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Summary 
Background 
Valid stratification factors for patients with epithelial ovarian cancer (EOC) are still lacking and 
individualisation of care remains an unmet need. Radiomics from routine Contrast Enhanced 
Computed Tomography (CE-CT) is an emerging, highly promising approach towards more 
accurate prognostic models for the better preoperative stratification of the subset of patients with 
high-grade-serous histology (HGSOC). However, requirements of fine manual segmentation 
limit its use. To enable its broader implementation, we developed an end-to-end model that 
automates segmentation processes and prognostic evaluation algorithms in HGSOC.  
 
Methods 
We retrospectively collected and segmented 607 CE-CT scans across Europe and United States. 
The development cohort comprised of patients from Hammersmith Hospital (HH) (n=211), 
which was split with a ratio of 7:3 for training and validation. Data from The Cancer Imagine 
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Archive (TCIA) (United States, n=73) and Kliniken Essen-Mitte (KEM) (Germany, n=323) were 
used as test sets. We developed an automated segmentation model for primary ovarian cancer 
lesions in CE-CT scans with U-Net based architectures. Radiomics data were computed from the 
CE-CT scans. For overall survival (OS) prediction, combinations of 13 feature reduction 
methods and 12 machine learning algorithms were developed on the radiomics data and 
compared with convolutional neural network models trained on CE-CT scans.  In addition, we 
compared our model with a published radiomics model for HGSOC prognosis, the radiomics 
prognostic vector. In the HH and TCIA cohorts, additional histological diagnosis, 
transcriptomics, proteomics, and copy number alterations were collected; and correlations with 
the best performing OS model were identified. Predicated probabilities of the best performing 
OS model were dichotomised using k-means clustering to define high and low risk groups. 
 
Findings 
Using the combination of segmentation and radiomics as an end-to-end framework, the 
prognostic model improved risk stratification of HGSOC over CA-125, residual disease, FIGO 
staging and the previously reported radiomics prognostic vector. Calculated from predicted and 
manual segmentations, our automated segmentation model achieves dice scores of 0.90, 0.88, 
0.80 for the HH validation, TCIA test and KEM test sets, respectively. The top performing 
radiomics model of OS achieved a Concordance index (C-index) of 0.66 ± 0.06 (HH validation) 
0.72 ± 0.05 (TCIA), and 0.60 ± 0.01 (KEM). In a multivariable model of this radiomics model 
with age, residual disease, and stage, the C-index values were 0.71 ± 0.06, 0.73 ± 0.06, 0.73 ± 
0.03 for the HH validation, TCIA and KEM datasets, respectively. High risk groups were 
associated with poor prognosis (OS) the Hazard Ratios (CI) were 4.81 (1.61-14.35), 6.34 (2.08- 
19.34), and 1.71 (1.10 - 2.65) after adjusting for stage, age, performance status and residual 
disease. We show that these risk groups are associated with and invasive phenotype involving 
soluble N-ethylmaleimide sensitive fusion protein attachment receptor (SNARE) interactions in 
vesicular transport and activation of Mitogen-Activated Protein Kinase (MAPK) pathways. 
 
Funding 
This article represents independent research funded by 1) the Medical Research Council 
(#2290879), 2) Imperial STRATiGRAD PhD program, 3) CRUK Clinical PhD Grant 
C309/A31316, 4) the National Institute for Health Research (NIHR) Biomedical Research Centre 
at Imperial College, London 5) and the National Institute for Health Research (NIHR) 
Biomedical Research Centre at the Royal Marsden NHS Foundation Trust and The Institute of 
Cancer Research, London. 
 
Research In Context  
 
Evidence before this study  
Epithelial ovarian cancer (EOC) is the deadliest of all gynaecological cancers, causing 4% of all 
cancer deaths in women. The most prevalent subtype (70% of EOC patients), high-grade serous 
ovarian cancer (HGSOC), has the highest mortality rate of all histology subtypes. Radiomics is a 
non-invasive strategy that has been used to guide cancer management, including diagnosis, 
prognosis prediction, tumour staging, and treatment response evaluation. To the best of our 
knowledge, Lu and colleague’s radiomics prognostic vector was the first radiomics model 
developed and validated to predict overall survival (OS) in HGSOC individuals, from contrast 
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enhanced computed tomography (CE-CT) scans. Both this study and subsequent studies utilised 
manual segmentations, which adds to the radiologist's/clinician's workload and limits widespread 
use. Additionally, while the models by Lu and co-workers were validated in additional datasets, 
they were neither harmonised through image resampling – a present requirement for radiomics 
analysis outlined by the image biomarker standardization initiative – nor compared across 
machine learning/deep learning models, which could potentially improve predictive 
performance.  
 
 
Added value of this study  
The use of adnexal lesion manually delineated segmentations alone to predict outcome is 
considered demanding and impractical for routine use. By developing a primary ovarian lesion 
segmentation, our radiomics-based prognostic model could be integrated into the routine ovarian 
cancer diagnostic workflow, offering risk-stratification and personalised surveillance at the time 
of treatment planning. Our study is the first to develop an end-to-end pipeline for primary pre-
treatment HGSOC prognosis prediction. Several deep learning and machine learning models 
were compared for prognosis from CE-CT scan-derived, radiomics and clinical data to improve 
model performance.  
 
Implications of all the available evidence  
 
Our research demonstrates the first end-to-end HGSOC OS prediction pipeline from CE-CT 
scans, on two external test datasets. As part of this, we display the first primary ovarian cancer 
segmentation model, as well as the largest comparative radiomics study using machine learning 
and deep learning approaches for OS predictions in HGSOC. Our study shows that physicians 
and other clinical practitioners with little experience in image segmentation can obtain 
quantitative imaging features from CE-CT for risk stratification. Furthermore, using our 
prognosis model to stratify patients by risk has revealed sub-groups with distinct transcriptomics 
and proteomics biology. This work lays the foundations for future experimental work and 
prospective clinical trials for quantitative personalised risk-stratification for therapeutic-intent in 
HGSOC-patients. 
 
Introduction 
 
Epithelial ovarian cancer (EOC) is the deadliest of all gynaecological epithelial cancers. High-
grade serous histology (HGSOC), is the most prevalent subtype (70% of EOC patients) and 
confers the highest mortality (1,2). First-line treatment of HGSOC consists of cytoreductive 
surgery in combination with chemotherapy, such as carboplatin or paclitaxel, with or without 
bevacizumab (3,4). Several studies have suggested that improvements in response to therapy and 
prognosis, in clinical trials and current treatment planning, is hindered due to vast degrees of 
inter and intra-tumoral heterogeneity that traditional molecular markers fail to describe (5). 
 
Radiomics is a non-invasive method that extracts quantitative features from medical imaging in a 
high-throughput manner (6). Radiomics has been displayed to capture degrees of inter and intra-
tumoral heterogeneity and can outperform existing methods in terms of tumour diagnosis and 
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prognosis prediction. For instance, radiomics can predict prognosis in tumours such as head and 
neck, lung, breast, ovarian cancer, and recently neurodegenerative diseases (7,8).  
 
Previous studies have shown the prognostic potential of radiomics from pre-surgical contrast-
enhanced computed tomography (CE-CT) scans in ovarian cancer, and validated in large 
independent studies (8–10). Importantly, these previous radiomics studies are limited by the 
requirement to manually segment the lesion of interest. Furthermore, regarding harmonisation 
and predictive capacity, these prior studies neither involved resampling nor explored multiple 
machine learning or deep learning techniques. Thus, the earlier radiomics studies warrant 
broader investigation of various machine learning and deep learning techniques applied in the 
context of HGSOC automated segmentation and prognosis.  
 
Several feature selection and machine learning techniques exist. However, radiomics studies 
typically only consider the combination of one feature selection method with one learning 
algorithm. For instance, van Dijk et al., implemented Pearson correlation to identify relevant 
radiomics features in combination with Lasso regularisation (11). The radiomics study by Lu et 
al., used a univariate Cox regression followed by a Lasso regularised Cox regression (8). It is 
unclear if these methodological choices yielded models with the highest prognostic accuracy. 
Thus, a systematic evaluation to identify feature selection methods and learning algorithms is an 
important step in developing clinically applicable prognostic models. 
 
We propose an end-to-end HGSOC overall survival (OS) prediction pipeline, for which we build 
several machine learning algorithms that would serve as end-to-end model. These machine 
learning approaches can either rely on a combination of deep learning for segmentation (Figure 
1A) and radiomics (Figure 1B) or a deep learning-based approach without the need for 
segmentation (Figure 1C). A non-invasive prognostic model based on pre-surgical CE-CT scans 
could be integrated within the current ovarian cancer diagnostic pathway. This end-to-end tool, 
in principle, would increase efficiency, reduce manual input, and guide personalised treatment of 
HGSOC patients.  
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Figure 1. Overview of the AI approach. An end-to-end approach can either rely on a 
combination of deep learning for segmentation (A) and radiomics (B) or a direct deep learning-
based approach without the need for segmentation (C). (A) Illustration of the common approach 
of using a U-Net-based model to predict segmentation masks together with dice scores as 
performance metrics. (B) The traditional radiomics feature pipeline from segmented ROI to 
radiomics feature computation and machine learning modelling. In this work, for each of the 
feature selection and machine learning algorithm combinations we have bootstrapped to the 
training dataset 100 times. (C) An alternative to auto-segmentation and radiomics by direct 
prediction with deep learning – which are often convolutional neural network (CNN) based, for 
direct end-to-end predictions. 
 
Methods 
Study design and participating cohorts 
In this multi-national retrospective study, we used data from 3 cohorts of primary HGSOC (aged 
≥18 years). In the Hammersmith Hospital (HH) cohort (n=211) clinical data (including data 
related to fresh frozen tissue, imaging, and clinical annotations) were obtained from patients 
treated at HH between June 2004 and November 2015 (Table 1). The HH dataset was split 7:3 
into training (n=147), and HH validation (n=64) and used in all machine learning and deep 
learning models to predict OS, as well as the nn-U-Net segmentation model. 
 
For assessment of our models, we used data from two published benchmark datasets. The first is 
from The Cancer Imaging Archive (TCIA) cohort (n=73). The second test dataset consisted of 
323 cases from Kliniken Essen-Mitte (KEM) and was previously used in (9) to validate the 
radiomics prognostic vector identified by Lu and colleagues (8).  
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We used the Radiomics Quality Score (RQS) (12) and Transparent Reporting of a Multi-variable 
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) guidelines 
(https://www.tripod-statement.org/) (Appendix A Tables 1-2) for reporting the development and 
validation of the prediction models.  
 
Data Collection and Procedures  

A retrospective cohort study was conducted with ethical approval for the analysis of human data, 
which was obtained from the Hammersmith and Queen Charlotte's & Chelsea Research Ethics 
Committee (approval 05/QO406/178) and the Kliniken Essen-Mitte Research Ethics Committee 
(informed consent was waived). The study was carried out in accordance with the ethical 
standards of the relevant committees and with the principles of the 1964 Declaration of Helsinki 
and its subsequent amendments.  

The HH training and validation data consisted of patients with HGSOC who received treatment 
at the Hammersmith Hospital (HH) between June 2004 and November 2015. These patients were 
selected based on the availability of fresh frozen tumour tissue samples and preoperative CT 
images. The HH and TCIA cohorts’ patient demographics, surgical and tumour related data were 
collected retrospectively from medical records and the multidisciplinary team (MDT) notes. 
Demographic, surgical, and tumour-related data were collected retrospectively from medical 
records and the multidisciplinary team. With the HH cohort, management of all patients and the 
indications for surgery were discussed within a multidisciplinary team as per the UK National 
Health Service (NHS) guidelines. All operations were performed through a midline laparotomy 
by a specialised dedicated multidisciplinary team within a maximal effort approach aiming to 
achieve total macroscopic tumour clearance. Standard surgical procedures included peritoneal 
cytology, extrafascial hysterectomy, bilateral salpingoophorectomy and infra-gastric 
omentectomy. When indicated, additional procedures, such as dissection of macroscopically 
suspicious pelvic and paraaortic lymph nodes, bowel resection, splenectomy, diaphragmatic 
stripping/resection and/or partial resection of other affected organs (e.g., urinary bladder, 
liver/liver capsule, pancreas, lesser sack) were performed to achieve optimal tumour debulking. 
No systematic pelvic and paraaortic lymph node dissection was performed routinely in the 
absence of suspicious bulky lymph nodes (<1�cm). Ninety-seven percent of patients were 
treated with a platinum-based chemotherapy mainly in a combination regimen with paclitaxel or 
as monotherapy in isolated cases. Patients were regularly evaluated at the end of their treatment 
for evidence of disease recurrence. Clinical examination and CA-125 assessment (if the 
preoperative value was elevated) were performed every 3 months for the first 2 years and then 6-
monthly. A CT/MRI-scan was ordered if the above examinations revealed any pathology. An 
isolated CA-125 increase was not regarded as a recurrence. 

In the KEM dataset all consecutive HGSOC patients who underwent primary debulking surgery 
in between January 2011 and July 2018 (9). Patients were eligible for inclusion if they were 
confirmed to have HGSOC histology and an evaluable portal venous CT through the primary 
ovarian tumour mass prior to undergoing upfront cytoreductive surgery, i.e., before any systemic 
chemotherapy. Any suspicious bulky visible lesions (≥1�cm) from the CT scan were included in 
the segmentation process. Patients were not eligible if no primary tumour mass was visible due 
to the initial absence of adnexal mass or due to surgical excision or if the patient has undergone 
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preoperative chemotherapy. All patients in the KEM dataset were to subsequently receive 
platinum-based combination chemotherapy unless contraindications applied such as poor 
performance status. Maintenance regimens and availability of clinical trials differed between the 
KEM and the primary HH study setting, mainly due to funding and licensing differences 
between the European Medical Agency (EMA) and the UK National Institute for Health and 
Care Excellence (NICE UK). Oncologic follow-up of the KEM data was performed according to 
the German follow-up recommendations, mainly symptom-guided and based on clinical and 
ultrasonographic examination in combination with CA-125 measurement in most patients; 
initially 3-monthly for the first 3 years and then 6-monthly. A CT or MRI scan was performed if 
the above examinations revealed any pathology. Isolated CA-125 increase was not regarded as a 
recurrence. For the HH cohort, follow-up patterns for patient care were similar. Patients were 
routinely evaluated at the end of their treatment for evidence of disease recurrence. Clinical 
examination and CA-125 assessment (if the preoperative value was elevated) were performed 
every 3 months for the first 2 years and then 6-monthly. Even though a CT/MRI scan was 
ordered if the above examinations revealed any pathology, no routine ultrasonographic 
examinations were performed at follow-up in asymptomatic patients. Isolated CA-125 increase 
was not regarded as a recurrence. 

The primary outcome measure was OS, defined as the time from the date of surgery until the 
date of death or last observation. Staging was determined using the FIGO criteria for ovarian 
epithelial carcinoma (13). In the HH and TCIA dataset optimal debulking was defined as 
postoperative residual disease less than 10 mm, as this criterion was applied to most of the 
retrospective patients. Primary chemotherapy resistance was defined as stable disease, partial 
response, or progressive disease during first-line chemotherapy. Residual disease was 
dichotomised as either total macroscopic tumour clearance (tumour-free) or the presence of any 
macroscopic postoperative residual disease (non-tumour-free). A subset of HGSOC patients 
from TCGA was used as a validation cohort. Preoperative CT images and clinical and 
histological data for these cases were obtained from the Cancer Imaging Archive and the UCSC 
Cancer Browser, respectively. 

CE-CT scans, Segmentations and Radiomics Collection 
As patients were referred to the cancer centre from a network of cancer units, CE-CT scans were 
acquired at multiple institutions using different manufacturers and different imaging protocols. 
 
The primary tumour masses, of the HH, TCIA, and KEM datasets, were segmented separately by 
experienced radiologists using ITK snap (Version 3.2, 2015). All segmentations were then 
checked in consensus with two experienced radiologists specializing in ovarian cancer imaging 
(GA and AR, with 6- and 16-years’ experience at the time of HH, and TCIA segmentation). The 
KEM dataset was manually segmented 3 years after HH and TCIA segmentations. 
 
As primary lesions alone harbour prognostic information (8), we did not include secondary 
lesions in our analysis. As described previously, the entire primary adnexal mass volume (both 
cystic and solid components) was included in the analysis (8,9). If both adnexa were involved, 
then both were included in the analysis either as two separate segmentations or as a single 
segmentation if the mass was confluent. We segmented the entire primary mass including cystic 
and solid components but excluded ascites. The segmentations only included tissue that was 
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considered highly likely to be cancer by the expert reader. Areas of doubt on CT were not 
included in any segmentations. In aggregate, inclusion criteria related to the CT images were as 
follows: primary adnexal mass visible, portal venous phase CT through the adnexal mass, no 
previous surgical or medical treatment for ovarian cancer. Exclusion criteria related to images 
were non-contrast or arterial phase CT with no portal venous phase, adnexal mass not included 
on CT, previous surgery for resection of an adnexal mass, neoadjuvant chemotherapy, the 
significant artefact for example from metal prostheses that precluded meaningful segmentation 
of adnexal mass. In accordance with the Image Biomarkers Standardization Initiative (14) CE-
CT scans were resampled to isotropic voxel dimensions of 1×1×1 mm.  
 
We developed and compared several different CE-CT, convolutional neural network (CNN) and 
radiomics based models, independently and in combination with traditional clinical biomarkers, 
namely age, stage and residual disease. All continuous variables were scaled and mean-centred 
using training dataset statistics. All categorical variables were ‘one-hot-encoded’.  
 
 
Copy Number, Transcriptomics and Proteomics Data Collection  

Copy Number, transcriptomics and proteomics data used in this study were previously reported 
in Lu and colleagues radiomics prognostic vector study (8). For each tumour in the study, one 
frozen tumour piece was placed into a tube containing 500�μl RLT buffer from RNeasy kit 
(QIAGEN) and one Retsch 6�mm steel core bead. Tubes were placed into well adapters of a 
Tissuelyser II (QIAGEN), and tissues were lysed at 15�Hz for 2�min. Tubes were centrifuged 
briefly and 320�μl was removed for subsequent RNA extraction using the RNeasy kit 
(QIAGEN) according to the manufacturer’s instructions. RNA concentrations were quantified 
using the Bioanalyzer system (Agilent). 

For DNA extraction, 450�μl of Buffer ATL from the QIAAMP DNA kit (QIAGEN) was added 
to the centrifuge tube, and DNA was extracted following the manufacturer’s instructions and 
quantified using QuBit (Thermo Fisher Scientific). Reverse Phase Protein Array (RPPA) arrays 
were carried out and analysed by MD Anderson Cancer Centre. Here Protein lysates were diluted 
and loaded onto nitrocellulose-coated slides that had been pre-conjugated with primary 
antibodies. Each protein was then visualised via a colorimetric reaction and quantified by Array-
Pro Analyzer. The raw expression values were then normalised to protein loading and quantified 
by means of standard curves. Log2 transformed and median-centred data were used for the 
downstream analyses. To perform molecular subtyping, total RNA from each individual case 
was reverse transcribed into cDNA, followed by amplification with a pool of indexed primers 
that target a predefined gene list (42 genes). The primers were selected from the Illumina Design 
Studios. The cleaned PCR product underwent QC by Tapestation (Agilent) to confirm the 
amplicon sizes. Forty-eight samples were multiplexed in one single MiSeq run. SR 50�bp were 
used to generate approximately 20 million reads per run. 

Table 1 Description of sources of data types used in this study. Hammersmith Hospital (HH) 
cohort was split 70:30 to HH Train (N=147) and HH validation (N=64). The Cancer Imaging 
Atlas (TCIA) (N=73) and Kliniken Essen-Mitte (KEM) (N=323) datasets were two hold out test 
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datasets. Proteomics, mRNA, and copy number data were collected in addition to CE-CT scans 
for the Hammersmith and TCIA datasets. In the KEM dataset only CE-CT scans were collected.  
Cohort  Data Type Platform # Features  Cases (n) 

HH Train  CE-CT scans  TexLab (Radiomics) 666 147 
Proteomics  RPPA 301 122 
mRNA  Illumina MiSeq 129 83 

Copy number  Affymetrix SNP6 35,747 45 
HH Validation CE-CT scans TexLab (Radiomics) 666 64 

Proteomics RPPA 301 54 
mRNA  Illumina MiSeq 129 37 
Copy number Affymetrix SNP6 35,747 18 

TCIA CE-CT scans TexLab (Radiomics) 666  73 
Copy number Affymetrix SNP6 24,775 68 
Proteomics RPPA 131 48 
mRNA  Affymetrix U133 12,402 69 

KEM CE-CT scans TexLab (Radiomics) 666  323 
 

 
 
 
 
 
Deep learning model development 
We developed a U-Net-based segmentation model to facilitate end-to-end application of our 
models that require segmentation. We base our method on nn-UNet, a recently proposed fully 
automatic framework for the configuration of U-Net based segmentation methods, that has 
achieved state-of-the-art performance on 23 public datasets used in international biomedical 
segmentation competitions (15). We trained the nn-UNet stack of 2D, 3D, and 3D low 
resolution, and evaluated an ensemble of the four architectures (15).  
 
As there are currently no CNN prognostic models to directly predict OS from CE-CT scans, we 
built several custom CNNs. ResNet-based architectures were applied without a predefined 
segmentation region-of-interest (16). ResNet-18, ResNet-32, and a simple CNN were adapted to 
predict OS by backpropagating the negative loglikelihood loss or the Weibull log loss, similar to 
that of the Cox proportional hazard and Weibull accelerated failure time model, in the final dense 
layer. We trained the models for 1,000 epochs with the AdaDelta optimizer and reduce-on-
plateau call-back parameters. In the deep learning models to predict OS, we created a cropped 
around the region of interest, as standard, to prevent exploding or vanishing gradients often 
caused by non-heterogenous voxel intensity regions. 
 
We developed our radiomics and CNN-based models on radiologist-checked adnexal lesion 
ground truths as a baseline. 
 
 
Radiomics model development 
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With the 666 textural based radiomics features, computed using TexLab 2.0 (8), we evaluated a 
combination of 13 different feature reduction techniques with 12 machine learning algorithms, 
including linear and tree-based techniques, together with boosted and regularised variations. 
Linearly dependent features were removed, and corresponding lower ordered features were 
retained.  

Several feature selection methods were employed: (I) correlation-based techniques: Pearson, 
Spearman, Kendall; (II) feature selection algorithms based on mutual information optimisation: 
joint information maximisation (JIM), mutual information feature selection (MIFS), minimum 
redundancy maximum relevance (MRMR); and (III) model-based approaches: a univariate Cox-
regression model, a random forest variable hunting (RFVH), a random forest variable hunting 
with maximal depth (RF-MD), a random forest with variable hunting and variable importance 
(RFVH-VIMP), a random forest with variable hunting and Gini impurity corrected variable 
importance (IMPRF),  and a random forest based on permutation variable importance (PVIRF) 
(17). Additionally, we also selected features at random for comparative purposes. 

For each technique, radiomics feature selection was repeated 100 times by bootstrapping samples 
of the training cohort. Feature ranks were derived from each of the feature selection technique-
specific by averaging the respective technique specific statistics. The number of radiomics 
features to include was treated as a hyperparameter based on this ranking.  

The comparison of different machine learning algorithms included the following non-parametric 
models: (I) the Cox model, the Cox-Net, and Cox Lasso methods with lasso and elastic-net 
regularisations; (II) models based on boosting trees (BT): BT_Cox, BT_Cindex; (III) boosting 
gradient linear models (BGLM): BGLM_Cox, BGLM_Cindex; and (IV) random forest based 
methods: random survival forest (RSF), random forest using maximally selected rank statistics 
(MSR_RF), and a random forest with extra trees (ET_RF). Furthermore, we investigated the 
following full-parametric models (V): survival regression (Survival-Regression) and models 
based on the Weibull distribution: BT- and BGLM-Weibull. 

Hyper-parameter optimisation was performed via grid-search with ten-fold cross-validation, 
optimising for Concordance index (C-index). Hyper-parameter ranges of the models are listed in 
Supplementary Table 1. A description of algorithms and feature reduction methods are detailed 
in the Supplementary Material. A bootstrapping (b=100) strategy was performed at the feature 
selection and model training stages (Figure 1), and then ensemble models were created. The best 
model feature importances were computed using the permutation variable importance technique.  
 
 
 
Statistical analysis 
To assess the model's performance for the prediction of OS, we used C-index, hazard ratios 
(HR), the average time-dependent area-under-the-receiver operating characteristic (tAUC) curve 
over 1, 2, 3, 4 and 5 years, and Fisher’s exact test P-values. Kaplan-Meier analysis and log-rank 
tests were applied to assess survival outcomes among sub-groups with pathological complete 
response or incomplete response. 
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Quantitative statistics were presented as mean (SD) or median (IQR). Continuous variable 
distributions between datasets were compared using Kolmogorov-Smirnov (KS) tests, and 
categorical variables were compared using the χ2 test.  
 
Spearman Correlation was performed to assess associations between the best model’s predicted 
probabilities and proteomics, copy number, and transcriptomics data.  
 
The best performing medical image deep learning and radiomics models were selected based on 
C-index, as it is identical to the area under the curve (AUC) measure. K-means clustering was 
used on the training dataset derived predicted probabilities from our best performing CE-CT 
based radiomics model to define risk groups.  
 
Gene Set Enrichment Analysis (GSEA) 

In addition to predicting prognosis in HGSOC patients and performing Kaplan-Meier analysis, 
we performed GSEA analysis of genes associated with the high-risk group using the 
clusterProfiler R package. Using univariate logistic regression, we identified genes associated 
with the high-risk group; in addition we evaluated with the homo sapiens KEGG pathways (hsa), 
and Genome wide annotation for Human, primarily based on mapping using homo sapiens 
Entrez Gene identifier-based pathways (ord.HS.ef.db), that are provided by Bioconductor.  

 
Results  
Clinical Characteristics of data  
A total of 618 patients were included in this analysis Patient demographics and clinical 
parameters are a summarised in Table 2. 
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Table 2 Clinical parameters for combined HH (Hammersmith Hospital) training, HH 
validation, and The Cancer Imaging Archive (TCIA) and Kliniken Essen-Mitte (KEM) test 
sets. Categorical data are shown with exact number of subjects (n) per category. Continuous data 
are summarised with mean and standard deviation (SD) and P-values pertain to Kolmogorov–
Smirnov test to compare training and validation cohoorts combines with test cohort distributions. 
NA = not available. 
 
Parameter HH training HH validation TCIA KEM 

Cases (n) 147 64 71 323 
Age: mean (SD) years 61.85 (11.94) 61.48 (12.99) 59.63 (11.10) 59.74 (11.46) 
Age: P-value   0.14 0.036 
FIGO stage (n) 
- 1 
- 2 
- 3 
- 4 
- NA 

 
7 
9 
88 
42 
1 

 
2 
7 
39 
14 
2 

 
6 
7 
47 
11 
0 

 
6  

14  
132  
166  

5  

FIGO stage: P-value   0.37 0.0011 

CA-125: mean (SD) U/μl 1.73 (2.58) 2.21 (3.11) NA 1.11 (1.98) 
CA-125: P-value    0.063 
Residual disease (n) 
- No 
- Yes 
- NA 

 
33  
109 

5 

 
18 
40 
6 

 
15 
50 
6 

 
196 
122  

5 

Residual disease: P-value   0.99 0.99 

Primary chemotherapy 
Response (n) 
- Complete Response 
- Partial response 
- Progressive Disease 
- Stable disease 
- NA  

 
 

63 
19 
3 
4 
58 

 
 

20 
8 
3 
7 
13 

 
NA 

 
NA 

 
 
nn-UNet Segmentation models  
The 2D, 3D-full resolution, and 3D-low resolution nn-UNet model took 81, 130, and 96 hours to 
train on a 24GB NVIDIA TITAN RTX. We assessed our models using dice score across the HH 
training, HH validation, TCIA test, and KEM test datasets. Boxplots of the dice scores are shown 
in Figure 3A. The median scores were 0.96, 0.90, 0.88, and 0.80 for the HH training, HH 
validation, KEM test, and TCIA test sets, respectively. In Figure 3B we show an example, 
whereby (in red) the nn-UNet algorithm segmented a bi-lateral lesion, together with the original 
radiologist segmentation coloured blue. Performance of the 3D-low resolution and 2D are shown 
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in Appendix Figure 1; examples of a high and low performing 3D full-resolution nn-UNet 
segmentations (dice= 0.89, 0.55) are shown in Appendix Figure 2. 

Figure 3. Illustration of 3D high -resolution nn-UNet performance. (A) Boxplots of dice 
scores for all samples in Hammersmith Hospital (HH) (training (Train) and validation (Val)), 
Kliniken Essen-Mitte (KEM) and The Cancer Imaging Atlas (TCIA) test datasets. The median 
scores were 0.96, 0.90, 0.88, and 0.81 for the HH training, HH validation, KEM test, and TCIA 
test sets, respectively. (B) We show an example: in red is a predicted segmentation and in purple 
is the original segmentation. 
 

le 
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Figure 4 Radiomics Data Structure. (A) Spearman correlation heatmap between radiomics 
profiles of the training dataset. (B) Principal components 1 and 2 derived from HH training data 
radiomics highlight the different scanner vendors. (C) Sample-wise radiomics profiles with 
hierarchal clustering based dendrograms annotated patient-wise (left) and radiomics feature wise 
(top), radiomics feature type, FIGO stage, CA-125, primary chemotherapy outcome and residual 
disease annotated respectively. (D) Volcano plot of univariate Cox proportional hazard model 
log2 transformed P-values against the corresponding hazard ratios of the training dataset. 
 
Preliminary Analysis of Radiomics Data Structure 
Data segmented as described above were further used in radiomics analyses. To further 
understand the radiomic characteristics of the HGSOC subtype, we performed unsupervised 
Spearman correlation analysis using the radiomic profiles in the HH training cohort (Figure 4A). 
We show that several radiomics features were highly correlated, and that the CT scanner 
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manufacturer is not a main source of variance (Figure 4B). In the radiomics cohort from HH 
training cohort we extracted 666 radiomics features from 147 patients performed hierarchal 
clustering and defined 4 clusters (Figure 4C). Univariate Cox proportional hazard regression 
shows several radiomics features were significantly associated with OS (Figure 4D), indicating 
supervised machine learning models would yield value.  
 
 
Supervised Models 
In Figures 5A-D, we display the radiomics results for HH training, HH validation, TCIA test, 
and KEM test sets; for all models used. For OS, the best performing radiomics bootstrap-
ensemble model based in terms of external-validation was the Random Survival Forest, built on 
features selected from the Random Forest-based Feature Selection, using permutation technique 
described by Janitza and colleagues (18) to calculate the variable importance, i.e. two random 
forests were implemented, one for feature selection, and a second for prediction on the selected 
features. We termed this combination – Permutation-Variable Importance Random Forest – 
Random Survival Forest (PVIRF-RSF). This radiomics model consistently demonstrated high C-
index (HH train: 0.85 ± 0.01, HH validation: 0.66 ± 0.06, TCIA: 0.72 72 ± 0.05, KEM: 0.60 ± 
0.01). In addition, by dichotomizing the predicted risk (probabilities) from the PVIRF-RSF 
model using k-means clustering, (threshold, 0.425), we show that this model is capable of 
stratifying individuals into significantly distinct high and low risk sub-groups, with log-rank P-
values:  <0.000001, 0.0057, 0.0044, 0.0055, for HH training, HH validation, TCIA and KEM 
datasets, respectively. 
 
Whilst k-means clustering showed two distinct high and low risk groups, the number of patients 
in each group did not capture the most at risk patients. Aiming to derive individuals with highly 
aggressive phenotypes we also stratified the predictions of PVIRF-RSF model in to three distinct 
groups termed high, intermediate and low using k-means (k=3 clusters) derived thresholds of 
0.33 and 0.44. These risk groups were significantly distinct (P-values: <0.000001, 0.039, 0.014, 
0.035) for HH train, HH validation, TCIA, and KEM, respectively) and could capture the 5-30% 
of patients with increased risk.  
 
When we implement the pipeline (including resampling) for the previous modelling technique 
that derived the radiomics prognostic vector (Table 5) described in Lu and colleagues (2019) 
within the cells corresponding to “Cox” on the x-axis and “Cox_Lasso” on the y-axis (Figure 
5A-D) we obtain low C-indexes (0.56, 0.52, 0.54, 0.51 for HH train, HH validation, TCIA, and 
KEM, respectively). 
 
We show univariate Cox Proportional Hazzard performance (C-index, tAUC, and HR) for 
conventional indicators of HGSOC prognosis, namely age, CA-125, FIGO stage, residual disease 
CCNE1, BRCA1 and BRCA2 (copy number variation) for the HH train, HH validation, TCIA and 
KEM test datasets (Appendix Table 3). The deep learning-based (Simple-CNN, ResNet18, and 
ResNet34) model performance (C-index, tAUC, and HR) are presented in Appendix Table 4. In 
Table 4 we compare the PVIRF-RSF model with several traditional clinical models and with the 
custom-built deep learning-based models (Simple-CNN, ResNet18, and ResNet34).  
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Figure 5 Supervised Radiomics Modelling. (A-D) Heatmaps of the C-index of different feature 
selection (x-axis) and modelling strategy (y-axis) for (A) HH training, (B) HH validation, (C) 
TCIA and (D) KEM. The best performing model (based on HH validation data) was the PVIRF 
features and RSF model. (E-H) Kaplan Meier curves of the dichotomised predicted probabilities 
of the PVIRF-RSF (k-means derived threshold of 0.425) of the (E) HH training, (F) HH 
validation, (G) TCIA and (H) KEM sets.  
 
Table 3 Performance of traditional radiomics (RPV) and clinical baseline univariate Cox 
proportional hazards (CoxPH) models. A summary of performance using C-index and 
standard error, average time-dependent area-under-the-receiver operating characteristic curve 
(tAUC) over 1, 2, 3 ,4 and 5 years with standard error, Hazard ratio (HR), and with 95% 
confidence intervals. Performance metrics for RPV, age, FIGO stage, Ca-125, and residual 
disease. NA = not available. 
 

Data Metric 

Model 

RPV (Lu et 
al., 2019)* 

Age (<60�y 
vs ≥ 60�y) FIGO stage 

Ca-125 
(Continuous 

variable) 

Residual 
disease (none 

vs any) 

HH 

C-index 0.58 ± 0.05 0.50 ± 0.05 0.60 ± 0.05 0.45 ± 0.07 0.56 ± 0.06 
tAUC 0.61 ± 0.01 0.53 ± 0.03 0.63 ± 0.01 0.45 ± 0.02 0.55 ± 0.01 

HR 
1.92 

(0.86-4.24) 
0.87 

(0.40-1.92) 
1.68 

(0.96-2.95) 
1.00 

(0.99-1.00) 
1.65 

(0.70-3.88) 
P-value 0.11 0.74 0.07 0.90 0.23 

TCIA 

C-index 0.53 ± 0.06 0.49 ± 0.07 0.53 ± 0.08 NA 0.53 ± 0.06 
tAUC 0.49 ± 0.01 0.51 ± 0.02 0.58 ± 0.03 NA 0.54 ± 0.01 

HR 
0.85 

(0.00-2.40) 
0.96 

(0.38-2.45) 
1.75 

(0.90-3.38) 
NA 

1.44 
(0.52-4.07) 

P-value 0.90 0.91 0.13 NA 0.51 

KEM 

C-index 0.50 ± 0.01 0.58 ± 0.03 0.58 ± 0.02 0.45 ± 0.03 0.67 ± 0.07 
tAUC 0.50 ± 0.001 0.58 ± 0.01 0.62 ± 0.01 0.56 ± 0.01 0.72 ± 0.01 

HR 
1.45 

(0.46-4.60) 
1.32 

(0.96-1.80) 
2.14 

(1.59-2.87) 
1.00 

(0.99-1.00) 
3.55 

(2.54-4.96) 
P-value 0.60 0.08 4.18�×�10-7 0.99 1.22�×�10-13 

*RPV calculated on resampled data 1x1x1mm; of note the original RPV was not re-sampled. 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4 Performance of Radiomics PVIRF-RSF, and deep learning-based models  
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Data Metric 

Model 
PVIRF-RSF 
(continuous 

variable) 
Simple CNN ResNet-18 ResNet-34 

PVIRF-RSF 
(categorical 

variable) 

HH 

C-index 0.66 ± 0.042 0.58 ± 0.05 0.56 ± 0.06 0.52 ± 0.04 0.64 ± 0.05 
tAUC 0.73 ± 0.011 0.40 ± 0.01 0.55 ± 0.02 0.52 ± 0.02 0.64 ± 0.01 

HR 

 
0.0081 

(0.00010-   
0.38) 

0.99 (0.99-1) 0.99 (0.9-1) 
 

0.99(0.99 -
1.1) 

3.84 (1.43-     
10.3) 

 

P-value 0.010 0.62 0.51 0.52 0.008 

TCIA 

C-index 0.72 ± 0.05 0.53 ± 0.081 0.56 ± 0.07 0.55 ± 0.05 0.73 ± 0.05 
tAUC 0.78 ± 0.010 0.49 ± 0.01 0.59 ±   0.02 0.53 ±   0.02 0.74 ± 0.01 

HR 

0.00062 
(0.0000013- 

0.3) 
 

 
0.26 

(0.0025- 1) 

1.05 
(0.00011-
1.1) 

0.99(0.00011
-1.1) 

 
3.69 (1.47-9.6) 

P-value 0.021 0.62 1.00 1.00 0.0074 

KEM 

C-index 0.60 ± 0.03 0.52 ± 0.05 0.55 ± 0.05 0.52 ± 0.04 0.57 ± 0.02 
tAUC 0.60 ± 0.0001 0.49 ± 0.01 0.55 ± 0.02 0.55 ± 0.02 0.56 ± 0.01 

HR 
0.038 (0.0041-   

0.40) 
0.26 

(0.001- 1) 
0.42 

(0.031- 1.10) 
0.99 

(0.99- 1.10) 
1.83 (1.18    -

2.82) 
P-value 0.0070 0.84 0.91 0.91 0.0065 

 
Table 5 Performance of Radiomics Multi-variable PVIRF-RSF (continuous variable) and 
additional clinical variables) 
 

Data HH TCIA KEM 
C-index 0.73 ± 0.07 0.73 ± 0.06 0.73 ± 0.03 
tAUC 0.76 ± 0.02 0.78 ± 0.03 0.75 ± 0.00 
P-value 0.02 0.043 1.01 × 10-12 

HR  

Age 0.99 (0.96-1.02) 1.04 (0.98-1.10) 1.02 (0.99-1.03) 
Stage 2.08 (1.08 -4.05) 1.70 (0.78-3.71) 2.10 (1.38-3.21) 

Residual disease 1.26 (0.52-2.03) 1.06 (0.30-3.70) 3.61 (2.23-5.64) 

PVIRF-RSF 
0.0042 (7.1×� 
10-5 -0.24) 

0.00016 (2.17×� 
10-7 – 0.12) 0.04 (0.00-0.05) 

 
 
 
 
Table 6 Performance of Radiomics Multi-variable PVIRF-RSF (categorical variable) and 
additional clinical variables) 
 

Data HH TCIA KEM 
C-index 0.701 ± 0.063 0.78 ± 0.041 0.733 ± 0.025 
tAUC 0.70 1± 0.02 0.78 ± 0.03 0.75 ± 0.000011 

P-value 0.0049 0.0012 0.017 
HR Age 0.99 (0.47-2.66) 1.06 (0.99 1.02 (0.99-2.65) 
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-1.13) 
 
 

 

Stage 2.10 (1.12 -   3.93) 

 
2.03 (0.92-4.46) 

 
 
 

2.01 (1.32-3.02) 
 
 

Residual disease 1.14 (0.48-2.74 1.089 (0.33 -3.63) 3.65 (2.32-5.74) 
 

PVIRF-RSF 
4.807 (1.61-14.35) 

 
6.34 

( 2.078 
- 19.34) 

1.71 (1.099 
-2.65) 

 
 
 
Biological interpretation of the radiomics Model  
 
To understand tumour biological characteristics linked to the PVIRF-RSF predictions (Figure 
6A), we performed a gene-set enrichment analysis on the corresponding TCIA and HH mRNA 
data. A volcano plot of the TCIA data with significantly enriched genes highlighted, is displayed 
in Figure 6B. Here, we found 10 genes to be significantly associated with the high-risk group. 
We found that Amoebiasis, alpha-Linolenic acid metabolism, and MAPK signalling pathway 
were the three pathways most significantly enriched for associations with high PVIRF-RF risk 
groups (P-value= 0.003, 0.003, 0.006). Since several amoebic proteins including lectins, cysteine 
proteineases, and amoebapores are associated with the invasion process, the results suggest 
emphasis of an invasive phenotype in the high-risk group. Emphasis of SNARE interactions in 
vesicular transport, basement membrane, bicellular tight junction and response to fibroblast 
growth factor (Figure 6 C, D) further support this notion. We show there is a significant increase 
in Tumour cellularity in the high-risk group the low-risk group (Figure 6 E). In addition, there is 
a small but insignificant decrease in Rad51 protein expression in the high-risk group compared to 
the low-risk group within the HH cohort (Figure 6 F), although there is a small significant 
decrease in Rad51 protein expression in the high-risk group compared to the low-risk group in 
the TCIA data set (Appendix Figure  
 
In the TCIA proteomics data, the features that were negatively correlated JNK2, YB1, RAD51, 
MTORPS448, and HER3PY1298 were the most correlated with the predictions. The most 
significantly associated protein, STAT5ALPHA was positively correlated with the predicted 
probabilities (Figure 7 and supplementary Table 3).  
 
In the TCIA copy number variation data, the genes LRRC7, RN7SL392P, GNG12.x, DIRAS3, 
WLS, MIR1262, RPE65, LEPROT, snoU13|ENSG00000238931.1, RALGPS1 were the most 
correlated (negative correlation) (Figure 7 and Appendix Table 4).  In the TCIA RNA expression 
data, the genes TF, FNDC4, ZNF671, PC, FAAH, MIZF, SOX30, PTGES2, B3GNT4, FPGS 
were the most correlated (negative correlation) (Figure 7 and Appendix Table 4).  
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In https://data.mendeley.com/xxx we provide the corresponding coefficients, Spearman Rho 
coefficients, and adjusted P-values. In the HH cohort we display a significant increase in tumour 
cellularity in the high-risk group compared to the low-risk group (Supplementary Figure 4). 
 
The study by Lu et al. (2019) suggested that RPV emphasised an activated stromal phenotype. 
From the foregoing, demonstrate that the new model, PVIRF-RSF, emphasised different biology, 
we compared examined its relationship to histology data. PVIRF-RS is strongly positively 
correlated with tumour cellularity and not fibronectin indicating marked differences between the 
two models, with the PVIRF-RS emphasising the tumour (invasive) rather than the stromal 
compartment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 Volcano Plot and GSEA of Permutation-Variable Importance Random Forest – 
Random Survival Forest (PVIRF-RSF) Model. (A) Radiomics features and there premutation 
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computed importance in the PVIRF-RSF model (B) Volcano plot of genes expressed that are 
associated with the predicted probabilities of PVIRF-RSF radiomics model (TCIA data). (C) Top 
10 KEGG based activated and suppressed pathways probabilities of PVIRF-RSF (TCIA data). 
(D) Top 10 Genome wide annotation for Human, primarily based on mapping using Entrez Gene 
identifiers (ord.HS.ef.db) activated and suppressed pathways probabilities of PVIRF-RSF (TCIA 
data). (E) HH data Tumour cellularity box plot across risk groups. (F) HH data Rad51protein 
expression across PVI-RSF risk groups.  
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Figure 7 Univariate Analysis Testing for key variables associated with predictions of the 
Permutation-Variable Importance Random Forest – Random Survival Forest (PVIRF-
RSF) Model Derived from TCGA data (A) The predicted probabilities for all 71 subjects (x-
axis) in the TCIA cohort based on inference from the PVIRF-RSF Model and Clinical Variables. 
(B) Top ten RPPA variables most correlated with predictions of PVIRF-RSF (x-axis corresponds 
to each sample). (C) Top ten RNA variables most correlated with predictions of PVIRF-RSF (x-
axis corresponds to each sample). (D) Top ten Copy Number variables most correlated with 
predictions of PVIRF-RSF (x-axis corresponds to each sample).  
 
 
 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.26.23289155doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.26.23289155


Discussion  
The mesoscopic architecture of ovarian cancer contains mineable features that can provide 
prognostic and predictive tools for patient management. We present here an advanced analytical 
approach for mining such data, together with new biological and biophysical insights not 
previously appreciated, and clinical utility of the approach. 
 
Almost all patients with ovarian cancer will undergo imaging including CE-CT prior to surgical 
or non-surgical treatment. In previous work by Lu et al. (2019), a radiomics model that is 
strongly related to tumour stroma was disclosed (8). This model, RPV, was found to be robust in 
a subsequent large European validation study (9). This earlier work supports the development of 
novel technical approaches to harness the vast information and to enable an appreciation of new 
biology at a scale beyond that of microscopy – the mesoscopic scale – with radiomics alone (8) 
or combined with histopathology, genetic and clinical factors (19). Assessing primary ovarian 
cancer CE-CT is an iterative and labour-intensive process, even to expert radiologists but not 
computers. In this regard, radiomics and CNN algorithms, once developed, can process massive 
quantities of image data efficiently, are not vulnerable to fatigue, and have high throughput and 
stability. We present, for the first time, an end-to-end tool that automatically segments ovarian 
primary mass and quantifies radiomics signatures to predict prognosis.  
 
Distinct from previous radiomics work (8), we offer a tool to segment the primary ovarian mass 
and produce prognostic and biological information in a full end-to-end machine learning 
pipeline. We built and validated 156 radiomics based models across 100 bootstrapped training 
datasets in a grid-search cross-validation setting to predict OS using time-to-event outcomes. We 
compared these radiomics models with a) deep learning CNN based models, and b) clinical 
baselines, namely CA-125 and transcriptomics subtypes (20,21) to assert superiority and ensure 
that the tool model will be widely used when reported. By means of evaluating the best C-index, 
PVIRF-RSF was identified as the best performing modelling when applied to validation data, 
exceeded performance of clinical data and deep learning architectures (Figure 5, Table 4, Table 
5). While several studies have displayed success of deep learning for classification with CNNs, 
there remains to date relatively little literature on using CNNs for survival analysis. The 
performance of the deep learning-based CNN models is lower than the top performing radiomics 
model in the present study. Of note, however, we only investigated three different architectures; 
recently several feed-forward networks have been proposed to predict survival (22–25). Future 
work on adapting CNNs with various functions to model survival will help identify whether 
there could be unseen benefits from CNNs in this setting.  
 
Biophysically, the PVIRF-RSF vector comprised of 13 radiomics features (Figure 6A) including 
discrete wavelet transformation-derived features. Our model directly shared only one feature 
with the RPV described by Lu and colleagues (FOS_Imedian_LHH). Otherwise, the majority of 
radiomics features used in this study are different from that of the RPV model (8). In particular 
the features suggest emphasis of skewed structures and contrast (e.g. FOS_Skew_HLL depicting 
asymmetry of distribution around the mean, and NGTDM_Contra_LLL_25HUgl depicting 
contrast - the difference between a grey value and the average grey value of its neighbours within 
a distance). This led us to investigate the biology emphasised by the PVIRF-RSF model. An 
interesting finding is that genes and pathways involved in a tumour’s invasive potential were 
emphasised. Regarding genes and pathways, SNAREs, emphasised in high PVIRF-RSF stratified 
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groups, facilitate intracellular vesicle trafficking, including that involved in the transport of 
invadopodium-associated proteins, and in so doing promote modification of ECM and 
modulation of signalling pathways involved in the movement of cancer cells (26). Genes 
involved in response to fibroblast growth factor stimulus, extracellular matrix constituents, 
basement membranes and bicellular tight junctions were associated with high PVIRF-RSF. In 
keeping with above the high-risk PVIRF-RSF stratified group was associated with high 
cellularity, high expression of the MAPK signalling. In this setting, expression of RAD51, a 
marker of DNA repair capacity, was found to be slightly lower (Figure 6, Supplementary ) in the 
high-risk group, distinct from the reported poor prognosis of RAD51 (29) The exact biology 
emphasised by PVIRF-RSF remains incomplete and future efforts will aim to elaborate this. 
 
Regardless of the exact biology we show that PVIRF-RSF has higher C-index than any other 
vector for ovarian cancer. The categorisation of the PVIRF-RSF predictions through k-means 
facilitates stratification (threshold 0.425) of HGSOC patients into “high” and risk “low” groups 
with high HR (Table 4). The median overall survival of individuals in the high and low-risk 
group were 13, 17, 10, and 14 months and 30, 29, 21, 22 months for the HH training, HH 
validation, TCIA and KEM datasets, respectively, thus 2-3 times shorter. After adjusting the 
PVIRF-RSF defined high-risk group for age, stage, status and residual disease, the Hazard ratios 
were 4.81 (1.61-14.35), 6.34 (2.08-19.34), and 1.71 (1.10-2.65). This supports the potential 
clinical use of a model that can be embedded in CE-CT workstations to provide radiologists and 
gynaecological oncologists with real-time, segmentation, prognosis, and tumour environment 
information. Furthermore, the use of two test datasets suggests the model generalizes well, and 
can be used internationally, subject to further validation, to help alleviate the uneven distribution 
of medical and human resources. The segments may also be used to provide other imaging 
biomarker information, for example when combined with RPV (8). The PVIRF-RSF high group 
represent patients likely to benefit less from standard of care surgery combined with 
chemotherapy. Whether these patients will benefit from upfront anti-invasive therapy together 
with surgery will be a future hypothesis to be tested. 
 
 
Previous studies have defined molecular features associated with prognosis from biopsy-based 
data such as gene expression, DNA methylation, CNA, and more recently microRNA and 
circulating tumour DNA(26,27,29). However, biopsy-derived data and subsequent models are 
often challenging to translate into routine clinical use due to the invasiveness of a biopsy, 
insufficient prognostic power due to the vast intratumor heterogeneity, high assay costs, and 
reproducibility constraints. Currently, treatment may be performed without any understanding of 
an individual's prognosis; our approach would facilitate early estimation of these characteristics. 
The prognostic model we have developed is derived from a patient's preoperative CE-CT scan at 
the presentation of the disease and could be integrated with the current clinical pipeline. The 
integrative segmentation and PVIRF-RSF radiomics model based on CE-CT enables a non-
invasive interpretable state-of-the-art prognostic evaluation of HGSOC. Our predictive model, in 
principle, improves the risk stratification of patients with HGSOC. Our methods represent a 
unique future framework for producing more granular, individualised, and robust prognostic 
models. We have described a crucial technology that could breach the unmet need to rapidly 
define prognosis in HGSOC patients and facilitate rapid patient entry into clinical trials at the 
point of care. 
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Figure 1. Illustration of 2D and 3D low -resolution nn-UNet performance. Boxplots of dice 

scores for all samples in Hammersmith Hospital (HH) (training (Train) and HH validation 
(HH.Val)), Kliniken Essen-Mitte (KEM) and The Cancer Imaging Atlas (TCIA) test 
datasets for (A) 2D nn-UNet and (B) 3D low-resolution nn-UNet. 

 
 
 

 
Figure 2. Illustration of 2D and 3D high-resolution nn-UNet segmentation. (A) Mesh plot of 

the nn-UNet segmentation (red) and manual segmentation (purple) with a Dice score of 
0.89. (B) Mesh plot of a nn-UNet segmentation (red) and manual segmentation (purple) 
with a dice score of 0.55. 
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Figure 3. Univariate analysis testing for key variables associated with predictions of the 
Permutation-Variable Importance Random Forest – Random Survival Forest (PVIRF-
RSF) model derived from HH data. (A) The predicted probabilities for all 71 subjects in the 
Cohort based on inference from the PVIRF-RSF Model and Clinical Variables, ordered by 
probability. (B) Top ten RPPA variables most correlated with predictions of PVIRF-RSF 
(ordered in the same manner). (C) Top ten RNA variables most correlated with predictions of 
PVIRF-RSF. (D) Top ten copy number variables most correlated with predictions of PVIRF-
RSF. Colour maps correspond to normalised values of the respective data sets. 
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Figure 4. In (A-D) we show Kaplan-Meier curves of the dichotomised predicted probabilities of 
the PVIRF-RSF (k-means derived thresholds of (0.334), (0.442) for the HH training, HH 
validation, TCIA and KEM test sets, respectively.  
 
 
 
 
 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.26.23289155doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.26.23289155


 
Figure 5 RAD51 protein expression in the TCIA Cohort. Compared across the two risk 
groups defined with threshold of 0.425.  
 
Table1 The Radiomics Quality Score for our study is tabulated below. Our study scores 18/36 
on the RQS.  

Criteria Points Our 
Score 

1. Image protocol quality - well-documented image 
protocols (for example, contrast, slice thickness, 
energy, etc.) and/or usage of public image protocols 
allow reproducibility/replicability 

+ 1 (if protocols are well-
documented) + 1 (if public 
protocol is used) 

0 

2. Multiple segmentations - possible actions are: 
segmentation by different 
physicians/algorithms/software, perturbing 
segmentations by (random) noise, segmentation at 

+ 1 0 
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different breathing cycles. Analyse feature 
robustness to segmentation variabilities 

3. Phantom study on all scanners - detect inter-scanner 
differences and vendor-dependent features. Analyse 
feature robustness to these sources of variability 

+ 1 0 

4. Imaging at multiple time points - collect images of 
individuals at additional time points. Analyse 
feature robustness to temporal variabilities (for 
example, organ movement, organ 
expansion/shrinkage) 

+ 1 0 

5. Feature reduction or adjustment for multiple testing 
- decreases the risk of overfitting. Overfitting is 
inevitable if the number of features exceeds the 
number of samples. Consider feature robustness 
when selecting features 

− 3 (if neither measure is 
implemented) + 3 (if either 
measure is implemented) 

3 

6. Multivariable analysis with non-radiomics features 
(for example, EGFR mutation) - is expected to 
provide a more holistic model. Permits 
correlating/inferencing between radiomics and non-
radiomics features 

+ 1 1 

7. Detect and discuss biological correlates - 
demonstration of phenotypic differences (possibly 
associated with underlying gene–protein expression 
patterns) deepens understanding of radiomics and 
biology 

+ 1 1 

8. Cut-off analyses - determine risk groups by either 
the median, a previously published cut-off or report 
a continuous risk variable. Reduces the risk of 
reporting overly optimistic results 

+ 1 1 

9. Discrimination statistics - report discrimination 
statistics (for example, C-statistic, ROC curve, 
AUC) and their statistical significance (for example, 
p-values, confidence intervals). One can also apply 
resampling method (for example, bootstrapping, 
cross-validation) 

+ 1 (if a discrimination statistic 
and its statistical significance 
are reported) + 1 (if a 
resampling method technique is 
also applied) 

2 

10. Calibration statistics - report calibration statistics 
(for example, Calibration-in-the-large/slope, 
calibration plots) and their statistical significance 

+ 1 (if a calibration statistic and 
its statistical significance are 
reported) + 1 (if a resampling 
method technique is also 

2 
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(for example, P-values, confidence intervals). One 
can also apply resampling method (for example, 
bootstrapping, cross-validation) 

applied) 

11. Prospective study registered in a trial database - 
provides the highest level of evidence supporting 
the clinical validity and usefulness of the radiomics 
biomarker 

+ 7 (for prospective validation 
of a radiomics signature in an 
appropriate trial) 

0 

12. Validation - the validation is performed without 
retraining and without adaptation of the cut-off 
value, provides crucial information with regard to 
credible clinical performance 

- 5 (if validation is missing) + 2 
(if validation is based on a 
dataset from the same institute) 
+ 3 (if validation is based on a 
dataset from another institute) + 
4 (if validation is based on two 
datasets from two distinct 
institutes) + 4 (if the study 
validates a previously published 
signature) + 5 (if validation is 
based on three or more datasets 
from distinct institutes) 
*Datasets should be of 
comparable size and should 
have at least 10 events per 
model feature 

4 

13. Comparison to 'gold standard' - assess the extent to 
which the model agrees with/is superior to the 
current 'gold standard' method (for example, TNM-
staging for survival prediction). This comparison 
shows the added value of radiomics 

+ 2 2 

14. Potential clinical utility - report on the current and 
potential application of the model in a clinical 
setting (for example, decision curve analysis). 

+ 2 2 

15. Cost-effectiveness analysis - report on the cost-
effectiveness of the clinical application (for 
example, QALYs generated) 

+ 1 0 

16. Open science and data - make code and data 
publicly available. Open science facilitates 
knowledge transfer and reproducibility of the study 

+ 1 (if scans are open source) + 
1 (if region of interest 
segmentations are open source) 
+ 1 (if code is open source) + 1 
(if radiomics features are 
calculated on a set of 
representative ROIs and the 
calculated features and 
representative ROIs are open 
source) 

0 
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Total points (36 = 100%) 36 18 (50%) 
 
 
 
Table 2 TRIPOD recommendations. An “X” indicates if the objective is addressed in the 
study: 

Section/Topic em Checklist Item Page 
Title and abstract   CT Radiomics Models for Prognostication and Risk-Stratification of Recurrence & 

Death after Curative-Intent Radiotherapy for Non-Small Cell Lung Cancer 
 

Title 1 
Identify the study as developing and/or validating a multivariable 
prediction model, the target population, and the outcome to be predicted. 

X 

Abstract 2 
Provide a summary of objectives, study design, setting, participants, 
sample size, predictors, outcome, statistical analysis, results, and 
conclusions. 

X 

Introduction 

Background 
and objectives 

3a 

Explain the medical context (including whether diagnostic or 
prognostic) and rationale for developing or validating the 
multivariable prediction model, including references to existing 
models. 

X 

3b 
Specify the objectives, including whether the study describes the 
development or validation of the model or both. X 

Method 

Source of data 

4a 

Describe the study design or source of data (e.g., randomized trial, 
cohort, or registry data), separately for the development and 
validation datasets, if applicable. 

X 

4b 
Specify the key study dates, including start of accrual; end of accrual; 
and, if applicable, end of follow-up.  X 

Participants 

5a 

Specify key elements of the study setting (e.g., primary care, 
secondary care, general population) including number and location of 
centres. 

X 

5b Describe eligibility criteria for participants.  X 

5c Give details of treatments received, if relevant.   

Outcome 

6a 
Clearly define the outcome that is predicted by the prediction model, 
including how and when assessed.  X 

6b 
Report any actions to blind assessment of the outcome to be 
predicted.   

Predictors 7a 
Clearly define all predictors used in developing or validating the 
multivariable prediction model, including how and when they were 

X 
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measured. 

7b 
Report any actions to blind assessment of predictors for the outcome 
and other predictors.   

Sample size 8 Explain how the study size was arrived at. X 

Missing data 9 

Describe how missing data were handled (e.g., complete-case 
analysis, single imputation, multiple imputation) with details of any 
imputation method.  

X 

Statistical 
analysis 
methods 

10a Describe how predictors were handled in the analyses.  X 

10b 
Specify type of model, all model-building procedures (including any 
predictor selection), and method for internal validation. 

X 

10d 
Specify all measures used to assess model performance and, if 
relevant, to compare multiple models.  X 

Risk groups 11 Provide details on how risk groups were created, if done.  X 
Results 

Participants 

13a 

Describe the flow of participants through the study, including the 
number of participants with and without the outcome and, if 
applicable, a summary of the follow-up time. A diagram may be 
helpful.  

X 

13b 

Describe the characteristics of the participants (basic demographics, 
clinical features, available predictors), including the number of 
participants with missing data for predictors and outcome.  

X 

Model 
development  

14a 
Specify the number of participants and outcome events in each 
analysis.  

X 

14b 
If done, report the unadjusted association between each candidate 
predictor and outcome. 

X 

Model 
specification 

15a 
Present the full prediction model to allow predictions for individuals 
(i.e., all regression coefficients, and model intercept or baseline 
survival at a given time point). 

 

15b Explain how to the use the prediction model.  

Model 
performance 

16 Report performance measures (with CIs) for the prediction model. X 

Discussion 

Limitations 18 
Discuss any limitations of the study (such as nonrepresentative sample, few 
events per predictor, missing data).  

X 

Interpretation 19b 
Give an overall interpretation of the results, considering objectives, 
limitations, and results from similar studies, and other relevant 
evidence.  

X 

Implications 20 
Discuss the potential clinical use of the model and implications for future 
research.  

X 
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Other information 
Supplementar
y information 21 

Provide information about the availability of supplementary resources, such 
as study protocol, Web calculator, and datasets.  

X 

Funding 22 Give the source of funding and the role of the funders for the present study.  X 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5 univariate Cox Proportional Hazzard Models for CCNE1, BRCA1, BRCA2. 
 

Data Metric 
Model 

CCNE1 BRCA1 BRCA2  

HH 

C-index 0.52 ±  0.14 
0.58 ± 0.16 

0.52 ± 0.13 

tAUC 0.50 ± 0.012 0.54 ±  0.011 0.50 ± 0.012 

HR 
 

0.61 (0.1- 3.301) 
3.522 

(0.02-   4.32) 
1.51 (0.0073-      

3.17 
P-value 0.60 0.60 0. 91 
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TCIA 

C-index 0.46 ± 0.072 
0.56 ± 0.064 0.55 ± 0.081  

 

tAUC 0.53 ± 0.023 0.52 ± 0.012 0.47 ± 0.032 

HR 
0.97 (0.53-1.79 

 
 

1.18 (0.31-4.53 
0.8 (0.24-     2.70) 

P-value 0.01 0.80 0.70 
 
 
 
 
 
 
Table 4 Top 10 most correlated RPPA variables with Spearman’s Rho and P-values (TCIA 

cohort). 
Protein Spearman Rho  P-value 

STAT5ALPHA 0.45 0.0016 

HER3PY1298 -0.41 0.0040 

MTORPS2448 -0.37 0.0098 

RAD51.x -0.37 0.011 

CHK1PS345 -0.35 0.016 

SHCPY317 -0.31 0.032 

EGFRPY1068 -0.31 0.034 

CDK1.x -0.30 0.037 

CIAP -0.29 0.049 

AKTPT308 -0.28 0.051 

 
Table 5 Top 10 most correlated Copy Number Variation variables with Spearman’s Rho 

and P-values (TCIA cohort)  
Copy Number Variation 

Feature  
 
 

Spearman Rho  P-value  

LRRC7 -0.40 0.00064 

RN7SL392P -0.39 0.00084 

GNG12.x -0.39 0.000859 

DIRAS3.x -0.39 0.00086 

WLS -0.39 0.00086 

MIR1262 -0.39 0.00086 

RPE65.x -0.39 0.00086 

LEPROT.x -0.38 0.00095 

snoU13|ENSG00000238931.1 -0.38 0.00095 

RALGPS1.x -0.38 0.0010 
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Table 6 Top 10 most correlated gene expression variables with Spearman’s Rho and P-

values (TCIA cohort)  
 
RNA 

vari
able  

Spearman Rho  P-value  

TF.y -0.46 7.85E-05 

FNDC4.y -0.45 1.47E-04 

ZNF671.y -0.42 3.38E-04 

PC.y -0.41 4.68E-04 

FAAH.y -0.40 7.74E-04 

MIZF -0.40 8.08E-04 

SOX30.y -0.40 8.76E-04 

PTGES2.y -0.40 8.83E-04 

B3GNT4.y -0.39 9.52E-04 

FPGS.y -0.39 1.06E-03 

 
 
 
 
 
 
 
 
 
 
 
 
Table 7 Performance of Radiomics Multi-variable PVIRF-RSF (3 categories variable) and 
additional clinical variables) 
 
 

Data HH TCIA KEM 
C-index 0.72 ±  0.068 0.74  ± 0.051 0.73 ±  0.025 
tAUC 0.72 ± 0.04 0.74  ± 0.051 0.72 ± 0.041 

P-value 0.0040 0.030 2. 01E−12 

HR 

Age 
1.001 (0.97 - 1.031) 

 
1.04 (0.98-1.10) 

 
 

1.02 (0.99-2.65) 
 

Stage 2.66 (1.30-5.49) 

 
1.79 (0.81-3.99) 

 
 

2.03 
(1.34-2.07) 

 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.26.23289155doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.26.23289155


 

Residual disease 
1.25 (0.53-   2.98) 1.33 

( 0.37-4.81) 
3.64 (2.32-5.70) 

 

PVIRF-RSF 
2.66 (1.30 -5.49) 

 
3.49 (1.43-8.51) 

 
1.36 (1.033-1.78) 
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