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Abstract
Background
Data on lines of therapy (LOTs) for cancer treatment is important for clinical oncology research,
but LOTs are not explicitly recorded in EHRs. We present an efficient approach for clinical data
abstraction and a flexible algorithm to derive LOTs from EHR-based medication data on patients
with glioblastoma (GBM).

Methods
Non-clinicians were trained to abstract the diagnosis of GBM from EHRs, and their accuracy
was compared to abstraction performed by clinicians. The resulting data was used to build a
cohort of patients with confirmed GBM diagnosis. An algorithm was developed to derive LOTs
using structured medication data, accounting for the addition and discontinuation of therapies
and drug class. Descriptive statistics were calculated and time-to-next-treatment analysis was
performed using the Kaplan-Meier method.

Results
Treating clinicians as the gold standard, non-clinicians abstracted GBM diagnosis with
sensitivity 0.98, specificity 1.00, PPV 1.00, and NPV 0.90, suggesting that non-clinician
abstraction of GBM diagnosis was comparable to clinician abstraction. Out of 693 patients with
a confirmed diagnosis of GBM, 246 patients contained structured information about the types of
medications received. Of those, 165 (67.1%) received a first-line therapy (1L) of temozolomide,
and the median time-to-next-treatment from the start of 1L was 179 days.

Conclusions
We also developed a flexible, interpretable, and easy-to-implement algorithm to derive LOTs
given EHR data on medication orders and administrations that can be used to create
high-quality datasets for outcomes research. We also showed that the cost of chart abstraction
can be reduced by training non-clinicians instead of clinicians.
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Importance of the study
This study proposes an efficient and accurate method to extract unstructured data from
electronic health records (EHRs) for cancer outcomes research. The study addresses the
limitations of manual abstraction of unstructured clinical data and presents a reproducible,
low-cost workflow for clinical data abstraction and a flexible algorithm to derive lines of therapy
(LOTs) from EHR-based structured medication data. The LOT data was used to conduct a
descriptive treatment pattern analysis and a time-to-next-treatment analysis to demonstrate how
EHR-derived unstructured data can be transformed to answer diverse clinical research
questions. The study also investigates the feasibility of training non-clinicians to perform
abstraction of GBM data, demonstrating that with detailed explanations of clinical
documentation, best practices for chart review, and quantitative evaluation of abstraction
performance, similar data quality to abstraction performed by clinicians can be achieved. The
findings of this study have important implications for improving cancer outcomes research and
facilitating the analysis of EHR-derived treatment data.
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Introduction
One of the biggest impediments to cancer outcomes research is extracting data from

unstructured clinical documents1. Unstructured data refers to free-form text, prose, or data that
does not follow a consistent format when entered into the electronic health record (EHR). In
cancer research, several critical variables are often found exclusively as unstructured data, such
as diagnosis confirmation, date of diagnosis, biomarker test date, biomarker status, oral
chemotherapies, clinical trial drugs, tumor recurrence and progression, tumor response, date of
death, and more2–5.

Manual abstraction or chart review is a common method to extract unstructured data
whereby humans — often clinicians — read through EHRs and record values of interest. Not
only is this process slow and costly, but best practices for manual abstraction are often not
implemented, leading to poor data quality and wasted effort6. While technological solutions to
partially or completely automate chart review have been explored7–9, they still face substantial
limitations in accuracy, generalizability, and interpretability, suggesting that manual abstraction
will remain an important part of the research process for the foreseeable future4,9–12. Therefore,
more efficient processes for chart abstraction are needed.

EHR-derived medication data plays an important role in clinical research. In clinical
oncology, tracking the chronology of medication administrations and corresponding patient
outcomes is critical for making treatment decisions. The chronology of a patient’s treatment can
be captured in a “line of therapy” (LOT) – a specific treatment regimen administered to patients
between defined start and end dates13. In practice, the precise start and end dates of LOTs may
be blurred; clinicians may make changes to patients’ treatment plans based on translational
medical advances, side effects of therapy, and novel therapeutic strategies. In research,
however, defining precise start and end dates for LOTs is critical for conducting rigorous
analyses of treatment patterns. Defining LOTs using EHR data for clinical research can be
difficult because 1) start and end dates for LOTs are not explicitly documented in EHRs, 2)
EHR-derived medication data typically requires substantial pre-processing to organize into
LOTs, and 3) it is up to the discretion of clinical researchers on how to deal with clinical edge
cases such as the addition or discontinuation of drugs to a regimen and treatment interruptions.

To address the limitations of manual abstraction of unstructured clinical data and to facilitate the
analysis of EHR-derived treatment data, we developed a flexible algorithm to organize
medication data for patients with glioblastoma multiforme (GBM) into LOTs and use the resulting
LOT data to characterize GBM treatment patterns. GBM is the most common central nervous
system malignancy, with an incidence of 3.23 cases per 100,000 people14. GBM patients have a
median survival of only 8 months, and despite standard-of-care treatment comprising surgical
resection, radiation, and chemotherapy, the cancer inevitably recurs14–16. Consequently, current
treatments are targeted towards slowing GBM progression, reducing symptoms, and improving
patients’ quality of life. With this focus on GBM disease management, there is a marked
heterogeneity in treatment patterns for GBM, particularly in recurrent disease17. Therefore, it is
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imperative to develop methods for efficiently extracting LOT data on patients with GBM from
EHRs.

The data used for our analysis were collected using a rigorous abstraction workflow where we
trained non-clinicians (undergraduate and medical students) to perform abstraction of GBM
data. We investigated whether a training program comprising detailed explanations of clinical
documentation, best practices for chart review, and quantitative evaluation of abstraction
performance could yield similar data quality to abstraction performed by clinicians. Taken
together, we present a reproducible, low-cost workflow for clinical data abstraction and a flexible
algorithm to derive LOTs from EHR-based medication data. We use the resulting dataset to
conduct a descriptive treatment pattern analysis and a time-to-next-treatment analysis to
demonstrate how EHR-derived unstructured data can be transformed to answer diverse clinical
research questions.

Methods

Data source
This study was a retrospective analysis of EHR data collected at Stanford Hospital, Stanford,
CA. This dataset included any patient treated at Stanford from 1998-2022. Ethics approval was
granted through Stanford University IRB (#50031).

Study design and patient population
Patients with a confirmed diagnosis of glioblastoma were identified using a combination of
manual chart abstraction and machine learning. Detailed methodology is described in prior
work18. Briefly, a cohort of 1195 patients with suspected GBM were identified by filtering
pathology reports for the word “glioblastoma.” Patients younger than 18 at the date of the
pathology report that contained the word “glioblastoma” were excluded. From these, confirmed
GBM cases were determined through manual abstraction. This set of confirmed cases were
used as training data for a machine learning model to predict confirmation of GBM diagnosis in
patients’ pathology reports. The resulting machine learning model had high performance18:
sensitivity 0.96, specificity 0.96, PPV 0.98, NPV 0.9. The modeling workflow used selective
prediction, which allowed the model to identify patients whose GBM status was ambiguous —
these patients were subsequently manually abstracted. In total, 693 patients with confirmed
GBM diagnosis were identified. Of these, 168 patients with documented structured treatment
data (medication orders and administrations) were included in the final analytic dataset. The
abstraction workflow used to develop the machine learning model is described below.
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Abstraction workflow

Preliminary chart review
Of the 1195 patients that met the initial inclusion criteria, 637 patients (including 102 patients
whose GBM status was deemed ambiguous by the machine learning model) were selected for
manual abstraction to collect training data for the NLP models (Figure 1). The variables to
abstract were primary diagnosis of GBM and GBM primary diagnosis date. After defining the
variables and inclusion criteria, the medical student abstraction team leads (ABS & JYW)
reviewed a random sample of eligible charts in parallel with the clinical lead (RT). By initially
reviewing the charts internally, we developed a sense of what navigation, chart characteristics,
and common language were prevalent to inform subsequent development of abstraction
instructions. We then consulted our clinician lead to walk through a variety of cases, both
standard and atypical, to discuss the key features that need to be addressed and captured to
correctly abstract the variable of interest.

Developing abstraction instructions
After determining key considerations for clear and accurate abstractions, we created a
comprehensive set of instructions designed for someone with no clinical expertise. First, we
wrote a document with background information to help the non-clinical abstractor understand
the disease and concepts relevant to the variable. We then defined an objective and described
how to access the data and data entry tool (REDCap). Using screenshots of the data access
tool and REDCap survey, the instructions explained how to navigate to the correct chart
database and filter for the relevant types of pathology reports for that variable. Depending on
the nature of the variable, multiple pathology reports of varying types may be present for each
patient, including from procedures done at Stanford (“Surgical Procedure”) and those done
externally but reviewed at Stanford (“Outside Review”). Cases with different numbers or types of
charts were considered separately. The section of the chart most likely to contain the diagnosis
was delineated.

Creating a standardized abstraction data collection tool
A REDCap survey was developed to systematically collect abstracted data using yes/no
questions and drop-down menus as much as possible (SI Figure 2). This approach was utilized
to maximize structured data collection, whether for the variables currently of interest or future
variable abstraction. The survey included a “flag chart” function that, when selected, let
abstractors choose which field in the survey was difficult to confirm. The only free-form response
in the entire survey was also in this section, where we required them to elaborate on why the
specific field in the survey was uncertain.

Pilot and revision
Student leads piloted this abstraction process, where each team member abstracted 50 charts
with a 20% duplication rate for a total of 200 unique charts. The allocation and abstraction
workflow otherwise followed what is described below.
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This pilot round was instrumental in our abstraction development process. It illuminated
inadequacies in our abstraction instructions, survey, and overall workflow. More specifically, we
identified errors in our initial approach to abstracting dates of diagnosis for “outside slide review”
pathology reports. Through the pilot abstraction round, we realized that the dates in the system
corresponded to the dates of upload for pathology reports. These dates corresponded to
surgical resection or biopsy dates on surgical pathology reports, which are accurate diagnosis
dates, but for outside slide reviews, the date of specimen collection, sometimes found within the
unstructured report, was instead the true diagnosis date. Discovering this error in our process to
identify diagnosis dates allowed us to significantly revise our abstraction process, instructions,
and REDCap survey. This step was therefore instrumental to the accuracy and quality of our
abstraction process, which contributed to our creation of a more accurate dataset.

Abstractor training
Undergraduate abstractors were provided with basic background information on the most
common types of primary central nervous tumors, grading, definitions of primary versus
secondary glioblastoma, histological features of glioblastoma, and recurrence and standard of
care treatment of the disease. All abstractors were required to read and familiarize themselves
with this material and the extraction instructions before proceeding to the next stage of training.
Subsequently, each undergraduate abstractor was assigned eight common charts (collectively
referred to hereafter as a “problem set”) which they abstracted using the standardized REDCap
abstraction form. These charts were specifically chosen to expose abstractors to examples of
some of the most frequently encountered cases of charts that were positive or negative for
confirmation of GBM diagnosis. Additionally, these charts had already been abstracted by the
medical student abstraction team leads and determined to have been done so accurately by the
clinician lead. Once the abstractors had completed the problem set, the medical student
abstraction team leads (ABS & JYW) “graded” the submissions and then met individually with
each abstractor one-on-one to walk through the solutions in detail and clarify any questions or
points of confusion. ABS and JYW also created a detailed “answer key” to the problem set
consisting of annotated visual diagrams of relevant chart sections, which they used both during
one-on-one training sessions and subsequently provided to abstractors to use as a reference
moving forward.

Chart allocation and abstraction
Each undergraduate abstracted 48 charts in round one with a 50% duplication rate for quality
assessment. Thus, with seven undergraduate abstractors, we had 224 unique charts
abstracted, with 112 duplicated. Abstractors were given one week to complete abstraction.
Afterward, the two medical student leads resolved flagged charts (in consultation with the
clinician lead when necessary) to complete this first round of abstraction fully. During
abstraction, non-clinicians had the option to “flag” charts where the result was uncertain.
Flagged charts were reconciled by collaborative review, and uncertain cases were reviewed with
a clinician.

This second round of abstraction consisted of charts that the model could not accurately predict.
These remaining charts were evenly distributed among undergraduate abstractors. Abstractors
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were again given one week to complete their assignment, and medical student leads resolved
any flagged charts.

Development and validation of line of therapy rules
An algorithm was developed to transform structured medication orders and administration data
(one row per administration or order) into LOTs (one row per LOT). Raw structured medication
data contained a unique patient identifier, the name of the drug, the date of drug administration,
the date of drug order, and the expected start date of the drug. The desired data model for the
resulting LOT table contained a unique patient identifier, the LOT number, the treatments
included in the LOT, and the start and end dates of the LOT (SI Figure 1).

We adapted previously proposed rules for deriving LOTs from EHR data19. All antineoplastic
drugs with a documented administration or order after the date of GBM diagnosis were included
in the LOT table. Here, we define antineoplastic as including all chemotherapy, biologic,
targeted therapy, or immunotherapy agents used in cancer treatment. We defined the drug use
date as the first non-missing value of either the administration date, expected start date, or
order date (Figure 2).

The start of the first LOT (1L) was defined as the first antineoplastic drug use date. The second
LOT (2L) start date was defined as the first drug use date of a new antineoplastic not
administered during the first 28 days of 1L. The 1L end date was defined as the day before 2L
start. The same logic was applied to subsequent LOTs. LOTs that are not followed by another
LOT were not assigned an end date. We also defined a treatment gap rule — a rule that triggers
the start of a new line when at least 90 days pass between drug uses. After applying these rules
to generate a LOT table, the resulting output was reviewed by a neuro-oncologist (RT) to ensure
alignment with expected treatment patterns.

Statistical analysis

Analysis of abstractor performance
Inter-rater reliability for abstraction of GBM diagnosis (y/n) was calculated among 112 charts
duplicate-abstracted by non-clinicians using Fleiss’ kappa. Fleiss’ kappa is a measure of
inter-rater reliability for a fixed number of raters classifying items, with a kappa of 1 indicating
complete agreement, and a kappa ≤ 0 indicating no agreement among raters beyond what
would be expected beyond chance. A kappa of ≥0.8 was considered superior reliability. In
addition, the performance of non-clinician abstractors was compared to that of clinician
abstractors using sensitivity, specificity, negative predictive value, and positive predictive value,
treating clinician abstractors as the gold standard.

Treatment patterns analysis
Descriptive statistics including most common LOTs were calculated. In the overall population,
median time to next treatment (TTNT) was estimated using the Kaplan Meier estimator. The
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index date was the date of treatment initiation (1L), and the event date was defined as the start
date of the subsequent LOT (2L). Patients who only had one LOT were censored at their last
drug use date or their date of death, whichever was later.

Results

Cohort abstraction
A total of 659 charts were manually abstracted by non-clinicians, of which 118 were
duplicate-abstracted by non-clinicians and 54 were duplicate-abstracted by clinicians. Inter-rater
reliability analysis yielded a Fleiss' Kappa of 0.869 (p-value < 0.001), indicating excellent
reliability (CITE Fleiss Kappa interpretation) among non-clinicians. Treating clinicians as the
gold standard, non-clinicians abstracted GBM diagnosis with sensitivity 0.98, specificity 1.00,
PPV 1.00, and NPV 0.90, suggesting that non-clinician abstraction of GBM diagnosis was
comparable to clinician abstraction.

Cohort Description of Lines-of-Therapy
Following our model-assisted abstraction process, we assembled a cohort of 693 patients with a
confirmed diagnosis of glioblastoma. From that group, 246 patient charts contained structured
information about the types of medications received. Using medication data, we generated lines
of therapy using a custom set of rules, specifically filtering for antineoplastic drugs (Table 1). Of
the 246 patients, 165 (67.1%) received a first-line therapy (1L) of temozolomide, 33 patients
(13.4%) received bevacizumab alone and 14 patients (5.7%) received a combination of
bevacizumab and temozolomide.

Among the 246 patients with a documented 1L, 165 patients (67.1%) progressed on to a
second-line therapy (2L). Progression from 1L to 2L was analyzed for each type of treatment in
a Sankey diagram (Figure 3). 165 patients received temozolomide in 1L compared to 40
patients in 2L. 33 patients received bevacizumab in 1L compared to 55 patients in 2L. 14
patients received a combination of temozolomide and bevacizumab in 1L compared to 22
patients in 2L.

Time-to-Next-Treatment Analysis for First-Line and Second-Line Therapies
The median time-to-next-treatment (TTNT) for all 1L treatments was 179 days (95% CI 149-225)
(Table 2). Among the 165 patients who received 1L temozolomide, the median TTNT was 174
days (95% CI 117-227). Among the 33 patients who received 1L bevacizumab, median TTNT
was 171 days (95% CI 111-NA). Among the 14 patients who recieved 1L temozolomide and
bevacizumab combined, median TTNT was 419 days (95% CI 217-NA). The median TTNT
across all 2L treatments was 195 days (95% CI 146-242). Among patients who received 2L
temozolomide, median TTNT was 206 days (95% CI 113-445). Among patients who received 2L

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2023. ; https://doi.org/10.1101/2023.04.25.23289047doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.25.23289047
http://creativecommons.org/licenses/by-nc/4.0/


bevacizumab, median TTNT was 195 days (95% CI 122-823). Among patients who received 2L
temozolomide and bevacizumab combined, median TTNT was 225 days (95% CI 163-874).

Discussion
Unstructured EHR data contains valuable information for outcomes research, but is difficult to
analyze in its raw form. Often, highly trained human abstractors (e.g. clinicians) are required to
manually extract unstructured data from EHR records, which is expensive and time-consuming.
Here, we presented two methods of extracting and processing unstructured clinical data. First,
we described a rigorous approach to train non-clinician abstractors to extract clinical data on
patients with GBM, and showed that the accuracy of non-clinician abstractors was comparable
to that of clinician abstractors. This approach could be used to reduce the cost of abstraction by
leveraging non-clinicians instead of clinicians. Second, we developed a flexible, interpretable,
and easy to implement algorithm to derive LOTs given EHR data on medication orders and
administrations.

Our analysis of the derived LOTs showed that our cohort's treatment patterns aligned with the
typical standard of care for GBM. We compared our cohort to other GBM cohorts with
well-described treatment patterns and found that our cohort had similar characteristics in terms
of LOT agents and durations. For instance, Girvan et al. assembled a cohort of 503 GBM
patients using an online chart abstraction process conducted by 160 participating oncologists.
Their cohort predominantly received 1L temozolomide monotherapy (76.5%) and 2L
bevacizumab monotherapy (58.1%), and the median 2L duration was 130 days20. In
comparison, the most common 1L and 2L in our cohort were temozolomide monotherapy
(67.1% of patients receiving 1L therapy) and bevacizumab monotherapy (33.3% of patients
receiving 2L therapy), and the median 2L duration was 195 days. However, we note that all
patients included in the Girvan cohort received at least two LOTs, whereas only 67.1% of
patients in our cohort received 2L therapy. Another cohort of 750 GBM patients assembled by
Annavarapu et al. showed that the majority of patients received 1L radiation concurrent with
temozolomide (90.1%), bevacizumab was the most common 2L therapy (73.4% of patients
receiving 2L therapy), and the median 1L duration was 135.1 days21. Annavarapu et al. defined
treatment duration as the interval between the date of LOT initiation and the date of last
administration, which therefore does not account for the date of initiation for the subsequent
LOT. Given that our GBM cohort's treatment features were broadly similar to those of other
published cohorts, we believe that our abstraction process and LOT algorithm reasonably
reflected GBM patients' treatment journeys.

Our approach has some limitations. First, since our GBM cohort was assembled in part using a
machine learning model, there could have been false positives (patients who did not truly have
GBM) in the cohort. However, this would have been a rare occurrence given the strong
performance of the machine learning model on a naive test set. Second, the sample size used
for the LOT analysis was small due to the limited number of patients with documented treatment
in the EHR. Third, our LOT algorithm uses a simple set of rules that may not capture all clinical
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nuances in lines of therapy. Further work may build upon this initial algorithm by conducting
more in depth validation and expanding the rule set to account for more clinical nuances.

Overall, our workflow for unstructured data extraction using non-clinician abstractors and the
customizable LOT algorithm are important contributions that can be applied to a wide range of
clinical research scenarios. Utilizing LOTs from a large dataset of GBM treatments as a tool for
determining outcomes of these different treatment options can pave the way for identifying the
most effective regimens that maximize patient survival. LOT analysis can provide insights into
the overall survival, progression-free survival, and time to next treatment of specific regimens
and their corresponding modalities. Such information will be crucial towards formulating new
standards of care that utilize every available resource to improve patient outcomes.
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Figures and Tables

Table 1: Demographic and clinical characteristics of the 246 patients receiving treatment for
GBM.

Characteristic N = 2461

Gender

Female 93 (38%)

Male 153 (62%)

Race

Asian 30 (12%)

Black 4 (1.6%)

Native American 2 (0.8%)

Other 41 (17%)

Pacific Islander 1 (0.4%)

Unknown 9 (3.7%)

White 159 (65%)

Ethnicity

Hispanic/Latino 27 (11%)

Non-Hispanic 208 (85%)

Unknown 11 (4.5%)

Age at diagnosis 58 (49, 64)

Unknown 103

N lines of therapy

1 81 (33%)

2 65 (26%)

3+ 100 (41%)
1n (%); Median (IQR)
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Table 2. Descriptive statistics of TTNT analysis for primary 1L and 2L treatments. Median TTNT
(duration) for bevacizumab and temozolomide combination is much greater than other regimens
for first and second LOTs. Nonetheless, temozolomide is the most common 1L treatment while
bevacizumab is the most common 2L.

Line Treatment N % Median duration
(days)

95% LCL 95% UCL

1L All Treatments 246 100% 179 149 225

1L temozolomide 165 67.1% 174 117 227

1L Other 34 13.8% 183 92 NA

1L bevacizumab 33 13.4% 171 111 NA

1L bevacizumab +
temozolomide

14 5.7% 419 217 NA

2L All Treatments 165 100% 195 146 242

2L bevacizumab 55 33.3% 195 122 823

2L Other 48 29.1% 119 80 267

2L temozolomide 40 24.2% 206 113 445

2L bevacizumab +
temozolomide

22 13.3% 225 163 874
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Figure 1: Schematic of abstraction process, starting from defining cohort inclusion criteria to
performing quality assessment of abstracted data.
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Figure 2: Schematic showing the definition of lines of therapy (LOT) from uses of antineoplastic
drugs for an example patient. The start date of each LOT was determined based on the use
date of the antineoplastic drugs, with the end date of a LOT defined as the day before the start
date of the subsequent LOT. The start of the first LOT (1L) was defined as the first
antineoplastic drug use date. The second LOT (2L) start date was defined as the first drug use
date of a new antineoplastic not administered during the first 28 days of 1L. The 1L end date
was defined as the day before 2L start.
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Figure 3: Sankey diagram showing the progression of 1L to 2L treatments.
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Figure 4. Kaplan Meier curves plotting time-to-next-treatment (TTNT) for the entire cohort of
246 GBM patients and their 1L treatment regimens (Panel A), as well as comparisons between
1L Temozolomide, 1L Bevacizumab, 1L Bevacizumab + Temozolomide and all other treatments
(Panel B). Y-axis represents proportion of patients continuing current treatment and x-axis
represents days since treatment initiation. Grey and multicolored dotted regions represent 95%
confidence intervals (where available).

A

  B
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Supplementary Information

SI Fig. 1. Schematic diagram of line of therapy (LOT) algorithm inputs and outputs.
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SI Figure 2: Screenshots of the abstraction data collection tool
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