascular diseases.  
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Epidemiologists have long been aware of the importance of thinking about how an exposure 

affects the entire outcome distribution. Starting in the 1980s, Geoffrey Rose articulated the need 

to shift the entire distribution of risk factors using “population strategies'' to improve population 

health (1,2). Many scholars have built on these arguments by showing the need to evaluate 

whether an exposure affects different parts of the outcome distribution differently (3). Such 

investigations are especially pertinent when the outcome itself has a non-linear association with 

the risk of other adverse outcomes. Consider the case of blood pressure: Fuchs et. al. (2020) note 

that the absolute risk of coronary heart disease or stroke may increase exponentially with blood 

pressure, especially among older individuals (4). If true, this suggests that a population-level 

intervention which reduces blood pressure more at higher levels relative to lower levels may lead 

to greater population health improvements relative to an intervention which affects the entire 

blood pressure distribution uniformly. 

 

Several studies have documented that exposures can, in fact, have different associations with 

different parts of the outcome distribution. For example, Beyerlein et. al. (2008) found that 

breastfeeding in early life was associated with increased body mass index (BMI) at lower BMI 

percentiles and decreased BMI at higher BMI percentiles among German children aged 5-6 years 

(5). Similarly, Liu et. al. (2012) found that a high school degree was associated with substantially 

lower risk of coronary heart disease (CHD) at the 90th percentile of the CHD risk distribution 

relative to the 10th percentile of the same distribution among women in the National Health and 

Nutrition Examination Survey (6).  Despite this, the empirical literature in epidemiology largely 

continues to investigate how an exposure affects the outcome mean. Figure 1 shows that 

focusing on the mean may provide limited insights into how an exposure affects the entire 
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outcome distribution, in particular the tails of the outcome distribution which often includes the 

most vulnerable members of society (7). 

 

Quantile regressions offer a powerful way of quantifying an exposure’s association with the 

outcome distribution; however, they remain underused in epidemiology (6,8–17). Several factors 

may explain their underuse: first, as far as we are aware, graduate coursework in epidemiology 

rarely teaches quantile regression methods; second, many outcomes in epidemiology are binary, 

in which case the mean provides information about all distributional features; third, results from 

quantile regressions cannot usually be interpreted as individual-level associations, unlike results 

from mean models. 

 

Our goal in this paper is to introduce quantile regressions for epidemiologists and motivate more 

frequent use of these methods. Specifically, we distinguish quantile regression estimators 

targeted at the conditional versus marginal (or unconditional) outcome distributions through 

theoretical discussions as well as an empirical example. Our empirical example focuses on the 

relationship between education and systolic blood pressure (SBP) among older adults in the 

Health and Retirement Study (HRS). While we describe our empirical strategy in detail in the 

penultimate section of this paper, we use the outcome data (i.e., SBP) throughout the manuscript 

to illustrate key concepts.  

 

What are quantiles? 

The 0.5th quantile of a random variable (𝜏 = 0.5), also known as the median, 50th quantile, or 

50th percentile, is the value taken by that variable such that 50% of the variable’s observations 
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lie below that value. Similarly, 10% of a random variable’s values lie below the 0.1th quantile, 

75% lie below the 0.75th quantile and so forth.  

 

Formally, for a random variable 𝑌 with cumulative distribution function (CDF) 𝐹𝑌(. ), the 𝜏th 

quantile of its marginal distribution is defined as  

 

𝑄𝜏(𝑌) ≡ 𝐹𝑌
−1(𝜏) = inf{𝑦: 𝐹𝑌(𝑦) ≥ 𝜏}       [1]. 

 

𝑄𝜏(. ) is called the quantile function (i.e., a function which finds the value of the 𝜏𝑡ℎ quantile of 

𝑌) and inf {. } refers to the infimum (i.e., the greatest lower bound). Eq 1 states that the 𝜏𝑡ℎ 

quantile is defined as the inverse of the CDF of 𝑌, and that it equals the lowest element of 𝑌 

which satisfies 𝐹𝑌(𝑦) ≥ 𝜏, i.e., Pr(𝑌 ≤ 𝑦) ≥ 𝜏 where Pr (. ) represents probability. For example, 

the 75th quantile of 𝑌 is the lowest element from the set of all values 𝑦 ∈ 𝑌 which satisfy 

Pr(𝑌 ≤ 𝑦) ≥ 0.75. Quantiles of the conditional distribution of a random variable can be defined 

similarly. 

 

Quantiles have two often-desirable properties not shared with the mean of a random variable. 

First, because quantiles depend on ranking values of a random variable, they are robust to 

outliers and can often be estimated precisely in the presence of censoring (e.g., if there is a 

measurement ceiling or floor). Second, monotonic transformation of random variables (e.g., logs 

or other transformations which preserve the order of values) do not affect quantiles. Thus, the 

75th quantile of the log transformed SBP distribution equals the log of the 75th quantile of the 

non-log transformed SBP distribution. 
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Marginal quantiles and conditional quantiles 

The Law of Iterated Expectations shows that a probability weighted sum of all conditional means 

equals the marginal mean of a random variable; however, linking quantiles of the marginal and 

conditional distributions is not as easy. This is because the 𝜏𝑡ℎ quantile of the marginal 

distribution of a random variable does not necessarily map onto the the 𝜏𝑡ℎ quantile of the 

conditional distribution. In the case of SBP from our empirical analysis, the 75th quantile of the 

marginal SBP distribution (138.5mmHg) does not equal the 75th quantile of the conditional SBP 

distribution within any age group (Figure 2); rather the 75th quantile of the marginal SBP 

distribution maps to the 80th, 70th, 65th, and 59th quantiles of SBP among respondents <60 years, 

between 60-70 years, between 70-80 years, and ≥80 years (Appendix Figure 2).  

 

Since marginal and conditional quantiles do not easily map onto one another and since 

regressions model statistics of the conditional outcome distribution, specialized methods are 

needed to infer the relationship between an exposure and quantiles of the marginal outcome 

distribution in a regression framework. This is unlike linear models of the outcome mean where, 

under certain assumptions, the coefficient of interest represents the association of an exposure 

with both the conditional and marginal mean of the outcome variable (18). Researchers must 

therefore decide in advance if they are interested in the marginal or conditional outcome 

distribution in their analysis. 

 

Deciding whether to use estimators targeted at the marginal or conditional outcome quantiles 

hinges on two theoretical and one practical consideration. The first theoretical consideration has 
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to do with the aims of a study. In linear regression, debates about the merits of marginal versus 

conditional effect estimates indicate that there are settings in which the conditional is preferable, 

for example in clinical epidemiology when anticipating potential effects of a treatment on 

individuals’ own risk of an outcome, given other known characteristics of that person. While 

quantile regression estimates cannot be interpreted as individual-level relationships without 

making strong assumptions about the ranking of individuals in the outcome distribution across 

different exposure levels, a focus on conditional quantiles may be preferable when researchers 

are interested in making comparisons of the exposure-outcome relationship across groups 

defined based on certain characteristics of individuals. From a population health perspective, 

marginal effect estimates – for example, comparing the outcome distribution for the whole 

population if everyone were exposed versus if nobody were exposed – may be of more interest.  

 

The second theoretical consideration has to do with the true data generating process for the 

outcome. Borah et. al. (2013) show that estimated associations from quantile regressions for the 

marginal and conditional quantiles coincide when the outcome is only a function of the exposure 

(i.e., there are no other covariates in the data generating process) or if the exposure induces a 

constant location shift across levels of other covariates (i.e., the exposure has no interactions 

with other covariates) (19). In the presence of interactions between the exposure and other 

covariates in the true data generating process, estimates from quantile regressions targeted at the 

marginal and conditional quantiles diverge. Since the true data generating process is rarely 

known, considerations about the aims of the study may take priority over data generating process 

considerations when choosing between estimators for the marginal versus conditional outcome 

quantiles. 
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Finally, the practical consideration when choosing between marginal and conditional quantile 

regression estimators has to do with features of the proposed research. Substantially more theory 

has been developed for fitting quantile regressions targeted at the conditional outcome 

distribution in different data structures (e.g., longitudinal or survival data), with different study 

designs (e.g., instrumental variables), and for data measured with error (e.g., missing data or 

censoring) (7,8,20–27). As such, in more complex analytic settings, researchers may have to use 

quantile regression estimators for conditional quantiles, even if the original intent was to estimate 

the exposure’s association with marginal outcome quantiles. 

 

Conditional quantile regressions 

Just as linear regressions model the relationship between an exposure and the average of the 

conditional outcome distribution, conditional quantile regressions (CQR) model the relationship 

between an exposure and quantiles of the conditional outcome distribution. Although CQR has 

been extended is several ways since it was first developed by Koneker and Bassett (1978), we 

limit our discussion to the standard, linear CQR estimator (28).  

 

a. Model 

Let 𝑌 denote the continuous outcome variable, 𝑎𝑖 ∈ 𝐴 denotes the exposure of interest, and 𝑐𝑖 ∈

𝐶 be a vector of confounders. Then, the linear CQR model can be written as 

 

𝑄𝜏(𝑌|𝐴, 𝐶) = 𝛽0,𝜏 + 𝛽1,𝜏𝑎𝑖 + 𝛾𝜏
′𝑐𝑖     [2] 
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where  𝑄𝜏(. ) is the quantile function and 𝜏 is the 𝜏𝑡ℎ quantile of interest in the distribution of 𝑌 

conditional on all variables on the right-hand side of the equation. Eq 2 is like a standard linear 

regression, except that the left-hand side of the model has the conditional quantile function 

instead of the conditional expectation function. Furthermore, all coefficients in Eq 2 are specific 

to the quantile of interest 𝜏. In other words, each increment in the independent variable of interest 

is associated with an equal change in the specific quantile of interest, but not necessarily the 

same change in other quantiles of the dependent variable. 

 

b. Estimand and interpretation 

In Eq 2, 𝛽
1,𝜏

 represents the coefficient of interest: for a binary exposure A, this coefficient 

represents the difference in the 𝜏𝑡ℎ quantile of the conditional distribution of 𝑌 between the 

exposed and unexposed groups. Similarly, for a continuous exposure, this coefficient is the 

difference in the 𝜏𝑡ℎ quantile of the conditional outcome distribution associated with a unit 

difference in the exposure. Both interpretations are analogous to interpretation of estimates from 

linear regressions but refer to differences in a quantile of the dependent variable, rather than 

differences in the mean of the dependent variable. 

 

c. Estimation 

Just as ordinary least squares regression coefficients can be estimated by choosing coefficients 

that minimize the sum of the squared residuals, CQR coefficients for the 0.5th quantile (i.e., the 

median) can be estimated by choosing coefficients that minimize the sum of absolute values of 

the residuals. CQR coefficients for other quantiles can be estimated by generalizing the 
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procedure for median regression. Specifically, Koenker and Bassett showed that parameters of 

Eq 2 for all 𝜏 = (0,1) can be estimated by  

 

min
𝛽0,𝜏,𝛽1,𝜏,𝛾𝜏

𝐸 [𝜌𝜏 (𝑦𝑖 − (𝛽0,𝜏 + 𝛽1,𝜏𝑎𝑖 + 𝛾𝜏
′𝑐𝑖))]            [3] 

 

where 𝐸[. ] is the expectation function and 𝜌𝜏(. ) is the check function for the 𝜏𝑡ℎ quantile. For an 

arbitrary parameter 𝑢, 𝜌𝜏(𝑢) = 𝑢(𝜏 − 𝐼(𝑢 < 0)) where 𝐼(𝑢 < 0) takes the value 1 if 𝑢 < 0, and 

0 if 𝑢 ≥ 0. When 𝜏 = 0.5 as in the case of the median, 𝜌𝜏=0.5(𝑢) = 𝑢(0.5 − 𝐼(𝑢 < 0)) =

0.5|𝑢|. If 𝑢 = 𝑦𝑖 − (𝛽0,𝜏 + 𝛽1,𝜏𝑎𝑖 + 𝛾𝜏
′𝑐𝑖), then we can see how CQR coefficients for the median 

involves minimizing the sum of absolute values of the residuals. More details on the check 

function are provided in the Appendix. 

 

Solving Eq 3 requires using linear programming methods. Several such methods are available to 

solve the minimization problem depending on the complexity of the equation, number of 

parameters, and number of observations. While computational complexity used to be an 

important barrier to adoption of quantile regression methods, it is typically trivial with 

contemporary computing power. 

 

d. Inference 

Koenker and Bassett (1978) showed that when the CQR error term is independently and 

identically distributed, the sampling distribution of the CQR coefficients are asymptotically 

normal (28). In such a case, the asymptotic normality can be exploited to estimate standard errors 

around the coefficient of interest. He and Shao (1996) provided an analytic solution to estimating 
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the standard errors when the error term in CQR is independent but not from identical 

distributions (29). Both methods rely on estimating the error density at the quantile of interest, 

which can be quite noisy when data are sparse (e.g., at the tails of the distribution). As such, 

CQR standard errors may be larger in parts of the outcome distribution with sparse data. 

Bootstrap methods, such as pairwise bootstrap or Markov chain marginal bootstrap, are also 

available for estimating CQR standard errors. Kocherginsky et. al. (2005) provide guidance on 

selecting the method of estimating standard errors in different settings (30). 

 

e. Implementation in software 

In R, CQR can be implemented using the package quantreg, which offers several linear 

programming estimation methods (31). In Stata, conditional quantile regressions can be fit using 

the qreg or qreg2 functions (32). In SAS, researchers can use PROC QUANTREG to fit 

conditional quantile regression models.  

 

Unconditional quantile regressions 

Many estimators have been developed to quantify the relationship between an exposure and 

quantiles of the marginal outcome distribution (33–36). We focus on describing the 

Unconditional Quantile Regression (UQR), a prominent regression-based estimator developed by 

Firpo, Fortin, and Lemiuex (2009; henceforth, Firpo) (33). 

 

Since regressions model statistics related to the conditional outcome distribution (e.g., 

conditional quantiles) and since conditional quantiles do not necessarily map to the same 

quantile in the marginal distribution (see Figure 2 and Appendix Figure 2), a standard regression-
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based approach of modeling conditional quantiles of the outcome cannot usually be interpreted 

as the relationship between an exposure and quantiles of the marginal outcome distribution. 

Firpo overcomes this challenge by introducing a new statistic which they call the Recentered 

Influence Function (RIF). 

 

The RIF is based on the idea of an influence function (IF), which is a measure of the robustness 

of a distributional statistic of interest (e.g., means, quantiles) to small perturbations to the 

existing distribution (37). IFs have been defined for various distributional statistics, and the IF 

for the 𝜏𝑡ℎ quantile of 𝑌 is 
𝜏−𝐼(𝑦𝑖≤𝑞𝜏)

𝑓𝑌(𝑞𝜏)
, where 𝑓𝑌(. ) is the density of 𝑌, 𝑞𝜏 is the value of 𝑌 at the 

𝜏𝑡ℎ quantile, and 𝐼(. ) is the indicator function. The RIF is then defined as 

 

𝑅𝐼𝐹(𝑦𝑖; 𝑞𝜏) = 𝑞𝜏 +
𝜏 − 𝐼(𝑦𝑖 ≤ 𝑞𝜏)

𝑓𝑌(𝑞𝜏)
         [4]. 

 

The RIF in Eq 4 is the sum of the value of 𝑌 at the 𝜏𝑡ℎ quantile and the IF of 𝑌 at the same 

quantile. It is “recentered” in the sense that it shifts the mean of the IF distribution from 0 to 𝑞𝜏.  

 

Firpo proposes estimating the RIF using the empirical marginal distribution of 𝑌. Figure 3 

illustrates RIF values for the 25th, 50th, and 75th quantiles of the marginal SBP distribution in our 

data. At each quantile, the RIF takes two values and the weighted average of these two values 

equals the value of the quantile itself. 

 

a. Model 
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Firpo proposes a RIF-regression to quantify the relationship between an exposure (𝐴) and 

quantiles of the marginal outcome distribution (𝑌) while controlling for all the necessary 

covariates (𝐶): 

 

𝐸[𝑅𝐼𝐹(𝑦𝑖; 𝑞𝜏)|𝐴, 𝑋] = 𝛼0,𝜏 + 𝛼1,𝜏𝑎𝑖 + 𝛾𝜏
′𝑐𝑖      [5]. 

 

In Eq 5, 𝑅𝐼𝐹(𝑦𝑖; 𝑞𝜏) is estimated using the empirical marginal distribution of the outcome 𝑌. 

One way to intuit Eq 5 is to think of it as a “trick”, in that by using the RIF, a quantity estimated 

in the marginal outcome distribution, we are getting the regression to implicitly model marginal 

quantiles even if 𝐸[𝑅𝐼𝐹(𝑦𝑖; 𝑞𝜏)|𝐴, 𝑋] is a conditional expectation. The key result from Firpo is 

that the average derivative of the RIF-regression coefficients equals the change in the marginal 

quantile of 𝑌 for a small perturbation to the distribution of the exposure or other covariates in Eq 

5. 

 

b. Estimand and interpretation 

In Eq 5, 𝛼1,𝜏, the coefficient of interest, captures the change in the 𝜏𝑡ℎ quantile of the empirical 

marginal outcome distribution for a small change in the exposure distribution, holding all else 

constant. This interpretation is different from the interpretation of CQR or linear regression 

coefficients. Firpo calls 𝛼1,𝜏 the Unconditional Quantile Partial Effect.  

 

c. Estimation 

Firpo proposes estimating the RIF-regression in three ways: using Ordinary Least Squares (OLS) 

regression, using logistic regression, or using a polynomial regression. We describe the OLS-
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based method as it is the simplest to implement and should be sufficient for most analytic 

situations.  

 

The OLS-based RIF-regression estimator (RIF-OLS) involves three steps: first, estimate the RIF 

for the 𝜏𝑡ℎ quantile of the empirical, marginal outcome distribution; second, fit a linear 

regression using OLS with the estimated RIF as the outcome variable and the exposure and all 

other covariates on the right hand side of the equation; and third, marginalize the conditional RIF 

on the left hand side of the equation such that (38) 

 

𝐸[𝑅𝐼𝐹(𝑦𝑖; 𝑞𝜏)] = 𝛼0,𝜏 + 𝛼1,𝜏 𝐸[𝐴] + 𝛾𝜏
′𝐸[𝐶]     [6]. 

 

Eq 6 suggests that 𝛼1,𝜏 must be interpreted as the change in the 𝜏th quantile of the marginal 

distribution of 𝑌 for a small change in the mean of the exposure (i.e., 𝐸[𝐴]), holding all else 

constant.  

 

d. Inference 

Firpo suggests estimating standard errors for RIF-regression using bootstrapping (33). When 

bootstrapping is not possible, Rios-Avila recommends estimating heteroskedasticity robust 

standard errors (38). 

 

e. Implementation in software 

In R, the RIF-regressions can be estimated using the rifr function in the package dineq which is 

available from CRAN (39). In Stata, researchers can use the rifhdreg function to fit RIF-
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regressions (38). We are not aware of SAS procedures for automatically fitting RIF-regressions, 

although it is possible to manually estimate the RIF for the quantile of interest and then fit the 

OLS-based RIF-regression. 

 

Empirical example: Educational attainment and systolic blood pressure 

Several studies have shown that blood pressure may have a nonlinear relationship with risk of 

cardiovascular diseases, such that interventions which reduce blood pressure more at higher 

levels may have greater population health impact relative to interventions that uniformly affect 

the blood pressure distribution (4). Several studies have documented a strong, negative 

relationship between education and average blood pressure levels; however, few have 

investigated if education has stronger protective effects at higher levels of blood pressure relative 

to lower ones (40–46). 

 

To illustrate the application of CQR and UQR and contrast results from these models with 

models for the outcome mean, we investigated the education-SBP relationship in the HRS data 

(2006-2018). The HRS is a nationally representative, longitudinal survey of non-institutionalized 

individuals aged 50+ years who had blood pressure measurements taken every four years since 

2006. We restricted our analytic sample to US born HRS participants who were 50+ years, were 

first interviewed in 1998 or later, and had no missing covariate information (N = 8,875).  

 

Educational attainment was measured as self-reported total years of schooling (5-17 years; 5: ≤5 

years of schooling; 17: ≥17 years of schooling). SBP was measured as the first recorded measure 

of SBP over the study period (i.e., we did not use repeated measures of SBP in our analysis). In 
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all outcome regressions, we controlled for age, age squared, gender, race/ethnicity, mother’s 

education, father’s education, birth in a southern US state, and SBP measurement year (see 

Appendix Table 1 for covariate definitions). 

 

We fit mean models using OLS and estimated the relationship between educational attainment 

and quantiles of the conditional and marginal SBP distribution from the 10th-90th quantiles using 

CQR and UQR respectively. We fit UQR using the RIF-OLS estimator. We estimated 

bootstrapped standard errors (500 repetitions) in all regressions. 

 

Compared to participants with more than 12 years of schooling, those with less than 12 years of 

education were more likely to be non-White, born in the South, and have parents with lower 

levels of education (Table 1). Linear regression results suggest that each additional year of 

education was associated with a 0.79mmHg decrease [95% confidence interval (CI) -0.97, -0.60] 

in mean SBP, holding all other covariates constant. CQR results suggest a high level of 

variability in the protective association of educational attainment with SBP along the conditional 

SBP distribution (Figure 4, panel a): for example, a one-year increase in total years of schooling 

was associated with -0.42mmHg [95% CI -0.64, -0.20], -0.72mmHg [95% CI -0.93, -0.51], and -

1.43mmHg [95% CI -1.87, -0.98] change in SBP at the 10th, 50th, and 90th quantiles of the 

conditional SBP distribution. Similarly, UQR results also suggest heterogeneity in the 

educational attainment-SBP relationship along the marginal SBP distribution (Figure 4, panel b): 

for example, a one-year increase in average educational attainment in our analytic sample was 

associated with -0.38mmHg [95% CI -0.61, -0.15], -0.69mmHg [95% CI -0.89, -0.47], and -
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1.33mmHg [95% CI -1.76, -0.90] change in SBP at the 10th, 50th, and 90th quantiles of the 

marginal SBP distribution. 

 

Results from all regression models suggest that higher educational attainment was inversely 

associated with SBP. Results from CQR and UQR models additionally show that higher 

educational attainment was associated with a location shift and reshaping of the conditional and 

marginal SBP distributions in a way which lowered the risk of cardiovascular disease and its 

sequelae (i.e., with more education, the entire conditional SBP distribution shifted leftward, but 

the leftward shift was more pronounced at higher levels of SBP than at lower levels). Our results 

thus highlight the limitation of mean models in capturing an exposure’s relationship with the 

outcome distribution. Additionally, while the CQR and UQR estimates were not very different in 

magnitude, they represent different estimands and our empirical example highlights how CQR 

and UQR estimates must be interpreted differently.  

 

Conclusions 

Epidemiologists have long recognized the importance of investigating how exposures affect the 

entire outcome distribution. Despite this, empirical epidemiology tends to focus on an exposure’s 

relationship with the outcome mean. Quantile regression methods to characterize an exposure’s 

relationship with the entire outcome distribution emerged in the 1970s but remain little used in 

epidemiology.  

 

A key strength of quantile regressions is their ability to quantify an exposure’s effect on the 

location and shape of the outcome distribution. Mean regressions, in contrast, are limited in their 
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ability to characterize how an exposure reshapes the outcome distribution in cases where the 

exposure affects both the location and scale of the outcome. Capturing such distributional 

effects, particularly at the tails of the outcome distribution, may have increased population health 

relevance. Another strength of quantile regressions is that they allow researchers to consistently 

estimate the exposure-outcome relationship at specific quantiles even in the presence of outliers, 

ceiling effects, or floor effects in the outcome.  

 

Quantile regressions are not without their limitations as well. One potential limitation of the 

method is that unlike linear regression, quantile regression estimates cannot usually be 

interpreted as individual-level relationships without making restrictive assumptions about the 

rank of individuals in the outcome distribution across levels of the exposure. Another limitation 

may be that inference in quantile regressions often depend on estimating the error density at the 

quantile of interest; as such, standard errors can be particularly noisy at parts of the outcome 

distribution with sparse data. 

 

Quantile regressions have been developed for quantiles of both the marginal and conditional 

outcome distribution. Although we applied both CQR and UQR in our empirical example, 

researchers should decide in advance of their analysis whether they should fit regressions 

targeted at quantiles of the marginal or conditional outcome distribution. Deciding between 

which method to use depends on the research question, the true data generating process, and 

practical considerations related to data structure, identification strategy, and measurement error. 

While this was not the case in our empirical example, CQR and UQR estimates can strongly 
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diverge from one another, so we caution researchers to be rigorous in choosing which method 

best suits their analysis and then apply that method (47).  

 

Overall, quantile regressions greatly enrich our understanding of the exposure-outcome 

relationship. They have important advantages over mean models and are very easy to implement 

in modern statistical software. We recommend that epidemiologists investigating continuous 

outcomes should routinely implement such estimators in their analysis. 
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Figure 1 Illustrating scenarios in which mean models can and cannot quantify 

distributional effects 
 

Notes: Panel (a) illustrates a situation where the treatment induces a location shift in the outcome distribution 

relative to the control but does not affect the outcome’s variance. Panel (b) illustrates a scale shift, i.e., a situation 

where the treatment induces a change in the outcome distribution’s variance relative to the control but does not 

affect the outcome’s mean. Panel (c) illustrates a scenario where the treatment induces both a location shift and a 

scale shift relative to the control’s outcome distribution. Mean models are able to fully capture distributional effects 

if the treatment only induces a location shift (panel (a)); however, if a treatment induces a scale shift or both a 

location and scale shift (e.g. a reshaping of the distribution, as displayed in panels (b) and panel (c)), then mean 

models are unable to capture distributional effects.   
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Figure 2 Illustrating the 75th quantile of the marginal systolic blood pressure distribution 

and in the systolic blood pressure distribution conditional on age group 
 

Notes: Q75 = 75th quantile. Panel 1) shows the 75th quantile of the marginal systolic blood pressure distribution in 

our analytic sample. Panel 2) shows the 75th quantile in the distribution of systolic blood pressure conditional on 

four age groups race/ethnicity categories: less than 60 years (panel a), between 60-70 years (panel b), between 70-80 

years (panel c), and 80 years or older (panel d). 
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Table 1 Distribution of covariates in the analytic sample 

 

  
Overall 

N = 8,875 

<12 years of 

education 

N = 845  

12 years of 

education 

N = 2,496 

>12 years of 

education 

N = 5,534 

Age (Years) 59.8 (8.4) 61.9 (10.1) 60.4 (8.9) 59.2 (7.8) 

Female 53% 50% 55% 47% 

Race/ethnicity     

Non-Hispanic White 73% 55% 73% 76% 

Non-Hispanic Black 20% 27% 21% 19% 

Latinx / Hispanic 7% 18% 6% 5% 

Birth in the US South 38% 59% 38% 34% 

Mother’s education 11.3 (2.9) 8.9 (3.0) 10.6 (2.5) 12.0 (2.8) 

Father’s education 10.9 (3.5) 8.2 (3.2) 9.9 (3.0) 11.7 (3.4) 

Blood pressure measurement year     

    2006 23% 23% 25% 22% 

    2008 21% 20% 23% 19% 

    2010 16% 18% 16% 16% 

    2012 17% 15% 16% 18% 

    2014 3% 4% 3% 4% 

    2016 11% 12% 9% 11% 

    2018 9% 8% 8% 10% 

Systolic blood pressure (mmHg) 128 (20) 134 (23) 129 (20) 126 (19) 
 

 

Notes: Mean (SD). Education was defined based on self-reported total years of schooling in the Health and 

Retirement Study data.  
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Figure 3 Values of the Recentered Influence Function at the 25th, 50th, and 75th quantiles 

of the marginal systolic blood pressure distribution in our analytic sample 
 

Notes: Panels (a), (b), and (c) respectively show the Recentered Influence Function (RIF) values at the 25th, 50th, 

and 75th quantiles of the marginal systolic blood pressure distribution in our analytic sample. Note that for any 

given quantile, the RIF can only take two values depending on whether the value of the random variable being 

transformed is above or below the value taken by that variable at the quantile of interest. The RIF values for systolic 

blood pressure (SBP) readings lower than the 25th, 50th, and 75th quantiles of the marginal SBP distribution are 

illustrated by bars with the angled line patterns. Similarly, the RIF value for SBP readings greater than the 25th, 

50th, and 75th quantiles of the marginal SBP distribution are illustrated by solid-colored bars.  
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Figure 4 Comparing results from linear regression estimated using Ordinary Least 

Squares with Conditional Quantile Regressions and Unconditional Quantile Regressions 
 

Notes: OLS stands for Ordinary Least Squares. Q10 = 10th quantile, Q20 = 20th quantile, and so forth. Panel (a) 

compares results from the linear regression model with conditional quantile regression while panel (b) compares 

results from the linear regression model with unconditional quantile regression. The solid purple line in panel (a) 

and the solid green line in panel (b) represent point estimates from conditional and unconditional quantile 

regressions fit at each quantile between the 10th-90th quantiles of the systolic blood pressure distribution. The 

shaded area in each panel represents the 95% confidence intervals, which were estimated using bootstrapping (500 

resamples). 
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Appendix Figure 1 Marginal density and cumulative distribution function of systolic blood pressure 

in our analytic sample 
 

Notes: Panel (a) illustrates the marginal density of systolic blood pressure (SBP) in our analytic sample while panel 

(b) shows the variable’s cumulative distribution function. The red, orange, green, blue, and purple lines highlight the 

0.1th, 0.25th, 0.5th, 0.75th, and 0.9th quantiles of the marginal distribution of SBP, respectively. The SBP cutoff value 

for quantiles were 104.5 mmHg at the 0.1th quantile, 114.0 mmHg at the 0.25th quantile, 125.5 mmHg at the 0.5th 

quantile, 138.5 mmHg at the 0.75th quantile, and 153.5 mmHg at the 0.9th quantile. 
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Appendix Figure 2 Illustrating what the 75th quantile of the marginal systolic blood pressure 

distribution maps to in the distribution of systolic blood pressure conditional on age groups 
 

Notes: Q75 = 75th quantile; Q80 = 80th quantile; Q70 = 70th quantile; Q65 = 65th quantile; Q59 = 59th quantile. 

Panel 1) shows the 75th quantile of the marginal systolic blood pressure distribution in our analytic sample. Panel 2) 

shows that the value of systolic blood pressure at the 75th quantile (138.5 mmHg) maps to the 80th, 70th, 65th, and 

59th quantiles of the distribution of systolic blood pressure among respondents aged less than 60 years (panel a), 

between 60-70 years (panel b), between 70-80 years (panel c), and 80 years or older (panel d).  

  



32 

 

Appendix Table 1 Definition of covariates used in all models 

 

Covariate Variable type Definition 

Age (linear/quadratic) Continuous Age at the time of SBP measurement; 51+ 

Gender Categorical 1 = Female; 2 = Male 

Race Categorical 
1 = non-Hispanic White; 2 = non-Hispanic Black;  

3 = Latinx / Hispanic 

Southern birth Indicator 1 = Born in the US South; 0 = Otherwise 

Mother’s education Continuous 
5-17; where 5 indicates 5 or less years of education and 

17 indicates 17 or more years of education 

Father’s Education Continuous  
5-17; where 5 indicates 5 or less years of education and 

17 indicates 17 or more years of education 

SBP Measurement Year Categorical 
1 = 2006; 2 = 2008; 3 = 2010; 4 = 2012; 5 = 2014;  

6 = 2016; 7 = 2018 
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Appendix Table 2 Estimates from conditional and unconditional quantile regressions of systolic 

blood pressure on educational attainment 
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Quantile Conditional Quantile Regression 

(CQR) 

Unconditional Quantile Regression  

(UQR) 

10 
-0.42 

(-0.64, -0.20) 

-0.38 

(-0.61, -0.15) 

11 
-0.47 

(-0.68, -0.26) 

-0.32 

(-0.53, -0.10) 

12 
-0.46 

(-0.67, -0.25) 

-0.32 

(-0.54, -0.10) 

13 
-0.46 

(-0.66, -0.25) 

-0.33 

(-0.53, -0.13) 

14 
-0.47 

(-0.68, -0.27) 

-0.36 

(-0.57, -0.14) 

15 
-0.50 

(-0.70, -0.30) 

-0.36 

(-0.58, -0.14) 

16 
-0.51 

(-0.71, -0.31) 

-0.36 

(-0.58, -0.14) 

17 
-0.51 

(-0.73, -0.29) 

-0.38 

(-0.59, -0.17) 

18 
-0.54 

(-0.77, -0.31) 

-0.41 

(-0.62, -0.20) 

19 
-0.54 

(-0.76, -0.32) 

-0.44 

(-0.64, -0.23) 

20 
-0.58 

(-0.82, -0.34) 

-0.47 

(-0.68, -0.26) 

21 
-0.62 

(-0.84, -0.40) 

-0.46 

(-0.67, -0.25) 

22 
-0.60 

(-0.80, -0.39) 

-0.47 

(-0.69, -0.26) 

23 
-0.60 

(-0.81, -0.39) 

-0.49 

(-0.68, -0.30) 

24 
-0.62 

(-0.82, -0.41) 

-0.47 

(-0.68, -0.27) 

25 
-0.64 

(-0.85, -0.43) 

-0.50 

(-0.70, -0.29) 

26 
-0.62 

(-0.82, -0.42) 

-0.48 

(-0.67, -0.29) 

27 
-0.61 

(-0.82, -0.41) 

-0.50 

(-0.71, -0.30) 

28 
-0.64 

(-0.86, -0.42) 

-0.49 

(-0.69, -0.29) 
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29 
-0.60 

(-0.82, -0.39) 

-0.53 

(-0.74, -0.32) 

30 
-0.59 

(-0.79, -0.38) 

-0.51 

(-0.71, -0.31) 

31 
-0.58 

(-0.78, -0.37) 

-0.54 

(-0.74, -0.35) 

32 
-0.57 

(-0.77, -0.37) 

-0.57 

(-0.77, -0.37) 

33 
-0.58 

(-0.77, -0.39) 

-0.57 

(-0.77, -0.37) 

34 
-0.57 

(-0.75, -0.38) 

-0.59 

(-0.79, -0.40) 

35 
-0.54 

(-0.74, -0.35) 

-0.60 

(-0.81, -0.40) 

36 
-0.57 

(-0.76, -0.37) 

-0.61 

(-0.81, -0.41) 

37 
-0.55 

(-0.74, -0.35) 

-0.66 

(-0.86, -0.46) 

38 
-0.51 

(-0.71, -0.31) 

-0.62 

(-0.83, -0.42) 

39 
-0.51 

(-0.70, -0.33) 

-0.66 

(-0.86, -0.46) 

40 
-0.54 

(-0.74, -0.34) 

-0.65 

(-0.84, -0.46) 

41 
-0.57 

(-0.76, -0.38) 

-0.65 

(-0.85, -0.45) 

42 
-0.59 

(-0.78, -0.40) 

-0.66 

(-0.87, -0.46) 

43 
-0.59 

(-0.77, -0.41) 

-0.66 

(-0.88, -0.44) 

44 
-0.62 

(-0.80, -0.45) 

-0.66 

(-0.86, -0.46) 

45 
-0.63 

(-0.81, -0.44) 

-0.68 

(-0.88, -0.48) 

46 
-0.63 

(-0.83, -0.44) 

-0.68 

(-0.90, -0.47) 

47 
-0.64 

(-0.82, -0.45) 

-0.70 

(-0.92, -0.48) 

48 
-0.67 

(-0.87, -0.48) 

-0.71 

(-0.92, -0.50) 
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49 
-0.71 

(-0.90, -0.51) 

-0.69 

(-0.89, -0.48) 

50 
-0.72 

(-0.93, -0.51) 

-0.68 

(-0.89, -0.47) 

51 
-0.73 

(-0.93, -0.53) 

-0.72 

(-0.94, -0.51) 

52 
-0.74 

(-0.95, -0.53) 

-0.71 

(-0.94, - 0.49) 

53 
-0.75 

(-0.98, -0.51) 

-0.71 

(-0.93, -0.50) 

54 
-0.74 

(-0.97, -0.51) 

-0.70 

(-0.91, -0.49) 

55 
-0.73 

(-0.95, -0.50) 

-0.72 

(-0.95, -0.50) 

56 
-0.68 

(-0.91, -0.45) 

-0.76 

(-0.98, -0.53) 

57 
-0.71 

(-0.92, -0.49) 

-0.75 

(-0.96, -0.53) 

58 
-0.71 

(-0.92, -0.50) 

-0.78 

(-1.01, -0.56) 

59 
-0.69 

(-0.89, -0.49) 

-0.84 

(-1.06, -0.62) 

60 
-0.71 

(-0.92, -0.50) 

-0.89 

(-1.12, -0.66) 

61 
-0.69 

(-0.92, -0.46) 

-0.88 

(-1.12, -0.63) 

62 
-0.72 

(-0.94, -0.50) 

-0.83 

(-1.07, -0.59) 

63 
-0.76 

(-1.00, -0.52) 

-0.88 

(-1.13, -0.63) 

64 
-0.74 

(-0.99, -0.50) 

-0.91 

(-1.16, -0.67) 

65 
-0.78 

(-1.04, -0.53) 

-0.88 

(-1.13, -0.63) 

66 
-0.85 

(-1.12, -0.59) 

-0.87 

(-1.12, -0.61) 

67 
-0.88 

(-1.15, -0.61) 

-0.90 

(-1.16, -0.64) 

68 
-0.97 

(-1.22, -0.71) 

-0.89 

(-1.15, -0.63) 
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69 
-0.97 

(-1.24, -0.71) 

-0.87 

(-1.13, -0.61) 

70 
-0.98 

(-1.25, -0.72) 

-0.90 

(-1.16, -0.65) 

71 
-0.99 

(-1.24, -0.75) 

-0.97 

(-1.24, -0.69) 

72 
-0.95 

(-1.22, -0.68) 

-1.00 

(-1.27, -0.74) 

73 
-0.95 

(-1.23, -0.67) 

-1.02 

(-1.30, -0.75) 

74 
-1.00 

(-1.29, -0.71) 

-1.02 

(-1.30, -0.73) 

75 
-1.05 

(-1.33, -0.76) 

-1.06 

(-1.33, -0.78) 

76 
-1.04 

(-1.33, -0.75) 

-1.01 

(-1.31, -0.72) 

77 
-1.03 

(-1.32, -0.74) 

-1.03 

(-1.34, -0.72) 

78 
-1.06 

(-1.37, -0.76) 

-1.06 

(-1.37, -0.76) 

79 
-1.08 

(-1.39, -0.77) 

-1.11 

(-1.41, -0.80) 

80 
-1.04 

(-1.34, -0.74) 

-1.14 

(-1.47, -0.82) 

81 
-1.05 

(-1.36, -0.73) 

-1.16 

(-1.48, -0.84) 

82 
-1.06 

(-1.42, -0.70) 

-1.16 

(-1.50, -0.81) 

83 
-1.05 

(-1.39, -0.71) 

-1.1 

(-1.48, -0.72) 

84 
-1.07 

(-1.39, -0.76) 

-1.2 

(-1.58, -0.83) 

85 
-1.03 

(-1.35, -0.71) 

-1.23 

(-1.65, -0.82) 

86 
-1.14 

(-1.50, -0.78) 

-1.32 

(-1.69, -0.94) 

87 
-1.23 

(-1.62, -0.83) 

-1.26 

(-1.64, -0.87) 
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88 
-1.36 

(-1.81, -0.90) 

-1.23 

(-1.63, -0.82) 

89 
-1.39 

(-1.83, -0.95) 

-1.33 

(-1.73, -0.92) 

90 
-1.43 

(-1.87, -0.98) 

-1.33 

(-1.76, -0.90) 
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Appendix Figure 3 Comparing results from Ordinary Least Squares, Conditional Quantile 

Regressions, and Unconditional Regressions with results from estimators for the relationship 

between the exposure and quantiles of the conditional or marginal outcome distribution 
 

Notes: The solid purple line represents point estimates from conditional quantile regressions for the 10th-90th 

quantiles of the conditional systolic blood pressure distribution. The solid green line represents point estimates from 

Firpo’s RIF-OLS method for unconditional quantile regressions for the 10th-90th quantiles of the marginal systolic 

blood pressure distribution. The purple and green shaded areas represent 95% confidence intervals around point 

estimates from the conditional quantile regression model or Firpo’s estimator respectively. Confidence intervals 

were estimated using bootstrap (500 resamples). 
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Appendix Detailed Methods Notes on the check function 

 

Estimating the median of the marginal distribution of a random variable 

 

Suppose we have a random variable 𝑌 drawn from some population and we are asked to estimate 

the population median. We could sort and order the variable and then find 𝑦𝑖 ∈ 𝑌 such that 

Pr[𝑌 ≤ 𝑦𝑖] = 0.5, where Pr [. ] represents probability. But, if 𝑌 has thousands of elements, the 

process of sorting, ordering, and then determining the value of 𝑌 which satisfies Pr[𝑌 ≤ 𝑦𝑖] =
0.5 is practically challenging.  

 

Instead of sorting and ordering 𝑌, we can instead find the value 𝑎 which satisfies  

 

min
𝑎

1

𝑁
∑ |𝑦𝑖 − 𝑎|

𝑁

𝑖=1

     [𝐴𝐷𝑀1] 

 

to find the median of 𝑌. In words, the median of 𝑌 is that value which minimizes the sum of 

absolute deviations, i.e., ∑ |𝑦𝑖 − 𝑎|𝑁
𝑖=1  (note, we do not worry about 

1

𝑁
 in the minimization as it is 

a constant for any given dataset).  

 

To see this in action, suppose we create a variable 𝑌 with 100,000 observations and suppose 

𝑌~𝑁(0,1), i.e., 𝑌 is distributed as a standard normal distribution. We know that the median of 

this variable will be approximately 0. Let’s now plug in values of 𝑌 between -2 and 2 at every 

0.1 interval into Eq ADM1 and see which value minimizes ∑ |𝑦𝑖 − 𝑎|𝑁
𝑖=1 . For the ease of 

graphing results, we will scale the sum of the absolute deviations by 100,000. The R code for this 

exercise is provided at the end of this document. Results from this exercise are provided in 

Figure ADM1. Note that the value of 𝑌 which minimizes the sum of absolute deviation is, as 

expected, 0. 
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Figure ADM1 Sum of absolute deviations scaled by 100,000 to estimate the median  

 

Estimating quantiles of the marginal distribution of a random variable 

 

We can generalize Eq ADM1 to estimate all quantiles of 𝑌, including the median. This 

generalization takes the form of 

 

min
𝑎

1

𝑁
∑ 𝜌𝜏(𝑦𝑖 − 𝑎)

𝑁

𝑖=1

     [𝐴𝐷𝑀2]. 

 

In Eq ADM2, 𝜏 = (0,1) represents the quantile of interest and the funciton 𝜌𝜏(. ) is the check 

function. As elaborated in the main text, for an arbitrary parameter 𝑢, 𝜌𝜏(𝑢) = 𝑢(𝜏 − 𝐼(𝑢 < 0)) 

where 𝐼(𝑢 < 0) takes the value 1 if 𝑢 < 0, and 0 if 𝑢 ≥ 0. Thus, the function in Eq ADM2 can 

be written as 

 

 

𝜌𝜏(𝑦𝑖 − 𝑎) = {
(𝜏 − 1)(𝑦𝑖 − 𝑎), 𝑦𝑖 − 𝑎 < 0

𝜏(𝑦𝑖 − 𝑎), 𝑦𝑖 − 𝑎 ≥ 0
         [𝐴𝐷𝑀3]. 

 

 

That is, 𝜌𝜏(𝑦𝑖 − 𝑎) takes on different values when 𝑦𝑖 − 𝑎 < 0 and when 𝑦𝑖 − 𝑎 ≥ 0. Note 

further that the slope of the function when 𝑦𝑖 − 𝑎 < 0 is (𝜏 − 1). Similarly, the slope of the 
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function when 𝑦𝑖 − 𝑎 ≥ 0 is 𝜏. The fact that the slope of the function is different on either side of 

𝑦𝑖 − 𝑎 = 0 leads to the name “check function”, because when we plot it out, the lines on the 

figure look like a check mark. We plot the check function for the variable 𝑌 in our running 

example in the case of 𝜏 = 0.25 and 𝜏 = 0.75 with 𝑎 = {−1.5,0,1.5} in Figure ADM2 panel (i) 

and (ii) respectively. 

 

 
Figure ADM2 Plotting the check function at 𝝉 = 𝟎. 𝟐𝟓 and 𝝉 = 𝟎. 𝟕𝟓 for 𝒂 = −𝟏. 𝟓, 𝒂 = 𝟎, and 𝒂 =
𝟏. 𝟓 

 

When 𝜏 = 0.5, 𝜌0.5(𝑦𝑖 − 𝑎) = (𝑦𝑖 − 𝑎)(0.5 − 𝐼(𝑦𝑖 − 𝑎 < 0)) = 0.5|𝑦𝑖 − 𝑎|. Thus, when 𝜏 =

0.5, Eq ADM2 can be written as 
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min
𝑎

0.5

𝑁
∑ |𝑦𝑖 − 𝑎|

𝑁

𝑖=1

     [𝐴𝐷𝑀4] 

 

which is equivaluent to Eq ADM1 because 
0.5

𝑁
 is a constant for any given dataset. This shows 

how the check function and the minimization in Eq ADM2 is a generalization of the 

minimization of the sum of absolute deviations.  

 

Additionally, to show that the minimization in Eq ADM2 estimates all other quantiles, let us 

consider the case of 𝜏 = 0.75 for the variable 𝑌 in our running example. We know that the 75th 

quantile of 𝑌 is approximately 0.7 (technically, it is 0.68 but we round up for ease of exposition). 

As before, let’s plug in values between -2 and 2 with an interval of 0.1 into Eq ADM2 and see 

which value of 𝑌 minimizes 𝜌0.75(𝑦𝑖 − 𝑎). For ease of graphing results, we will scale the sum of 

the check function by 100,000. Figure ADM3 shows that the check function at 𝜏 = 0.75 is 

indeed minimized at 𝑦𝑖 ≈ 0.7. 

 

 
Figure ADM3 Sum of 𝝆𝟎.𝟕𝟓(𝒚𝒊 − 𝒂) at different values of 𝒂 from -2 to 2 is minimized at ≈ 𝟎. 𝟕   
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R code 

 
# Clearing the environment 

rm(list = ls()) 

 

# Setting work directory 

dir <- 

"C:\\Users\\akhadka\\Dropbox\\PostDoc\\Projects\\QuantileRegressionOverview" 

setwd(dir) 

 

# Loading libraries 

library(tidyverse) 

library(ggpubr) 

 

# Setting seed 

set.seed(26111923) 

 

# Example 1: Estimating the median with a standard normal distribution 

 

# Creating a standard normal distribution with 100,000 observations 

y <- rnorm(100000, 0, 1) 

 

# Estimating sum of absolute deviation at values of y = [-2,2] with a 0.1 

step 

 

  # Creating a sequence vector taking values between [-2,2] with a 0.1 

interval 

  s <- seq(-2, 2, 0.1) 

   

  # Creating an empty vector to store results. ad = "Absolute Deviation" 

  ad <- rep(NA, 41) 

   

  # Estimating the sum of absolute deviation 

  for (i in 1:length(s)) { 

     

    # Estimating absolute deviation 

    y_dev <- abs(y - s[i]) 

     

    # Summing absolute deviation and storing in lad vector 

    ad[i] <- sum(y_dev) / 100000 

     

  } 

 

# Creating a data frame to graph the least absolute deviations 

d <- data.frame(cbind(s, ad)) 

 

# Creating a figure of the least absolute deviation by values of y = [-2,2] 

lad_plot <- ggplot(data = d, aes(x = s, y = ad)) + 

  geom_line() + 

  theme(panel.background = element_rect(fill = 'white', colour = 'white'), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank()) + 

  ylab("Sum of absolute deviation (scaled by 100,000)") + 

  xlab("Value of Y from which absolute deviation is estimated") + 

  labs(title = "Estimating the median of Y by finding the value of Y which 

minimizes the sum of absolute deviation") + 
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  scale_x_continuous(breaks = s) 

 

png("lad.png", width = 3250, height = 2250, res = 300) 

print(lad_plot) 

dev.off() 

 

# Removing unnecessary objects 

rm(s, ad, i, y_dev, d, lad_plot) 

 

 

# Example 2: Plotting the check function 

 

# Setting tau values  

tau1 <- 0.25 

tau2 <- 0.75 

 

# Choosing three values of a in Eq ADM2 

a <- seq(-1.5, 1.5, 1.5) 

 

# Creating a list 

tau1_list <- list() 

tau2_list <- list() 

 

# Looping through Y to estimate the check function values at a = {-1.5, 0, 

1.5} and tau = 0.25 

for (i in 1:length(a)) { 

   

  # Creating a vector of (y - a) values 

  vec <- y - a[i] 

   

  # Estimating the value of the check function 

  check_val <- vec * (tau1 - (0+(vec<0))) 

   

  # Storing values 

  tau1_list[[i]] <- check_val 

   

} 

 

rm(vec, check_val) 

 

# Looping through Y to estimate the check function values at a = {-1.5, 0, 

1.5} and tau = 0.25 

 

for (i in 1:length(a)) { 

   

  # Creating a vector of (y - a) values 

  vec <- y - a[i] 

   

  # Estimating the value of the check function 

  check_val <- vec * (tau2 - (0+(vec<0))) 

   

  # Storing values 

  tau2_list[[i]] <- check_val 

   

} 

 

rm(vec, check_val) 
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# Storing results in a data frame to plot 

d_tau1 <- data.frame(cbind(y, tau1_list[[1]], tau1_list[[2]], 

tau1_list[[3]])) 

d_tau2 <- data.frame(cbind(y, tau2_list[[1]], tau2_list[[2]], 

tau2_list[[3]])) 

 

# Creating plots of check function results 

yaxis <- expression(rho[tau]~(y[i]-a)) 

 

rho_plot_tau1 <- ggplot(data = d_tau1) + 

  geom_line(aes(x = y, y = V2), color = "blue", linetype = "solid", size = 

1.1) + 

  geom_line(aes(x = y, y = V3), color = "red", linetype = "longdash", size = 

1.1) + 

  geom_line(aes(x = y, y = V4), color = "black", linetype = "dotted", size = 

1.1) + 

  geom_text(aes(x = -3.33, y = 1.8, label = "a = -1.5"), color = "blue") + 

  geom_text(aes(x = -3.33, y = 2.92, label = "a = -1.5"), color = "red") + 

  geom_text(aes(x = -3.33, y = 4.05, label = "a = -1.5"), color = "black") + 

  theme(panel.background = element_rect(fill = 'white', colour = 'white'), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank()) + 

  ylab(yaxis) + 

  xlab("Values taken by random variable Y") + 

  labs(title = "i. Check function values for 0.25 quantile") 

 

rho_plot_tau2 <- ggplot(data = d_tau2) + 

  geom_line(aes(x = y, y = V2), color = "blue", linetype = "solid", size = 

1.1) + 

  geom_line(aes(x = y, y = V3), color = "red", linetype = "longdash", size = 

1.1) + 

  geom_line(aes(x = y, y = V4), color = "black", linetype = "dotted", size = 

1.1) + 

  geom_text(aes(x = 4.5, y = 4.14, label = "a = -1.5"), color = "blue") + 

  geom_text(aes(x = 4.5, y = 3, label = "a = -1.5"), color = "red") + 

  geom_text(aes(x = 4.5, y = 1.81, label = "a = -1.5"), color = "black") + 

  theme(panel.background = element_rect(fill = 'white', colour = 'white'), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank()) + 

  ylab(yaxis) + 

  xlab("Values taken by random variable Y") + 

  labs(title = "ii. Check function values for 0.75 quantile") 

 

png("check_function.png", width = 3000, height = 3000, res = 300) 

comb <- ggarrange(rho_plot_tau1, rho_plot_tau2, nrow = 2) 

print(comb) 

dev.off() 

 

# Removing unnecessary objects 

rm(comb, d_tau1, d_tau2, rho_plot_tau1, rho_plot_tau2, tau1_list, tau2_list, 

a, i, tau1, tau2, yaxis) 

 

 

# Example 3: Estimating the 75th quantile of Y 

 

# Creating a sequence vector taking values between [-2,2] with a 0.1 interval 
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s <- seq(-2, 2, 0.1) 

 

# Creating an empty vector to store results. rho_d = "Deviations in the rho 

function" 

rho_d <- rep(NA, 41) 

 

# Estimating the sum of absolute deviation 

for (i in 1:length(s)) { 

   

  # Creating a vector of (y - a) values 

  vec <- y - s[i]  

   

  # Estimating values of rho_0.75 

  y_dev <- vec * (0.75 - (0+(vec<0))) 

   

  # Summing absolute deviation and storing in lad vector 

  rho_d[i] <- sum(y_dev) / 100000 

   

} 

 

# Creating a data frame to graph the least absolute deviations 

d <- data.frame(cbind(s, rho_d)) 

 

# Creating a figure of the check function for the 75th quantile of Y by 

values of y = [-2,2] 

rho75_plot <- ggplot(data = d, aes(x = s, y = rho_d)) + 

  geom_line() + 

  theme(panel.background = element_rect(fill = 'white', colour = 'white'), 

        panel.grid.major = element_blank(), 

        panel.grid.minor = element_blank()) + 

  ylab("Sum of check function (scaled by 100,000)") + 

  xlab("Value of Y from which deviation is estimated") + 

  labs(title = "Estimating the 0.75 quantile of Y") + 

  scale_x_continuous(breaks = s) 

 

png("rho75_plot.png", width = 3250, height = 2250, res = 300) 

print(rho75_plot) 

dev.off() 

 

rm(d, rho75_plot, i, rho_d, s, vec, y_dev, y) 

 


