Abstract
Purpose To present a Swin Transformer-based deep learning (DL) model for denoising of single-delay and multi-delay 3D arterial spin labeling (ASL) and compare its performance with convolutional neural network (CNN) methods.
Methods Swin Transformer and CNN-based spatial denoising models were developed for single-delay ASL. The models were trained on 59 subjects (104 scans) and tested on 44 subjects (57 scans) from 3 different vendors. Spatiotemporal denoising models were developed using another dataset (6 subjects, 10 scans) of multi-delay ASL. A range of input conditions was tested for denoising single and multi-delay ASL respectively. The performance was evaluated using similarity metrics, spatial signal-to-noise ratio (SNR) and quantification accuracy of cerebral blood flow (CBF) and arterial transit time (ATT).
Results Swin Transformer outperformed CNN-based networks, whereas pseudo-3D models showed better performance than 2D models for denoising single-delay ASL. The similarity metrics and image quality (SNR) improved with more slices in pseudo-3D models, and further improved when using M0 as input but introduced greater biases for CBF quantification. Pseudo-3D models with 3 slices as input achieved optimal balance between SNR and accuracy, which can be generalized to different vendors. For multi-delay, spatiotemporal denoising models had better performance than spatial-only models with reduced biases in fitted CBF and ATT maps.
Conclusions Swin Transformer DL models provided better performance than CNN methods for denoising both single and multi-delay 3D ASL data. The proposed model offers flexibility to improve image quality and/or reduce scan time for 3D ASL to facilitate its clinical use.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by National Institute of Health (NIH) grants UF1-NS100614, R01-NS114382, R01-EB032169, R01-EB028297 and U24-NS100591. The authors thank the MarkVCID consortium (www.markvcid.org) for collecting and sharing the multi-site ASL data.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB of University of Southern California gave ethical approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors