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Abstract 

 

The circulating proteome offers insights into the biological pathways that underlie disease. Here, we 

test relationships between 1,468 Olink protein levels and the incidence of 23 age-related diseases and 

mortality, ascertained over 16 years of electronic health linkage in the UK Biobank (N=49,234). We 

report 3,123 associations between 1,052 protein levels and incident diseases (PBonferroni < 5.4x10-6). 

Forty-four proteins are indicators of eight or more morbidities. Next, protein-based scores 

(ProteinScores) are developed using penalised Cox regression. When applied to test sets, eight 

ProteinScores improve Area Under the Curve (AUC) estimates for the 10-year onset of incident 

outcomes (PBonferroni < 0.0025) beyond age, sex and additional health and lifestyle covariates. The 

type 2 diabetes ProteinScore outperforms HbA1c (P = 5.7x10-12) – a clinical marker used to monitor 

and diagnose type 2 diabetes. A maximal type 2 diabetes model including the ProteinScore, HbA1c 

and a polygenic risk score has AUC = 0.90 and Precision-Recall AUC = 0.76. These data 

characterise early proteomic contributions to major age-related disease. 

Introduction 

 

Omics signatures are increasingly used to hone clinical trial design 1, while also opening up avenues 

for more personalised healthcare 2,3. Of all the omics layers that can be measured from a single blood 

test, proteomics arguably holds the most intrinsic predictive potential, given that proteins are the 

intermediary effectors of health maintenance and disease and are often the targets of 

pharmacological interventions. Several studies have shown that circulating proteins can discriminate 

disease cases from controls and delineate risk of incident diagnoses 4–11. Screening the proteome 

against incident outcomes has been shown to identify sets of individual protein markers – some of 

which have then been causally-implicated in disease 8,12–14. This demonstrates the value protein data 

have in informing therapeutic targeting and reflecting the internal processes occurring in the body 

that precede formal diagnoses. 
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While singular protein markers offer insight into the mediators of disease, harnessing multiple 

proteins simultaneously can be expected to generate predictive tools with even greater clinical utility 

15. Although cross-sectional case-control studies can inform on the molecular signatures of diagnosed 

diseases, longitudinal approaches that assess early biomarker signatures relating to time-to-disease 

are more suited to risk stratification. Scores developed through statistical learning stratify where 

individuals lie on the disease-risk continuum for a population. While proteomic and metabolomics 

scores have been developed for certain time-to-event outcomes in isolation 9,16–20, these predictors 

are rarely developed and tested at scale. Proteomic predictors have been trained using the SomaScan 

platform for diabetes and cardiovascular event risk and multiple lifestyle and health indicators 21. 

Metabolomics data have been recently shown to facilitate incident disease prediction in the UK 

Biobank 22. However, no study has systematically assessed proteomic score generation for multiple 

incident morbidities.  

Here, we quantify how large-scale proteomic sampling can identify candidate protein targets and 

facilitate the prediction of incident outcomes in the UK Biobank (Fig. 1). We use 1,468 Olink 

plasma protein measurements in 49,234 individuals available as part of the UK Biobank Pharma 

Proteomics Project (UKB-PPP) 23. First, Cox proportional hazards (PH) models are used to 

characterise associations between each protein and 23 incident diseases, ascertained via data linkage 

to primary and secondary care records and mortality over 16 years of follow-up. Next, the dataset is 

split into independent training and testing subsets to assess the utility of proteomic scores 

(ProteinScores) for modelling either 5-year or 10-year onset of the 20 incident outcomes that had a 

minimum of 150 cases available.  
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Figure 1. Proteomic assessment of 23 incident diseases and mortality in the UK Biobank 
(N=49,234). First, individual Cox proportional hazards (PH) models were used to profile 
relationships between baseline protein analytes and incident diseases or death. Associations that had 
PBonferroni < 5.4x10-6 in both basic and fully-adjusted models were retained. Proteins associated with 
multiple morbidities were identified. Next, proteomic predictors (ProteinScores) were trained using 
Cox PH elastic net regression for 20 of the time-to-event outcomes that had a minimum of 150 cases. 
Fifty ProteinScore iterations with randomised train and test sample allocations and case:control ratio 
of 1:3 were run for each trait. ProteinScores that yielded the median incremental difference to the 
AUC of a basic model for 5-year or 10-year incidence (depending on suitability of the time-to-onset 
distribution for traits) in the test set were selected. The eleven ProteinScores that significantly 
improved AUC (PBonferroni < 0.0025) in basic models were taken forward for analyses with a more 
detailed set of covariates. HbA1c (a clinically used biomarker) and a polygenic risk score (PGS) 
were further examined for the type 2 diabetes ProteinScore. 
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Results 

The UKB-PPP sample 

Of the 1,472 protein levels available in the UKB-PPP sample, 1,463 are unique, due to CXCL8, IL6 

and TNF having multiple analyte measurements (annotation information provided in 

Supplementary Table 1). After quality control and removal of outliers, measurements for 54,189 

individuals were available. In this study, a total sample of 49,234 individuals with 1,468 protein 

analytes was used, after exclusions for related individuals and missing data (Supplementary Fig. 1, 

Methods). The 1,468 analyte measurements correspond to 1,459 unique protein levels. Demographic 

and phenotypic information for these individuals are presented in Supplementary Table 2. Principal 

components analyses indicated that the first 385 components explained a cumulative variance of 

80% in the protein levels (Supplementary Table 3).  

Distinct and overlapping protein associations with incident outcomes 

First, differential plasma protein levels that were associated with the onset of 23 diseases enriched 

for leading causes of disability, morbidity and reductions in healthy life expectancy 24–26 were 

identified, up to 16 years prior to formal diagnoses. Time-to-mortality was also considered as an 

outcome (4,580 individuals had died during the 16-year follow-up period). A total of 35,232 

associations were tested (1,468 analytes and 24 outcomes). The number of cases, controls and mean 

time-to-onset from baseline for each outcome in basic- and fully-adjusted Cox PH models are 

summarised in Table 1.  

In basic (age- or age- and sex-adjusted) models, there were 4,916 associations between 1,203 unique 

protein analytes and 21 outcomes that had Bonferroni-adjusted P < 5.4x10-6 (Supplementary Table 

4). In fully-adjusted models that further adjusted for health and lifestyle risk factors (body mass 

index (BMI), alcohol consumption, social deprivation, education status and smoking status), 3,123 of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 3, 2023. ; https://doi.org/10.1101/2023.05.01.23288879doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.01.23288879
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

the basic model associations had PBonferroni < 5.4x10-6 (Fig. 2a, Supplementary Table 5). The 3,123 

associations involved 1,052 unique protein analytes and 20 outcomes, ranging from one association 

for Alzheimer’s dementia, gynaecological cancer and multiple sclerosis, to 694 for mortality. No 

associations were found for brain/CNS cancer, chronic cystitis, major depression and schizophrenia. 

Supplementary Table 6 summarises the 1,052 unique protein analytes selected across the 3,123 

fully-adjusted associations by disease and by direction of effect (i.e. Hazard Ratio (HR) < 1 or HR > 

1). The most statistically significant association was observed between higher GDF15 levels and the 

incidence of death (HR = 1.97 per SD of the rank transformed protein, 95% CI = [1.89, 2.04], P = 2.6 

x 10-260). Multimorbidity profiling identified 44 proteins that had associations with eight or more 

incident morbidities (Fig. 2b); in all instances, elevated levels of the proteins were associated with 

the increased incidence of disease or death. Of the 44 proteins, GDF15, PLAUR, ST6GAL1 and IL6 

had the largest number of associations (10 incident outcomes).  

Of the 3,123 associations retained from the fully-adjusted models, 1,964 failed to satisfy the local 

(i.e., protein) Cox PH assumption over the 16-year follow-up period (Schoenfeld residual test P < 

0.05). Due to the presence of sparsity in the final six years of linkage records resulting from 

censoring, sensitivity analyses that computed hazard ratios over successive yearly follow-up intervals 

for cases were performed. In these analyses, 1,395 and 415 of the 3,123 associations failed the local 

PH assumption when restricted to 10-year and 5-year follow-up intervals, respectively 

(Supplementary Table 7). Relatively minor deviations to the magnitude and statistical significance 

of the effect size were observed across follow-up intervals. Summary statistics for each of the 3,123 

associations split by year of follow-up for cases are available in Supplementary Table 8. The results 

from these sensitivity analyses can be visualised for every association tested in a Shiny app at:  

https://protein-disease-ukb.optima-health.technology [Username: ukb_disease, Password: 

shinyappUKB]. The app also includes an interactive network for the 3,123 fully-adjusted 
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associations that can be manipulated to view multiple proteins and examine their associations with 

multiple incident morbidities. 

Incident event 
Cases 
basic 
(N) 

Controls 
basic 
(N) 

Years to onset 
basic (mean, 
sd) 

Cases 
full (N) 

Controls 
full (N) 

Years to 
onset full 
(mean, sd) 

Chronic cystitis 85 26,403 5.7 (3.8) 83 26,130 5.7 (3.8) 

Multiple sclerosis 95 48,811 5.8 (3.3) 93 48,255 5.8 (3.3) 

Brain/CNS cancer 122 49,094 6 (3.5) 119 48,518 6 (3.6) 

Schizophrenia 126 48,952 6.2 (3.7) 123 48,379 6.3 (3.8) 

Systemic lupus erythematosus 157 48,703 4.7 (2.8) 153 48,135 4.7 (2.9) 

Endometriosis 164 26,018 4.7 (3.5) 160 25,750 4.8 (3.5) 

Vascular dementia 208 26,106 8.5 (3.1) 206 25,809 8.6 (3.1) 

Amyotrophic lateral sclerosis 262 48,934 5.4 (3) 252 48,370 5.5 (3) 

Liver fibrosis/cirrhosis 305 48,799 7.1 (3.7) 298 48,230 7.1 (3.7) 

Inflammatory bowel disease 326 48,425 6.3 (3.7) 324 47,855 6.3 (3.7) 

Gynaecological cancer 365 25,702 5.7 (3.7) 361 25,437 5.7 (3.7) 

Major depression 376 47,961 3.3 (2.6) 369 47,398 3.3 (2.6) 

Alzheimer's dementia 499 25,790 7.5 (3.3) 491 25,502 7.6 (3.3) 

Lung cancer 551 48,636 7 (3.7) 543 48,064 6.9 (3.7) 

Parkinson's disease 699 48,408 5.5 (3.5) 682 47,847 5.5 (3.5) 

Rheumatoid arthritis 702 47,960 6.8 (3.6) 690 47,408 6.8 (3.6) 

Colorectal cancer 716 48,278 7 (3.8) 706 47,712 7 (3.8) 

Ischaemic stroke 1,015 48,012 7 (3.7) 989 47,469 7 (3.7) 

Breast cancer 1,044 24,586 6.2 (3.6) 1,033 24,329 6.2 (3.6) 

Prostate cancer 1,117 21,276 7 (3.6) 1,107 20,986 7 (3.6) 

Chronic obstructive pulmonary disease 1,992 46,403 6.6 (3.6) 1,949 45,889 6.6 (3.6) 

Type 2 diabetes 2,275 44,519 6.4 (3.5) 2,236 44,034 6.3 (3.5) 

Ischaemic heart disease 3,123 44,011 6.3 (3.7) 3,086 43,512 6.3 (3.7) 

Death 4,580 44,654 7.9 (3.5) 4,471 44,183 7.9 (3.5) 

 

Table 1. Counts for cases and controls with mean time-to-onset for 23 incident morbidities and 
mortality in the UK Biobank (N=49,234). Mean time-to-onset is summarised for each disease over 
a 16-year follow-up period. Summary information is provided for basic and fully-adjusted Cox PH 
models. Alzheimer’s and vascular dementia were restricted to age of event of 65 years or above. Sex-
specific traits are stratified. CNS: central nervous system.  
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Figure 2. Individual protein associations with incident outcomes in the UK Biobank 
(N=49,234). a, Number of associations between protein analytes and time-to-onset for 20 outcomes 
that had PBonferroni < 5.4x10-6 in both basic and fully-adjusted Cox PH models. There were 3,123 
associations in total involving 1,052 protein analytes. b, Hazard ratios (HR) are plotted for the 44 
protein analytes that were associated with eight or more outcomes in fully-adjusted Cox PH models. 
Each association is represented by a rectangle. Every association identified for these proteins had HR 
> 1 (red) and associations are shaded based on HR effect size (darkest colouration indicating larger 
magnitude of effect). The largest HR shown is for the association between LGALS9 levels and liver 
fibrosis/cirrhosis (HR =2.98). COPD: chronic obstructive pulmonary disease.  
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ProteinScores for incident outcomes 

ProteinScores for 20 incident outcomes with a minimum of 150 cases available were trained using 

Cox PH elastic net regression with cross-validation in a training subset. Performance was quantified 

via incremental Cox PH models in the test subset, to obtain onset probabilities for calculation of 

AUC and Precision Recall AUC (PRAUC) estimates (see Methods). This approach was repeated 

with fifty randomly sampled train and test subset combinations for each outcome with case:control 

ratios of 1:3 (see Supplementary Fig. 4) ProteinScores with the median difference in AUC were 

selected for each outcome (see Methods). Cumulative time-to-onset distributions (Supplementary 

Figs. 2-3) indicated that amyotrophic lateral sclerosis, endometriosis, major depression and systemic 

lupus erythematosus were better-suited to 5-year onset assessments. All remaining ProteinScores 

were tested in the context of 10-year onset. Fig. 3 provides an overview of training, feature selection 

and basic model evaluation for the ProteinScore selected for Alzheimer’s dementia. Summaries of 

protein features for the 20 ProteinScores assessed in basic models are available in Supplementary 

Tables 9-10.  

In tests for significant differences between receiver operating characteristic (ROC) curves between 

Cox models with basic adjustments with/out the selected ProteinScore, the addition of eleven 

ProteinScores resulted in PBonferroni < 0.0025 (Supplementary Table 11). Differences in AUC and 

PRAUC for these eleven ProteinScores were then quantified across five incremental Cox PH models 

with increasing covariate adjustments (Supplementary Table 12). Fig. 4 shows AUC and PRAUC 

estimates for basic and fully-adjusted models with/out the ProteinScore. Eight of the eleven 

ProteinScores (death, type 2 diabetes, ischaemic heart disease, Alzheimer’s dementia, Parkinson’s 

disease, liver fibrosis/cirrhosis, ischaemic stroke and COPD) had PBonferroni < 0.0025 in ROC model 

comparisons assessing the addition of the ProteinScores to fully-adjusted models. All eight of the 

best-performing ProteinScores were assessed for stratification of 10-year onset. The remaining three 
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scores (amyotrophic lateral sclerosis, rheumatoid arthritis and lung cancer) had nominal P < 0.05 in 

fully-adjusted model comparisons. 

A final series of models considered only the ProteinScore for each trait tested (Supplementary 

Table 12). For nine of the 11 traits, the ProteinScore model had a higher AUC than the models with 

basic and additional covariate adjustments. Supplementary Figs. 5-15 visualise ROC and precision-

recall curves for all of the incremental Cox PH models tested for each of the eleven ProteinScores 

assessed in fully-adjusted models. 
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Figure 3. Example of feature selection and basic model evaluation for the Alzheimer’s 
dementia ProteinScore. Of the 1,468 proteins considered, ten were selected and assigned weighting 
coefficients (positive = red, negative = blue) via Cox PH elastic net regression with 3-fold cross-
validation (Ncases < 500) in the training sample. Weighting coefficients from this step were used to 
derive the ProteinScore in the test set. A model comparison between 10-year first occurrence of 
Alzheimer’s dementia in the test sample with and without the ProteinScore yielded ROC P = 9.2x10-

6, beyond adjustments for age and sex. Differences of 0.08 in AUC and 0.15 in PRAUC were 
observed due to the addition of the ProteinScore to the basic model. 
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Figure 4. Predictive value offered by ProteinScores for incident outcomes in the UK Biobank.
a, Differences in AUCs resulting from the addition of ProteinScores to basic models (adjusting for
age and sex) – outcomes ordered by increasing AUC differences. b, Differences in PRAUCs
resulting from the addition of ProteinScores to basic models. c, Differences in AUCs resulting from
the addition of ProteinScores to basic models with additional risk factor adjustments (BMI, alcohol
consumption, social deprivation, educational attainment and smoking status). d, Difference in
PRAUCs resulting from the addition of ProteinScores to basic models with additional risk factor
adjustments. All 11 of the ProteinScores had ROC PBonferroni < 0.0025 in basic model comparisons.
Eight ProteinScores (all except those for lung cancer, amyotrophic lateral sclerosis and rheumatoid
arthritis) had ROC PBonferroni < 0.0025 in fully-adjusted model comparisons. All ProteinScore
performances shown correspond to 10-year onset, except amyotrophic lateral sclerosis that was
assessed for 5-year onset. 
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Exploration of the type 2 diabetes ProteinScore clinical utility 

The clinical utility that ProteinScores may offer was explored for type 2 diabetes, given the 

availability of a well-validated biomarker – Glycated haemoglobin (HbA1c) – in UK Biobank. 

HbA1c measures average long-term glucose over two to three months and is widely employed 

clinically to monitor pre-clinical diabetes risk (42-47mmol/mol) and diagnose the disease (with two 

repeated measurements >48mmol/mol) 27,28. 

The HbA1c and type 2 diabetes ProteinScore markers were assessed individually and concurrently in 

10-year Cox PH models in those in the type 2 diabetes test sample that had HbA1c available (873 

cases, 2,542 controls, with a mean time-to-event of 5.4 (SD 2.8) years). There was a strong 

correlation between the ProteinScore and HbA1c (Pearson r=0.50 for rank-based inverse normal 

transformed variables). A contour plot of both variables grouped by those who went on to be 

diagnosed with type 2 diabetes over a 10-year period is presented in Fig. 5a. HbA1c levels increased 

across ProteinScore risk deciles, with individuals in the upper deciles of the ProteinScore falling 

within the clinical HbA1c screening threshold (42-47mmol/mol) for diabetes (Fig. 5b).  

In incremental Cox PH models for the 10-year onset of type 2 diabetes (Fig. 5c) the singular use of 

either the ProteinScore or HbA1c outperformed the singular use of the PGS (AUCs = 0.66, 0.84 and 

0.85 for the PGS, HbA1c and ProteinScore, respectively). Adding the ProteinScore to a model with 

HbA1c, basic and additional health and lifestyle covariates significantly improved performance 

(AUC = 0.87, PRAUC = 0.73 for the model without the ProteinScore versus AUC = 0.89, PRAUC = 

0.75, PROC Comparison = 5.7x10-12 for the model with the ProteinScore). When the PGS was added to 

this model, a further improvement was observed (AUC = 0.90, PRAUC = 0.76 and PROC Comparison = 

9.4x10-6). Supplementary Table 13 summarises AUC, PRAUC and ROC P statistics for the ten 

incremental models tested. 
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Figure 5. Clinical value of the type 2 diabetes ProteinScore beyond HbA1c and PGS in a subset 
of the test sample (N=3,608). a, Case (red) and control (blue) discrimination for HbA1c and the 
type 2 diabetes ProteinScore. Both markers were rank-based inverse normalised and scaled to have a 
mean of 0 and standard deviation of 1. Data for 873 cases and 2,542 controls with ProteinScores and 
HbA1c available are shown. b, HbA1c (mmol/mol) per decile of the type 2 diabetes ProteinScore. 
Shaded rectangle indicates the type 2 diabetes HbA1c screening threshold (42-47 mmol/mol). c, 
ROC curves for incremental 10-year onset models incorporating HbA1c and the type 2 diabetes 
ProteinScore and PGS individually and concurrently, alongside relevant covariates such as age, sex 
and detailed health and lifestyle factors. 
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Discussion 

Developing scores that identify individuals at risk of a future event is a priority for prevention-based 

medicine during ageing 29. Our study shows that protein-based scores (ProteinScores) significantly 

improve risk classification in the UK Biobank for 10-year onset of eight outcomes when adjusting 

for common risk factors. The type 2 diabetes ProteinScore outperformed both the corresponding PGS 

and a clinically-validated blood marker for type 2 diabetes monitoring and diagnosis, HbA1c. Over 

16 years of follow-up, 3,123 significant associations between 1,052 circulating proteins and time-to-

onset for 20 outcomes were also profiled, identifying circulating proteins that were indicative of 

multiple morbidities. 

The breadth of electronic health data linkage and protein data available in UK Biobank provides a 

unique resource for profiling early molecular signatures of age-related disease. The ProteinScores 

developed in this study demonstrate that subsets of relatively few circulating proteins can add 

predictive value, up to a decade prior to formal clinical diagnoses. As available cases increase, it is 

likely that the performance of ProteinScores will be enhanced. Nonetheless, the improvement in 

AUC resulting from concurrent modelling of HbA1c and the type 2 diabetes ProteinScore suggests 

that the latter may provide additional clinical value. Although the increase over-and-above HbA1c, 

age, sex and lifestyle factors offered by the ProteinScore was modest (AUC 0.87 to 0.89, PRAUC 

0.73 to 0.75), it was a significant improvement (P = 5.7x10-12). For the majority of outcomes, 

modelling the ProteinScore in isolation resulted in higher AUCs than models with basic and lifestyle 

covariate adjustments. This suggests that ProteinScores absorb a large proportion – if not all – of the 

signal and may offer a streamlined set of metrics to proxy for an individual’s health status. This 

often-enhanced predictive quality of the scores presents an exciting opportunity to reconsider how 

best to formulate (and maintain) modern clinical prediction models.  This is an important 

consideration given that self-reported measures are known to be variable in accuracy and are often 
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misreported 30. Additionally, while much interest is currently devoted to employing PGS for disease 

prediction, they neglect environmental components of disease risk and may therefore be limited in 

the context of complex age-related disease 31,32. Our ProteinScore for type 2 diabetes (that relies on 

97 proteins) outperformed the PGS in this study, which is likely due to proteins representing an 

interface that captures genetic, environmental and lifestyle contributions to disease risk. However, a 

further modest improvement to the fully-adjusted type 2 diabetes model resulted from the addition of 

the PGS (AUC 0.89 to 0.90, PRAUC 0.75 to 0.76, with P = 9.4x10-6). Deriving ProteinScores for 

multiple diseases within the same individuals may also facilitate an improved understanding of 

multimorbidity. For example, if an individual falls within the top 5% of the ProteinScore 

distributions for type 2 diabetes and Alzheimer’s dementia, this information may enhance 

personalised intervention plans. The ProteinScore for Alzheimer’s dementia was also largely 

unchanged upon addition of lifestyle covariates to incremental models. As therapeutic interventions 

for neurodegenerative diseases have greater efficacy when implemented earlier in the disease 

pathogenesis 33–35, the ProteinScore for Alzheimer’s dementia (that relies on 10 proteins) may hone 

trial recruitment. 

The method for ProteinScore generation selects proteins that, in combination, are predictive of 

outcomes, but these do not necessarily represent the most probable drivers of disease. It is likely that 

a subset of the 3,123 individual protein-disease associations we report represent direct mediators of 

disease. These proteins should be interrogated further via methods such as Mendelian randomisation 

to determine their causal roles and suitability as therapeutic targets. Elevated growth differentiation 

factor 15 (GDF15) was one of three proteins that associated with the largest number of morbidities, 

which is in concordance with previous screening of the circulating proteome against multimorbidity 

and mortality 36,37. All 44 of the proteins that were associated with eight or more morbidities had 

associations with hazard ratios greater than 1, indicating that elevated levels of these proteins may 

serve as early warning signatures of disease onset. Similarly, increased levels of neurofilament light 
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(NEFL) were associated with higher incidence of multiple neurological traits (Parkinson’s disease, 

Alzheimer’s dementia, multiple sclerosis, amyotrophic lateral sclerosis and ischaemic stroke). These 

diseases are hallmarked by neuron degradation and NEFL may therefore be a consequential marker 

that is released into the blood upon breakdown of synapses 38,39 . R-spondin-1  (RSPO1) – the most 

significant association for endometriosis – is a regulator of endometrial mesenchymal stem-like cells 

during menstruation 40. Stanniocalcin 2 (STC2) was the top candidate (based on P values) for breast 

cancer and is being explored as a therapeutic target for tumour regulation 41. Similarly, TSPAN1 – 

the lead association for prostate cancer – is known to increase prostate cancer cell migration 42. In 

instances such as these, where biopsies are invasive and early diagnosis is critical for survival, blood-

based markers may offer value.  

Across the 16-year window of follow-up in individual Cox PH models, a subset of associations 

violated the Cox PH assumption at the local (protein) level. The majority of violations occurred 

within the final six-year window of linkage, which has a high degree of sparsity and case-control 

imbalance due to censoring at June 2016 (whereas ICD linkage for cases extended to 2022). Our 

Shiny app  

https://protein-disease-ukb.optima-health.technology [Username: ukb_disease, Password: 

shinyappUKB] provides visualisations for sensitivity analyses run across cases over successive years 

of follow up, allowing for interrogation of individual protein-outcome relationships. In these 

sensitivity analyses, fewer violations were observed when time-to-event was restricted to 5 years for 

cases than at 16 years, indicating that hazard ratios may be less variable in near-term risk 

stratification. This is often of importance to clinicians and patients for behaviour change and 

intervention strategies. The Shiny app also visualises the 3,123 fully-adjusted associations in a 

network view, allowing users to view overlapping signatures between multiple proteins and the onset 

of multiple diseases. 
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This study has several limitations. First, a subset of 6,385 individuals in the UKB-PPP sample were 

selected by consortium members for enrichment of certain diagnoses and this non-random selection 

can introduce biases. Second, as UK Biobank currently represents the largest population with 

comprehensive Olink proteomics and electronic health data linkage, it was not possible to source an 

external test set for the ProteinScores. Third, variation in protein analyte levels across measurement 

technologies has been reported 43. Results should therefore be corroborated across panels in future. 

Fourth, the UK Biobank population studied here is largely comprised of individuals with European 

ancestry and a restricted age range (40-71 years, with a mean of 57 years); future studies in equally 

well-characterized cohorts will be needed to assess how well ProteinScores translate to other 

populations and ethnicities. Fifth, non-linear trajectories of blood-based protein signatures are known 

to exist across the life course in the context of ageing 44.  Similarly, the presence of morbidities and 

medication use at baseline was not accounted for. These factors should be considered in disease-

specific analyses in future. Finally, although a comprehensive set of major age-related morbidities 

were studied, many diseases were not included in this work. Continued linkage and proteomic 

sampling will expand the applications of ProteinScores to further diseases. 

In conclusion, this study quantified circulating proteome signatures that are reflective of multiple 

individual disease states across mid-to-later life. ProteinScores for the incidence of eight incident 

outcomes significantly improved AUCs for 10-year onset beyond common health and lifestyle 

factors (PBonferroni < 0.0025), with the type 2 diabetes ProteinScore improving AUC beyond both a 

PGS and HbA1c. A total of 3,123 individual protein-disease associations were also profiled across 

the 16-year follow-up period. These data suggest that proteomic features are powerful tools for 

honing risk stratification. 
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Methods 

The UK Biobank sample population 

UK Biobank (UKB) is a population-based cohort of around 500,000 individuals aged between 40-69 

years that were recruited between 2006 and 2010. Genome-wide genotyping, exome sequencing, 

electronic health record linkage, whole-body magnetic resonance imaging, blood and urine 

biomarkers and physical and anthropometric measurements are available. More information 

regarding the full measurements can be found at: https://biobank.ndph.ox.ac.uk/showcase/. The UK 

Biobank Pharma Proteomics Project (UKB-PPP) is a precompetitive consortium of 13 

biopharmaceutical companies funding the generation of blood-based proteomic data from UKB 

volunteer samples.  

Proteomics in the UK Biobank 

The UKB-PPP sample includes 54,306 UKB participants and 1,474 protein analytes measured across 

four Olink panels (Cardiometabolic, Inflammation, Neurology and Oncology: annotation information 

provided in Supplementary Table 1) 23. A randomised subset of 46,673 individuals were selected 

from baseline UKB, with 6,385 individuals selected by the UKB-PPP consortium members and 

1,268 individuals included that participated in a COVID-19 study. The randomised samples have 

been shown to be highly representative of the wider UKB population, whereas the consortium-

selected individuals were enriched for 122 diseases 23. Details on sample selection for UKB-PPP, in 

addition to processing and quality control information for the Olink assay are provided in 

Supplementary Information. Of 54,309 individuals that had protein data measured, there were 

54,189 that were available after quality control exclusions with 1,474 Olink protein analytes 

measured (annotations in Supplementary Table 1) 23. The sample is predominantly of European 
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ancestry (93%), but also has individuals with black/black British, Asian/Asian British, Chinese, 

mixed, other and missing ethnic backgrounds (7%). 

Supplementary Fig. 1 summarises the processing steps applied to this dataset to derive a complete 

set of measurements for use. Briefly, of 107,161 related pairs of individuals (calculated through 

kinship coefficients > 0 across the full UKB cohort), 1,325 pairs were present in the 54,189 

individuals. After exclusion of 108 individuals in multiple related pairs, in addition to one individual 

randomly selected from each of the remaining pairs, there were 52,962 individuals. A further 3,728 

individuals were excluded due to having >10% missing protein measurements. Four proteins that had 

>10% missing measurements (CTSS.P25774.OID21056.v1 and NPM1.P06748.OID20961.v1 from 

the neurology panel, PCOLCE.Q15113.OID20384.v1 from the cardiometabolic panel and 

TACSTD2.P09758.OID21447.v1 from the oncology panel) were then excluded. The remaining 1% 

of missing protein measurements were imputed by K-nearest neighbour (k=10) imputation using the 

impute R package (Version 1.60.0) 45. The final dataset consisted of 49,234 individuals and 1,468 

protein analytes. Assessments of protein batch, study centre and genetic principal components 

suggested that these factors had minimal effects on protein levels (lowest correlation between protein 

levels and residuals of 0.94) (Supplementary Information). Therefore, protein levels were not 

adjusted for these factors. 

Phenotypes in the UK Biobank  

Demographic and phenotypic information for the 49,234 individuals with complete protein data for 

1,468 analytes are available in Supplementary Table 2. Baseline measurements of several 

covariates were used in fully-adjusted models: BMI (weight in kilograms divided by height in metres 

squared), alcohol intake frequency (1 = Daily or almost daily, 2 = Three-Four times a week, 3 = 

Once or twice a week, 4 = One-Three times a month, 5 = Special occasions only, 6 = Never), the 

Townsend index of deprivation (higher score representing greater levels of deprivation) and smoking 
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status (0 = Never, 1 = Previous, 2 = Current) and education status (1 = college/university educated, 0 

= all other education). Of the 49,234 individuals with complete protein data, there were 55, 55, 244 

and 62 missing entries for alcohol, smoking, BMI and deprivation, respectively. No imputation of 

missing data was performed. There were an additional 188 and 59 individuals that answered ‘prefer 

not to answer’ and were excluded from smoking and alcohol variables, respectively. Twenty genetic 

principal components were available for 48,821 of the individuals that had genetic information. 

Study centre was also available in these 48,821 individuals and included 22 centres where blood 

sampling and clinical assessments took place.  

Electronic health data linkage in the UK Biobank 

Electronic health linkage to NHS GP and hospital records was used to collate incident disease 

diagnoses. Death information was sourced from the death registry data available through the UK 

Biobank. The following 23 diseases were included: liver fibrosis/cirrhosis, systemic lupus 

erythematosus, type 2 diabetes, amyotrophic lateral sclerosis, Alzheimer’s dementia, endometriosis, 

chronic obstructive pulmonary disease (COPD), inflammatory bowel disease, rheumatoid arthritis, 

ischaemic stroke, Parkinson’s disease, vascular dementia, ischaemic heart disease, major depressive 

disorder, schizophrenia, multiple sclerosis, chronic cystitis and lung, prostate, breast, gynaecological, 

brain/CNS and colorectal cancers. These represent a selection of leading age-related causes of 

morbidity, mortality and disability. A full summary of the methodology and UK Biobank sources 

used to derive incident case status is provided in Supplementary Information. Code lists used to 

extract traits from GP (read2/read3) and hospital (ICD9/ICD10) level linkage were sourced from the 

HDR phenotype library CALIBER disease code lists [available at: 

https://phenotypes.healthdatagateway.org/]. These have been collated in a recent study that 

characterised 308 conditions in 4 million individuals across the English National Health Service 46. 

In all cases, any relevant self-report of the disease at baseline was used to ensure cases occurred post-
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baseline. Non-specific codes were excluded and the final set of ICD and read codes used to define 

disease cases are summarised in Supplementary Tables 14-36. Gynaecological cancers were 

grouped together as a single outcome, consisting of ovarian, uterine and cervical primary 

malignancies, in addition to cervical carcinomas in situ. In all analyses involving sex-specific 

diseases, the population was stratified to males or females and sex was not included as a covariate in 

incremental Cox PH assessments. Traits that were stratified included gynaecological cancer, breast 

cancer, endometriosis and chronic cystitis (all female-stratified) and prostate cancer (male-stratified). 

Inflammatory bowel disease included both Crohn’s disease and ulcerative colitis linkage codes.  

Incident disease calculation in the UK Biobank 

Dates of diagnoses for each disease were ascertained through electronic health linkage 

(Supplementary Tables 14-36). Using the date of baseline appointment, time-to-first-onset for each 

diagnoses in years was calculated. Although ICD code linkage was available up to 2022, the date of 

censoring for controls was set to June 2016 – the most recent GP linkage extraction date. Time-to-

onset for controls was defined as the time from baseline to censoring date. If controls had died prior 

to the censor date, age at death was taken forward for censoring calculations. Any cases that were 

prevalent at baseline were excluded. The same approach was used to define time-to-onset for death 

as an outcome, with a censor date set to December 2021 – the last linkage update for the death 

registry data. Alzheimer’s and vascular dementias were restricted to age at onset or censoring of 65 

years or older in all analyses. Sex-specific traits were stratified across all analyses. 

Individual Cox proportional hazards analyses 

Cox proportional hazards models were run between each protein and each incident disease using the 

‘survival’ package (Version 3.4-0) 47 in R (Version 4.2.0) 48. Protein levels were rank-based inverse 

normalised and scaled to have a mean of 0 and standard deviation of 1 prior to analyses. Basic Cox 

PH models for sex-stratified traits included age at baseline as a covariate, whereas the remaining 
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models adjusted for age and sex. Fully-adjusted models further controlled for education status, BMI, 

smoking status, social deprivation rank and alcohol intake frequency. A Bonferroni threshold for 

multiple testing based on the 385 components that explained 80% of the cumulative variance in the 

1,468 protein analyte levels (Supplementary Table 3) and 24 outcomes tested was applied across all 

Cox PH models (P < 0.05/(385 x 24) = 5.4x10-6). Proportional hazards assumptions were checked 

through examination of protein-level Schoenfeld residuals. A sensitivity analysis was performed for 

each of the 35,232 fully-adjusted associations tested, restricting cases to successive years of follow-

up. These sensitivity analyses were visualised using the Shiny package (Version 1.7.3) 49 in R. A 

network visualisation was also created within the Shiny interface to highlight the fully-adjusted 

associations that had PBonferroni < 5.4x10-6 using networkD3 (Version 3.0.4) 50 and igraph (Version 

1.3.5) 51 packages. 

ProteinScore training  

MethylPipeR 52 is an R package with accompanying user interface that we have previously 

developed for systematic and reproducible development of incident disease predictors. Using 

MethylPipeR, ProteinScores that considered 1,468 Olink protein levels were trained using Cox PH 

elastic net regression via the R package Glmnet (Version 4.1-4) 53. Penalised regression minimises 

overfitting by the use of a regularisation penalty and the best shrinkage parameter (λ) was chosen by 

cross-fold validation with alpha fixed to 0.5. Of the 24 outcomes featured in the individual Cox PH 

analyses, 20 that had a minimum case count of 150 were selected for ProteinScore development. The 

ProteinScore training strategy is summarised in Supplementary Fig. 4. Briefly, 50 training iterations 

were performed that randomised sample selection by seeds (randomly sampled between 1 and 5000). 

For each iteration, cases and controls were randomly split into 50% groups for training and testing. 

From the 50% training control population, a subset of controls were then randomly sampled to give a 

case:control ratio of 1:3 in order to balance the datasets. For traits with over 1000 cases in training 
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samples 10 folds were used. For traits with between 500 and 1000 cases in training, five folds were 

used. Three folds were used when there were fewer than 500 cases in the training sample. Protein 

levels were rank-based inverse normalised and scaled to have a mean of 0 and standard deviation of 

1 in the training set. The linear combination of weighting coefficients for selected protein features 

from cross-validation within the folds of the training set were then used to generate a ProteinScore 

for each individual in the test samples. Of the 50 training iterations tested, models that had no 

features selected were documented (Supplementary Table 11). 

Assessment of ProteinScore performance 

Cumulative time-to-onset distributions for cases (Supplementary Figs. 2-3) indicated that 

amyotrophic lateral sclerosis, endometriosis, major depression and systemic lupus erythematosus 

were better-suited to 5-year onset assessments in the test sample. All remaining ProteinScores were 

tested in the context of 10-year onset. Across each of the 50 ProteinScore iterations for each trait, 

50% of cases and controls that were not randomly selected for training were reserved for testing. For 

a visualisation of the test set sampling and assessment strategy, see Supplementary Fig. 4. In the 

test set, cases that had time-to-event up to or including the 5-year or 10-year thresholds used for 

onset prediction were selected, while cases beyond the threshold were placed with the control 

population, which was then randomly sampled in a 1:3 ratio. Weighting coefficients for features 

selected during ProteinScore training were used to project scores into the test sample. Incremental 

Cox PH models were run in the test sample to obtain cumulative baseline hazard and onset 

probabilities, which were used to obtain AUC and PRAUC estimates. The test set sampling strategy 

ensured that while the majority of cases occurred up to the onset threshold, there were a small 

proportion (~3%) of cases included in Cox PH models with onset times after the 10- or 5-year 

threshold, to simulate a real-world scenario for risk stratification. If cases fell beyond the 5-year or 

10-year threshold for onset, they were recoded as controls in the AUC calculation. Cumulative 
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baseline hazard probabilities were calculated using the ‘gbm’ package (Version 2.1.8.1) 54. Survival 

probabilities were then generated through taking the exponential of the negative cumulative baseline 

hazard at 5 or 10 years to the power of the Cox PH prediction probabilities. ProteinScore onset 

probabilities were calculated as one minus these survival probabilities. AUC, PRAUC and ROC 

statistics were extracted for the survival probabilities using the calibration function from the ‘caret’ 

package (Version ) 55 and the evalmod function from the ‘MLmetrics’ package (Version 1.1.1) 56.  

ProteinScores that yielded the median incremental difference to the AUC of a basic model (adjusting 

for age- or age- and sex) were selected from the 50 possible ProteinScores for each trait. If no 

features were selected during training, models were weighted as performance of 0 in the median 

model selection. In some instances, features were selected during training and incremental Cox PH 

models were run successfully, but the random sampling of the test set did not include a case with 

time-to-event at or after the 5-year or 10-year onset threshold. Therefore, these models were 

excluded as cumulative baseline hazard distributions did not reach the onset threshold and could not 

be extracted for AUC and PRAUC calculations. The number of models, with minimum and 

maximum performance was documented (Supplementary Table 11). Taking this approach 

mitigated against the presence of extreme case:control profiles driving ProteinScore performance and 

minimised the possibility of bias being introduced by selecting train and test samples based on 

matching for specific population characteristics. 

ROC P-value tests were used to ascertain whether the improvements offered by 20 selected 

ProteinScores for each outcome were statistically significant, beyond a basic Cox PH model. A 

Bonferroni threshold for ROC P was used based on the 20 traits (P < 0.05/20 = 0.0025). Eleven 

ProteinScores were therefore taken forward for analysis with a more detailed set of covariates. 

Differences in AUC and PRAUC were then quantified for the addition of the ProteinScores to basic 

and fully-adjusted models. Fully-adjusted models included further adjustment for health and lifestyle 
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covariates (education status, BMI, smoking status, social deprivation rank and alcohol intake 

frequency). A series of models that included only the ProteinScore were also considered for each 

outcome. AUC and PRAUC statistics were extracted using the onset probabilities from these 

incremental models. A comparison of ROC curves was also performed between fully-adjusted 

models, with and without the addition of the ProteinScores and ProteinScores with PBonferroni < 0.0025 

in these model comparisons were reported. The ‘precrec’ package (Version 0.12.9) 57 was used to 

generate ROC and Precision-Recall curves for each ProteinScore.  

Clinical value of the type 2 diabetes ProteinScore 

Glycated Haemoglobin (HbA1c) is a blood-based measure of chronic glycemia that is highly 

predictive of type 2 diabetes events and is recommended as a test of choice for the monitoring and 

diagnosis of type 2 diabetes 27,28. HbA1c (mmol/mol) measurements (fieldID 30750) and the type 2 

diabetes polygenic risk score (PGS) available in UK Biobank (fieldID 26285) were extracted. A 

contour plot showing both variables grouped by those who went on to be diagnosed with type 2 

diabetes over a 10-year period was created. HbA1c levels were also plotted against ProteinScore risk 

deciles. HbA1c and the ProteinScore levels were rank-based inverse normalised and assessed 

individually and concurrently in incremental models for 10-year onset of type 2 diabetes. There were 

873 type 2 diabetes cases and 2,542 controls that had HbA1c, PGS and ProteinScore measures 

available (mean time-to-event of 5.4 (SD 2.8) years). A Pearson correlation coefficient (r) between 

the transformed HbA1c and ProteinScore levels was calculated. The 10-year incremental Cox PH 

models were used to derive onset probabilities for calculation of AUCs and PRAUCs after adding 

the ProteinScore to models adjusting for HbA1c, as well as basic and additional health and lifestyle 

covariates and the type 2 diabetes PGS. Model comparisons were used (test of the difference in ROC 

curves) to quantify the value added beyond age, sex, additional covariates, PGS and HbA1c that the 

type 2 diabetes ProteinScore offered. Models that included HbA1c or the ProteinScore with no other 
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covariates were also considered, in addition to a model that considered the PGS alongside age and 

sex. 
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