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ABSTRACT 

Cocaine use disorder (CUD) is a prevalent substance abuse disorder, and repetitive transcranial 

magnetic stimulation (rTMS) has shown potential in reducing cocaine cravings. However, a robust and 

replicable biomarker for CUD phenotyping is lacking, and the association between CUD brain 

phenotypes and treatment response remains unclear. Our study successfully established a cross-validated 

functional connectivity signature for accurate CUD phenotyping, using resting-state functional magnetic 

resonance imaging from a discovery cohort, and demonstrated its generalizability in an independent 

replication cohort. We identified phenotyping FCs involving increased connectivity between the visual 

network and dorsal attention network, and between the frontoparietal control network and ventral 

attention network, as well as decreased connectivity between the default mode network and limbic 

network in CUD patients compared to healthy controls. These abnormal connections correlated 

significantly with other drug use history and cognitive dysfunctions, e.g., non-planning impulsivity. We 

further confirmed the prognostic potential of the identified discriminative FCs for rTMS treatment 

response in CUD patients and found that the treatment-predictive FCs mainly involved the frontoparietal 

control and default mode networks. Our findings provide new insights into the neurobiological 

mechanisms of CUD and the association between CUD phenotypes and rTMS treatment response, 

offering promising targets for future therapeutic development.  
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INTRODUCTION  

Cocaine use disorder (CUD), a disorder marked by compulsive cocaine use, affects over one 

million people in the United States according to the 2019 national survey on drug use 1,2. Despite the 

availability of clinical psychosocial treatments for CUD, the high relapse rate highlights the need for more 

effective treatments for all CUD patients 3. A robust and generalizable phenotyping neuroimaging-based 

biomarker could be helpful to advance our understanding of the neurobiological mechanism and 

pathophysiology of CUD 4,5. Moreover, compared to diagnostic questionnaires, such phenotyping 

biomarkers could be critical in forensic settings by providing an objective means to reduce controversy in 

evaluations of mental insanity and minimize errors in detecting malingering 6. 

Magnetic resonance imaging (MRI) has been a useful tool for detecting the abnormalities in brain 

structure and activity associated with CUD. Structural MRI studies using voxel-based morphometry have 

found reduced gray matter volume in brain regions such as the orbitofrontal cortex, anterior cingulate 

cortex, and superior temporal cortex in CUD patients compared to healthy controls 7. On the other hand, 

by examining brain activity from blood-oxygen-level-dependent (BOLD) signals during cocaine craving, 

functional MRI (fMRI) studies have observed stronger activation in the left dorsolateral prefrontal and 

bilateral occipital cortex of CUD patients than healthy controls 8.  

Compared to the analyses of brain structural alternations or regional activations, functional 

connectivity (FC) measures the neural coupling across various brain regions and can be a more sensitive 

indicator of brain dysfunction than morphological features and task-related brain regional activation 10,11. 

For instance, dysfunctions in neural circuits involving thalamus were observed in episodic migraine 

patients despite normal anatomical structure 12 and FC involving the prefrontal cortex changed in 

anticipation of future spatial and letter tasks rather than prefrontal cortical activation in adults with focal 

brain lesions13.  

Thus, increasing studies have focused on examining functional connectivity abnormalities in 

CUD. It has been found that the resting-state functional connections involving the prefrontal cortex of 
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CUD patients are significantly weaker than healthy controls 9.Additionally, resting-state FCs involving 

the frontoparietal control network (FPC) and default mode network (DMN), have been found to 

contribute largely to the classification of CUD patients versus healthy controls 14. Despite progress made 

by existing fMRI-based CUD phenotyping studies, their utility remains limited due to small sample sizes 

(no more than 80 subjects) 9,14-17 and a lack of independent validation 14,18,19, resulting in likely 

overestimated accuracy. 

Recent studies have found associations between phenotyping biomarkers and clinical outcomes in 

some typical mental disorders 20. For example, elevated presynaptic striatal dopaminergic function, a 

phenotype of schizophrenia, was shown to predict response to treatment of psychotic symptoms 20,21. 

Abnormally increased FC within DMN, a depression risk indicator, has been observed to decrease with 

repetitive transcranial magnetic stimulation (rTMS) treatment 22,23. In the case of CUD patients, albeit a 

lack of effective therapy, abundant studies have observed a significant reduction in cocaine craving 

following repetitive transcranial magnetic stimulation (rTMS) 24,25.  Uncovering the association between 

CUD phenotyping FCs and rTMS treatment response can potentially advance our understanding of 

neurobiological mechanisms underlying the disease. Furthermore, phenotyping biomarkers linked to 

treatment outcomes could be used as targeted regions in brain pathways for novel therapeutic intervention. 

However, such critical association remains underexplored, partially due to limited exploration of reliable 

phenotyping biomarkers.  

In this study, we sought to address the aforementioned limitations by establishing a robust and 

replicable FC signature to accurately characterize neural circuit abnormalities in CUD phenotyping and 

reveal its association with rTMS treatment response. We first aimed to train a classification model to 

obtain a generalizable FC phenotype for distinguishing CUD patients from healthy controls using the 

XGBoost algorithm 26, a robust ensemble learning technique known for mitigating overfitting. 

Specifically, we utilized FC features extracted from resting-state fMRI of a discovery cohort comprising 

71 CUD patients and 58 healthy controls to build a machine learning model, using XGBoost combined 

with data augmentation and feature selection, to identify a discriminative FC signature. We demonstrated 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 4, 2023. ; https://doi.org/10.1101/2023.04.21.23288948doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.21.23288948
http://creativecommons.org/licenses/by-nc-nd/4.0/


the robustness of the model by 10-fold cross-validation in the discovery cohort and further confirmed its 

generalizability through an external validation using an independent cohort consisting of 81 CUD patients 

and 82 healthy controls. Additionally, we conducted statistical analyses to investigate the associations 

between the identified discriminative FCs and substance use history as well as clinical assessments (eg. 

non-planning score in Barratt Impulsiveness Scale). Furthermore, we aimed to investigate the link 

between the FC signature and treatment outcome, which was typically missed in previous phenotyping 

studies 20,27,28.  By examining the discriminative FC signature as a predictor of treatment response to 

rTMS in 45 CUD patients who were randomly assigned to receive either 5 Hz active or sham rTMS on 

the left dorsolateral prefrontal cortex, we demonstrated the utility of this diagnostic FC signature for 

prognostic purpose of predicting treatment response.  

 

RESULTS 

Functional Connectivity Signature Distinguishes CUD from Healthy Controls  

Regional FC features were calculated from resting-state fMRI of 71 CUD patients and 58 healthy 

controls, using Schaefer parcellation with 100 parcels29. Then we built up the XGBboost classification 

model, utilizing the abnormal FCs which significantly differentiated CUD patients and healthy controls 

(two-simple t-test p < 0.05). The FC-based XGBoost model showed promising results for the cross-

validated phenotyping of CUD with an accuracy of 0.83 ± 0.10, sensitivity of 0.80 ± 0.18, and specificity 

of 0.85 ± 0.10. (Figure 1A). To understand the contribution of each FC feature to the classification, we 

calculated the frequency of the feature appearing in all trees of the XGBoost model and plotted the most 

discriminative FCs for better visualization (Figure 1B). All discriminative FCs were shown in Figure S1. 

The most discriminative FCs were between the cuneus and precuneus and between the middle cingulate 

cortex and superior temporal cortex. We further investigated the network-level connectivity that was 

critical for the CUD classification by averaging the FC discriminative pattern according to Yeo’s 7 

networks 30 (Figure 1C). Prominent discriminative FCs were observed between DMN and limbic network 
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(LIM), between FPC and somatomotor network (SMN), between visual network (VIS) and dorsal 

attention network (DAN), and between FPC and ventral attention network (VAN). The contribution of 

these four network-level connections to the model performance was confirmed by 1000 random 

permutations for each pairwise network connection (Figure S3B). The network-level feature importance, 

defined as the average feature importance within a network and between the network and all other 

networks, further indicated that CUD classification was mainly driven by between-network connections 

involving the FPC, DMN, DAN, and LIM (Figure 1D).  

 
Figure 1. FC phenotype of CUD patients versus healthy controls. (A) Classification performance across 10-fold 
cross-validations: the accuracy, sensitivity, and specificity of the FC-based XGBoost model are 0.83 ± 0.10, 0.80 ± 
0.18, and 0.85 ± 0.10, respectively. (B) Visualization of the 40 most discriminative FC features as identified by the 
XGBoost model, by calculating frequency of the features appearing in all the trees of the model. Node size indicated 
the node strength calculated from the sum of the linked FC importance. (C) Network-level discriminative pattern 
obtained by grouping FC importance based on Yeo’s 7 networks. (D) Averaged between-network and within-
network FC strengths. The between-network FC strength was calculated by averaging the importance of 
discriminative connections across each network and all other networks. VIS, visual network; SMN, somatomotor 
network; DAN, dorsal attention network; VAN, ventral attention network; LIM, limbic network; FPC, frontoparietal 
control network; DMN, default mode network. 
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Figure 2. Statistical difference in the classifier-identified discriminative FCs between CUD patients and 
healthy controls, examined by two-sample t-tests. (A) The 40 most significant hyperconnections (CUD > healthy 
controls), with their t-values shown in the left panel. Node size indicated the node strength calculated from the sum 
of the linked FC t-value. The right panel shows the average t-values across all significant hyperconnections, 
calculated at the network level. (B) The 40 most significant hypoconnections (CUD < healthy controls), with their t-
values shown in the left panel. Node size indicated the node strength calculated from the sum of the linked FC t-
value. The right panel shows the average t-values across all significant hypoconnections, calculated at the network 
level. Only the FCs that passed the FDR correction (p<0.05) are considered significantly discriminative FCs. 

 

To explore the directionality of the discriminative FCs, we conducted two-sample t-tests on them 

between CUD patients and healthy controls, as shown in Figure 2. These FCs were divided into 

hyperconnections, where FCs were significantly higher in the CUD group compared to the healthy 

controls group, and hypoconnections, where FCs were significantly lower in the CUD group. For better 

visualization, the top 40 hyperconnections and hypoconnections were shown. The most important 
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hyperconnections were mainly located in the middle cingulate cortex, precuneus and inferior frontal 

cortex (Figure 2A, Figure S2A). Some of the most significant hyperconnections included connections 

between FPC and VAN as well as between VIS and DAN. The most important hypoconnections were 

primarily found in the posterior cingulate cortex, superior medial frontal cortex and orbital frontal cortex 

(Figure 2B, Figure S2B). The most prominent hypoconnections were found between DMN and LIM. 

Association Between Discriminative Connections and Clinical Assessments 
To investigate the relationship between CUD-predictive connections and clinical assessments, we 

first applied two-sample t-tests to compare the discriminative network-level connections between subjects 

with other disorder diagnostic labels versus healthy controls. The statistical analyses were focused on the 

top 4 discriminative network connections since they were significantly more important for the 

classification than other network connections (Figure S3A, an inflection point was observed in the 4th 

network connection; Figure S3B, these four connections significantly contribute to the classification 

performance evaluated by 1000 permutations). The abnormal connections between DMN and LIM and 

between VIS and DAN were found to be significantly related to drug use histories, including 

hallucinogens, stimulants, and inhalants (Table S1). When other substance use disorder and drug use 

history variables recorded in MINI were regressed out, the model still exhibited a decent performance 

(Figure S4, accuracy = 0.71 ± 0.14, sensitivity = 0.67 ± 0.20, and specificity = 0.74 ± 0.14). The 

discriminative signature was generally consistent (Figures S4 and S1, the Spearman correlation between 

these two signatures was r = 0.38, p = 6.12 × 10-171 and the top 10 discriminative FCs in both signatures 

were highly overlapping). These findings indicated that the discriminative FC was mainly driven by 

cocaine addiction, and also confounded with polysubstance use history. We then examined the correlation 

between the discriminative network-level connections and other continuous clinical assessments 

(Pearson’s correlation for normally distributed continuous variables, e.g. subscales of the Barratt 

Impulsiveness Scale (BIS), and Spearman’s correlation for non-normally distributed continuous variables, 

e.g. subscales of the World Health Organization Disability Assessment Schedule (WHODAS)) (Table S2). 

The p-values of each connection across all those clinical variables were corrected for FDR. The 
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connections between VIS and DAN were positively correlated with non-planning impulsiveness. The 

connections between VAN and FPC and between SMN and FPC showed positive correlations with 

various psychological symptoms such as depression and anxiety in Symptom Checklist-90-revised. 

Furthermore, the connections between DMN and LIM, between DAN and VIS were significantly 

correlated with the consuming pattern of tobacco (Table S3).  

Functional Connectivity Signature Generalizes to an Independent Cohort 

 

Figure 3. Replication of the discriminative FC signature in the independent cohort. (A) The accuracy, 
sensitivity, and specificity of predicted results in the independent replication cohort, using predictive FC signature 
obtained from the discovery cohort. (B, C) Replication results of the two-sample t-test analysis that compares the 
network-level predictive FCs in CUD patients and healthy controls showing the network-level hyperconnectivity (B) 
and network-level hypoconnectivity (C). 

To test the generalizability of our findings, we applied the cross-validated classifier trained with 

the discovery cohort to replication cohort including 81 healthy controls from the UCLA-CNP dataset and 

82 CUD patients from both the NYU and SUDMEX-TMS datasets (See more details about these datasets 

in Online Methods section). The results show that our classification model still achieved decent 

performance (Figure 3A, accuracy = 0.70, sensitivity = 0.69, and specificity = 0.70). We used Combat31 

for site correction based on the demographic information to alleviate site effect caused by different MRI 

scanning parameters on the replication cohort. However, such site effect might still affect the validation 

performance. To investigate whether and how the validation performance of phenotyping was influenced 

by the site information, we applied the well-trained CUD classifiers based on the discovery cohort to 

identify site labels of all subjects in independent cohort from either the UCLA-CNP (81 healthy controls 

and 145 patients with other mental disorders), or the combination of NYU and SUDMEX-TMS datasets. 

If the site contributed largely to the replication phenotyping performance, the models should be able to 
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classify site labels with decent performance. The performance of site classification (Figure S5A, accuracy 

= 0.58; sensitivity = 0.53; specificity = 0.72; ppermute = 0.001) was significantly but marginally higher than 

the chance level. To control the sample size effect from different sites, we down-sampled the UCLA-CNP 

equal to the size of NYU and SUDMEX-TMS 1000 times and reclassified the site labels. The mean 

performance in (Figure S5B, accuracymean = 0.61; sensitivitymean = 0.53; specificitymean = 0.70) was similar 

to the site classification using all subjects in UCLA-CNP (Figure S5A). Importantly, the phenotyping 

classification accuracy was significantly higher than the subsampling site classification accuracy (p < 

0.001), which suggested the reproduced phenotyping performance can be derived mostly from the 

diagnostic label instead of site labels. To further demonstrate that the replicated phenotyping performance 

was not primarily driven by site effect, we employed an alternative strategy. We trained a classification 

model using the independent replication cohort and then tested its predictive ability on the discovery 

cohort.  If the performance of classification was dominantly attributed to site effect, the model should not 

be able to accurately classify CUD from healthy controls in the discovery cohort. As shown in Figure S6, 

the ten-fold cross-validation on the independent cohort yielded an accuracy of 0.77, sensitivity of 0.78, 

and specificity of 0.75. When applying the trained classifier to the discovery cohort, we observed that the 

accuracy, sensitivity, and specificity in the discovery cohort were 0.63, which was significantly larger 

than permutation test (p < 0.001). This again demonstrated that the phenotyping performance was not 

dominantly derived from the site effect. 

Next, we sought to verify that the predictive biomarker generalized to the independent replication 

cohort is due to FC abnormalities consistent with those identified in the discovery cohort. Two-sample t-

tests were conducted to detect differences in the predictive FCs between CUD patients and healthy 

controls. All hyper-connections and hyper-connections were averaged into seven networks (Figure 3B). 

The network hyper-connections were dominated by connections between FPC and VAN; between VIS 

and DAN. The network hypo-connections were dominated by connections between DMN and LIM 

(Figure 3C). A similar difference in predictive FCs between CUD patients and healthy controls in the 

discovery cohort and validation cohort was observed (Pearson correlation = 0.64, p = 2.19 × 10-84). Such 
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consistent FC difference observed between the discovery cohort and validation cohort might explain the 

highly reproducible performance.  

Predicting TMS Treatment Response Using Discriminative FCs 
 

 

Figure 4. Prediction of the craving visual analog scale (VAS) score changes specific to active rTMS in ten 5-
fold cross-validation. The statistical significance of prediction performance was confirmed by 1000 random 
permutation tests. (A) Scatter plot showing the prediction results of all patients who were assigned active treatment, 
using the CUD discriminative FC features (r = 0.59, p = 0.002, ppermute = 0.002). The predicted scores were averaged 
from the scores predicted from ten 5-fold models. (B) Application of active rTMS-trained models to the sham rTMS 
failed to predict the clinical score change (r = 0.36, p = 0.10, ppermute = 0.07). (C) Difference in the prediction 
performance between active and sham rTMS treatment groups. It was evaluated by Wilcoxon signed-rank test of all 
prediction performance of ten 5-fold models. w

R
2  = 3.78, p

R
2  = 0.0002; w

r
 = 3.40, p

r
 = 0.0007.  

Next, we sought to test whether the discriminative FC signature could also serve as a prognostic 

biomarker to predict treatment response. To this end, we utilized the FCs calculated from baseline resting-

state fMRI of CUD patients who were randomly assigned rTMS treatment in the clinical trial cohort 

(SUDMEX-TMS dataset, 20 sham rTMS and 25 acitve rTMS). In the active rTMS treatment phase, the 

stimulation with 5000 pulses at 5 Hz per-day was delivered to the left dorsolateral prefrontal cortex. For 

the patients in active rTMS treatment arm, a relevance vector machine model 32 was then trained with 

these selected FCs to predict changes in the visual analog scale (VAS) score which is designed to evaluate 

the participants’ craving of cocaine 33. To determine the relationship between the discriminative FC 

features and treatment response to rTMS, we used the identified connectivity signature as a mask to select 

the FCs of baseline CUD patients who were assigned rTMS treatment in the clinical trial cohort 
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(SUDMEX-TMS dataset). The prediction performance was evaluated by Pearson’s correlation and r-

squared value (R2) between the predicted VAS score changes and the observed ones using ten 5-fold 

cross-validation. The results show that the CUD discriminative FC features have decent predictive ability 

(r = 0.59, p = 0.002, ppermute = 0.002) for the response to active rTMS treatment (Figure 4A). Furthermore, 

applying these models trained on patients assigned to the active rTMS arm to those assigned to the sham 

rTMS arm failed to predict treatment outcome (r = 0.36, p = 0.10, ppermute = 0.07, Figure 4B), indicating 

the discriminative features were specifically predictive for response to the active rTMS treatment. The 

statistical comparison of the model performance of ten 5-fold cross-validated models demonstrated the 

significance of specificity (Wilcoxon signed-rank test of prediction performance of ten 5-fold models in 

two treatment arms, w
R
2  = 3.78, p

R
2  = 0.0002; wr = 3.40, p

r
 = 0.0007, Figure 4C). To further confirm the 

significance of relationship between our discriminative FCs and the response to active rTMS treatment, 

we repeatedly evaluated the prediction performance 1000 times after randomly subsampling all FCs with 

equal size to discriminative FCs. Meanwhile, we evaluated the prediction performance in ten 5-fold cross 

validation, training with all FC features. The result shows that the identified discriminative FCs 

outperformed all FCs (Figure S7A, the performance of the ensemble ten models, r = 0.42, p = 0.037, R2 = 

0.07; Figure S7B, Wilcoxon signed-rank test of the performance difference between training using 

phenotyping FC and all FC. w
R
2  = 3.63, p

R
2  = 0.0003; wr = 3.55, p

r
 = 0.0004.) and the randomly 

subsampled FCs in predicting active rTMS treatment (Figure S7C, the p value of the performance 

difference between training with phenotyping FC and random-subsampling FC was 0.02). These results 

demonstrated that the rTMS treatment response information was enriched in phenotyping FCs, compared 

to random-subsampling FCs and whole FCs.  

We then visualized the importance of the CUD-discriminative FCs in predicting active rTMS 

treatment response in Figure S8A and further averaged those FCs’ importance into Yeo’s 7 networks in 

Figure S8B. The predictive FCs dominantly came from the frontal lobe involving DMN, LIM, and FPC. 

However, the treatment response predictive connectivity pattern was not similar to the phenotyping 
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pattern (Figures 1C and S1). As shown in the Venn diagram (Figure S9G), all discriminative and 

abnormal FCs (The hyperconnections and hypoconnections in Figure S2) contributed to the treatment 

outcome prediction and 74 of the top 100 treatment predictive FCs were captured in CUD discriminative 

and abnormal connectivity signature. The correlation between the top rTMS outcome predictive FCs and 

the VAS scores change and these two FC distributions across two cohorts as a visualization example 

indicated that the top rTMS predictive FCs were with moderate abnormality and CUD discriminative 

importance (Figure S9A-F).  

DISCUSSION 

In this study, we have developed a robust FC-based classification model for CUD phenotyping 

using resting-state fMRI. Our analyses demonstrated its suitable accuracy, sensitivity, and specificity in 

classifying CUD patients and healthy controls. The high classification performance was further validated 

in an independent replication cohort, making this study the first to identify a generalizable FC signature to 

distinguish CUD from healthy controls based on neural circuit abnormalities. The statistical analysis of 

difference in distinguishable FCs between CUD patients and healthy controls provided evidence of the 

network-level connectome abnormalities in CUD, primarily involving the FPC, DMN, DAN, and VAN. 

Additionally, the association between our identified discriminative FCs and various clinical assessments 

showed that the abnormal FCs of CUD were correlated with substance use history and psychiatric 

symptoms such as depression and impulsivity. Importantly, the CUD-discriminative FCs demonstrated 

the capacity to predict treatment response to rTMS. These results together suggest that our identified FC 

signature could serve as a novel diagnostic tool to assist with CUD diagnosis, offer new insights into the 

neuropathology of CUD, and potentially predict course of treatment with rTMS. 

Discriminative Hyperconnectivity and Hypoconnectivity 
Previous studies of the brain connectome in individuals with CUD have consistently shown 

hyperconnections in key regions involved in response inhibition, such as the middle cingulate cortex, 

anterior cingulate cortex of FPC 34, inferior frontal cortex of DAN 35 and insular cortex of VAN 35,36. 
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These regions form the canonical response inhibition circuit in the brain37. It is aligned with the 

hypothesis that chronic cocaine use is associated with a decline in inhibitory control function of the cortex 

38. In particular, the inferior frontal cortex is known for its role in inhibitory control 39. Studies have 

reported low fractional anisotropy in white matter and elevated Go/NoGo response-inhibition task-related 

brain activation of the inferior frontal cortex in CUD 40,41. Consistent with these previous findings, our 

study identified a positive correlation between the connections involving DAN, VIS, and impulsiveness 

(loss inhibition), especially non-planning impulsiveness (Table S2). Moreover, the connectivity between 

FPC and VAN was found to positively correlate with various neuropsychological symptoms. This is in 

line with the observation that cognitive dysfunction and emotional dysregulation are mediated by FPC 

and VAN in disorders such as depression, anxiety, and autism 42.  

Furthermore, our findings suggested that the reduced connectivity between DMN and LIM played 

a critical role in the classification model for phenotyping CUD. The key regions involved in the between-

network connectivity were the posterior cingulate cortex, superior medial prefrontal cortex, orbital frontal 

cortex, and temporal pole. Previous research has shown that the temporal pole–medial prefrontal cortex 

circuit 43 and activation of posterior cingulate cortex following various cocaine cue stimuli 44 were highly 

predictive of cocaine relapse. These regions in DMN and LIM play a key role in social emotion 

perception and regulation of negative emotion 43,45-47. This was in line with our results that the FC 

between DMN and LIM (prior to FDR correction) negatively correlated to the severity of individuals’ 

cognitive impairments in communication and thinking activities assessed by WHODAS 48 (Table S2). In 

addition, cognitive dysfunction has been found to be associated with anxiety severity 49,50. The association 

was also observed in our result that the reduced FCs between DMN and LIM were negatively correlated 

with anxiety symptoms (Table S2). Overall, the association between DMN-LIM hypoconnectivity with 

both cognitive complaints as well as anxiety suggested that future research test these networks as 

potential sites of intervention for addressing these symptoms in CUD 51,52.  
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Association Between CUD and Other Substance Use Disorders 
Our study indicates that the connectivity abnormalities in CUD patients are intertwined with other 

substance use histories. We observed that the phenotyping signature could robustly differentiate the CUD 

patients with a history of polysubstance use or pure CUD from healthy controls. The intertwined effect 

from other substance use confounders enhances the model performance with an increased 13% precision. 

This improvement may be attributed to the shared dysfunction across the brain networks of the VAN, 

DMN, FPC of polysubstance use disorders 53-55. Given the cognitive, emotional, and attention control 

functions of DMN, FPC, and VAN, it is reported that excitability, impulsivity, aggression, and attention 

deficits were observed in fetal growth exposed to tobacco, stimulants, or other drugs during pregnancy 56. 

It is congruent with the association between the most CUD-discriminative FCs and other substance use 

histories. For example, the connections between DMN and LIM, and between VAN and FPC were found 

to differ between healthy controls and individuals with histories of suicide tendencies, alcohol abuse, 

other drug use, and tobacco use (Tables S1 and S3). Additionally, the dysfunction of DMN, FPC and 

ventral attention networks in CUD patients highlights the role of the triple network model across major 

psychiatric disorders 42.  

Association Between CUD-discriminative Signature and rTMS Treatment Response 
Our study found that the CUD-discriminative connectivity signature was also significantly and 

specifically associated with the response to active rTMS treatment. Despite the connectivity pattern linked 

to treatment response was inconsistent to the CUD-discriminative signature, most rTMS predictive FCs 

are able to differentiate CUD from healthy controls. This finding might align with the recently proposed 

core abnormal FC (CA-FC) treatment remission hypothesis 57, which assumed that a CA-FC set 

encompassed all possible abnormal FCs of a disorder (In the reference, they focused on major depressive 

disorder). Different treatments may specifically target different CA-FC subsets. As revealed from our 

result, the CA-FC of rTMS treatment primarily came from the frontal lobe involving DMN, LIM, and 

FPC. It could be congruent with the cocaine molecular pathway. Cocaine affects frontostriatal 

transmission by blocking dopamine transporters and increasing free dopamine in the nucleus accumbens 
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58. This in turn seems to produce an increase in GABA in the prefrontal cortex, increasing limbic system 

activity by local inhibition 59. TMS is thought to indirectly regulate these neurotransmitters and functional 

connectivity in orbitofrontal, dorsolateral prefrontal and ventromedial prefrontal cortex to reduce craving 

60, mediating psychological processes such as risk-reward decision-making 61. In light of these findings, 

the prediction power derived from the CA-FC involving frontal lobe across three networks underscores 

the role of frontostriatal circuit in mediating CUD symptoms and its importance in influencing efficacy of 

circuit-focused interventions for CUD. 

Limitations 
The present study has several limitations and potential areas for improvement that are important 

to consider. One limitation is the imbalance in gender representation, as more males than females were 

included in the discovery and replication cohorts, which may result in a bias in our identified signature 

towards males. Although illicit cocaine use is significantly more prevalent among males than females 62, it 

is interesting to explore whether there is some different brain dysfunction among males and females. 

Additionally, the site effect might contribute a bit to the high replication performance since the CUD 

patients and healthy controls of the replication cohort were obtained from different datasets and the 

number of patients assigned rTMS treatment was limited. This highlights the need for a better-

harmonized data acquisition protocol and the recruitment of more independent subjects in future studies 

to verify the robustness of our connectivity signature findings and the association to rTMS treatment 

response. Moreover, most of the CUD patients in the discovery cohort had a history of other drug or 

alcohol abuse. In the future, it would be valuable to study patients addicted to other substances such as 

alcohol with cocaine use history to further verify the shared brain dysfunction across different substance 

use disorders. Lastly, it would be interesting to investigate the progression of brain dysfunction in 

individuals who used cocaine only limited times without addiction compared to those who developed a 

cocaine addiction.   
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Conclusions 
In this study, we built a XGBoost based machine learning model, trained with resting-state fMRI 

FC to accurately distinguish CUD patients with polysubstance use history from healthy controls in a 

discovery cohort. We identified a robust FC signature and successfully replicated the finding in an 

independent cohort, making it a generalizable phenotyping biomarker for CUD. In the FC signature, we 

found hyperconnectivity between VIS and DAN, and between FPC and VAN, as well as 

hypoconnectivity between DMN and LIM in both cohorts. These brain network connections were linked 

to other substance use histories and cognitive dysfunction in depression and impulsivity domains. These 

results emphasized the dysfunctional links of the six typical brain networks in neuropathology of cocaine 

use disorder comorbid with other substance use histories. More crucially, the association between the 

CUD-discriminative signature and response to rTMS treatment was further discovered, highlighting the 

role of prefrontal cortex across LIM, DMN, FPC in the CUD craving remission progress. The FCs across 

these three networks have the potential to serve as a decision-making tool for clinical psychiatrists. 
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Online Methods 

Discovery Cohort 
SUDMEX-CONN dataset 
Participants 

In this study, we used the Mexican magnetic resonance imaging dataset (SUDMEX-CONN) 63 as 

a discovery cohort to establish a machine learning-driven FC signature for CUD phenotyping. In 

SUDMEX-CONN dataset, recruited CUD patients meet the criteria of having used cocaine for at least one 

year and with an average of at least three times a week, and no more than 60 days of abstinence in the 

past year 63. Before and on the day of the study, any drug intake for the participants was prohibited. Prior 

to the MRI scanning, participants were either active cocaine users or had been abstinent for less than 60 

days. Additional exclusion criteria included: any electronic or metal implants; history of schizophrenia, 

bipolar disorder, mania, or hypomania; history of any heart-related disease such as myocardial infarction 

currently, and so on. Participants aged 18 to 50 years, who provided informed consent, were scanned 

between March 2015 and October 2016. Further information about the subject recruitment criteria can be 

found in the literature 63. Our study focused on 135 participants who have both diagnosis labels and 

neuroimaging data.  

Clinical assessments 
The diagnosis of cocaine dependence was made using the MINI International Neuropsychiatric 

Interview – Plus Spanish version 5.0 (MINI) 64. It should be noted that our study did not distinguish 

cocaine dependent disorder, and cocaine use disorder as the boundaries between these disorders are not 

clearly defined 65. Additionally, diagnoses for alcohol abuse, substance/drug abuse, and suicide risk were 

also evaluated using MINI. The severity of cocaine craving was assessed by Cocaine Craving 

Questionnaire General (CCQ-G) 66. The World Health Organization Disability Assessment Schedule 2.0 

67 (WHODAS) was used to evaluate the functional impairments and disabilities of participants. It consists 

of six domains: cognition, mobility, self-care, getting along, life activities, and participation. The impulse 

control of participants was measured using the Barratt Impulsiveness Scale version 11 (BIS) 68 in three 
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domains: cognitive impulsiveness, motor impulsiveness, and non-planning impulsiveness. The 

psychological symptoms and distress of participants were assessed using the Symptom Checklist-90-

revised (SCL) 69, which covers nine behavioral domains: somatization, obsessive-compulsive disorder, 

anxiety, depression, interpersonal sensitivity, hostility, paranoid ideation, phobic anxiety, and 

psychoticism. 

Resting-state fMRI acquisition and preprocessing 
Resting-state fMRI was scanned using gradient echo planar imaging pulse sequences. The 

scanning parameters were set as follows: repetition time/echo time = 2000/30 ms, flip angle = 75°, matrix 

= 80 × 80, field of view = 240mm2, voxel size = 3 × 3 × 3 mm, number of slices = 36. Participants were 

instructed to keep their eyes open during the scanning process. The acquired resting-state fMRI data were 

preprocessed using the reproducible fMRIPrep pipeline 70. The T1 weighted image was corrected for 

intensity nonuniformity and then skull was stripped as T1w reference. Spatial normalization was done 

through nonlinear registration with the T1w reference 71. The brain tissue (cerebrospinal fluid, white 

matter, and grey matter) was segmented from the T1w reference using FAST (FSL) 72. The BOLD 

reference was then transformed to the T1w reference using a boundary-based registration method, 

configured with nine degrees of freedom to account for distortion remaining in the BOLD reference 73. 

Head-motion parameters (six rotation and translation parameters of volume-to-reference transform 

matrices) were estimated with MCFLIRT (FSL) 74. BOLD signals were slice-time corrected and 

resampled onto the participant’s original space with head-motion parameters, susceptibility distortion 

correction, and then resampled into standard space, generating a preprocessed BOLD run in 

MNI152NLin2009cAsym space. Automatic removal of motion artifacts using independent component 

analysis (ICA-AROMA) 75 was performed on the preprocessed BOLD time-signals in MNI space after 

removal of non-steady-state volumes and spatial smoothing with an isotropic Gaussian kernel of 6 mm 

FWHM (full-width half-maximum). Six participants with excessive movement (>0.5 mm motion 

framewise displacement) 76,77 were excluded, leaving 129 subjects with usable fMRI data for analysis. 

The demographic information of these subjects is summarized in Table S4. 
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Replication Cohort 
We utilized and harmonized CUD patients from the New York University dataset and SUDMEX-

TMS dataset, and healthy controls from the UCLA-CNP dataset to form a replication cohort for 

independent validation of the identified FC signature. All demographic information of these datasets used 

for the independent cohort are summarized in Tables S5-S7, respectively. The overall demographic 

information of the independent cohort is summarized in Table S8. 

New York University dataset 
In this dataset, the study recruited right-handed adults aged 28 to 46 who had a diagnosis of 

cocaine dependence within the last year according to ‘Diagnostic and Statistical Manual of Mental 

Disorders’ DSM-IV criteria and had been abstinent for at least two weeks. The participants were scanned 

with fMRI at the New York University School of Medicine and the VA New York Harbor Healthcare 

System. The exclusion criteria included: positive result of the cocaine test on the scanning day, an 

incidental brain abnormality, and four exhibited excessive movement 9. This dataset consists of 29 CUD 

patients and 24 healthy controls (http://fcon_1000.projects.nitrc.org/indi/retro/nyuCocaine.html). 

However, only data from the 29 CUD patients were publicly available and thus used for our analysis. 

Resting-state fMRI data were collected using multi-echo EPI sequences from Siemens Allegra 3T 

in 6 mins. The scanning parameters included: 180 time points; TR = 2000 ms; flip angle = 90°; number of 

slices = 33; voxel size = 3 × 3 × 4 mm). Participants were scanned with their eyes open.  

SUDMEX-TMS dataset 
This dataset was collected by a clinical trial involving rTMS treatment, conducted at the Clinical 

Research Division of the National Institute of Psychiatry in Mexico City. All procedures were approved 

by the Institutional Ethics Research Committee and registered (CEI/C/070/2016; ClinicalTrials.gov 

NCT02986438). A total of 54 CUD patients (ages 18 – 50) were recruited and met the inclusion criteria 

such as high cocaine consumption for at least one year 25. Baseline resting-state fMRI data of one patient 

was unpublished online, and hence 53 patients were used for our replication cohort. This dataset was also 

used in our prediction analysis of rTMS treatment outcome (refer to ‘Association Between Discriminative 
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Connections and TMS treatment response’ subsection in Results). More details involving rTMS treatment 

could be found in the method section ‘Clinical Trial Cohort with rTMS Treatment’. 

Resting-state fMRI data were acquired using a gradient echo-planar pulse sequence of Philips 

Ingenia 3T scanner with 32-channel head coil. The acquisition parameters of the scanners were listed as 

followings: TR/TE = 2000/30 ms, FOV = 240 mm, flip angle = 75°, matrix size = 70 × 70, voxel size = 3 

× 3 × 3.33 mm, slice thickness = 3.33 mm, number of slices = 37, duration = 10 min). 

UCLA-CNP dataset 
To ensure the reliability of our findings, we constructed a replication cohort for independent 

validation of FC signature findings by matching the age, gender and size of CUD patients from the New 

York University dataset and the SUDMEX-TMS dataset. We selected the corresponding healthy controls 

from the UCLA-CNP dataset to create the replication cohort. Resting-state fMRI data of 81 healthy 

controls (aged 21 to 50) was utilized 78. The discovery cohort and replication cohort have similar age and 

gender distributions between CUD group and healthy control group (Table S4 and S8).  

Resting-state fMRI data were acquired by T2* weighted images using a single-shot gradient 

echo-planar pulse sequence. They were collected with 3 Tesla scanners lasting for 304 seconds with 

different scanners but the same parameter set (repetition time = 2000 ms, echo time = 30 ms, flip angle = 

90°, matrix size = 64×64, FOV = 192 mm, slice thickness = 4 mm, slices number = 34).  

Resting-state fMRI preprocessing 
The same preprocessing pipeline as used in the discovery cohort was adopted for preprocessing 

fMRI data in the replication cohort. 

Clinical Trial Cohort with rTMS Treatment 
Participants 

The SUDMEX-TMS clinical trial dataset was used here again for investigating the association of 

identified connectivity signature and response to rTMS treatment. Nine of the recruited 54 CUD patients 

did not receive the allocated intervention, leaving 25 patients in the active rTMS and 20 in the sham 

rTMS, following a double-blind randomized controlled trial. In the maintenance phase: 20 patients (15 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 4, 2023. ; https://doi.org/10.1101/2023.04.21.23288948doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.21.23288948
http://creativecommons.org/licenses/by-nc-nd/4.0/


initially assigned to active and 5 to sham) completed 3 months of twice-weekly rTMS sessions; while 15 

patients (10 initially assigned to active and 5 to sham) completed 6 months of rTMS sessions, and 7 

patients (3 initially assigned to active and 4 to sham) completed 12 months of twice-weekly rTMS 

sessions. A MagPro R301+Option magnetic stimulator and a figure-of-eight B65-A/P coil (MagVenture, 

Alpharetta, GA) were used. During the 10 weekdays of the first two weeks, 5000 pulses per day were 

delivered at 5 Hz. Stimulation was delivered at 100% motor threshold to the left dorsolateral prefrontal 

cortex. The maintenance phase comprised two 5-Hz (5000 pulses per day) sessions per week. The 

severity of the cocaine craving was assessed by the difference in craving visual analog scale scores 

between baseline and after two weeks of treatment. More details of the experiment design can be found in 

the literature 25. The information of resting-state fMRI acquisition and preprocessing can be found in the 

method section ‘SUDMEX-TMS dataset’. In this study, we focused on the patients in double-blind 2-

week rTMS treatment phase, since the sample size in the maintenance phase is limited. 

Functional Connectivity Calculation 
The voxel-level BOLD signals were averaged into 100 regional time series according to the 

Schaefer parcellation 29. The functional connectivity was computed by Pearson’s correlation (Fisher Z-

transformed) between every pair of regional time series (Figure S10A). We regressed out framewise 

displacement from FCs for these cohorts to alleviate the head motion effect (Figure S11). 

Data Augmentation 
To enhance model generalizability and avoid overfitting, data augmentation is a commonly 

employed technique in machine learning when the available sample size is limited 79-81. The discovery 

cohort comprised 10-min scans of 300 volumes of fMRI for each subject. We subsampled full-length 

BOLD signals from each subject into two 5-min time series for data augmentation since this data length 

has been reported to be sufficient for calculating reliable functional connectivity 82. The FCs constructed 

from whole time signals and twice-augmented FCs from two 5-min time series were utilized as the 

training set. A comparison analysis was conducted to investigate the effects of data augmentation times 
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on training the classification model. We found that twice data augmenting led to improved classification 

performance that was stable (Figure S12). 

Classification Model Training and Testing  
We employed the XGBoost algorithm, an advanced ensemble learning technique26, to classify 

CUD patients and healthy controls. By leveraging resting-state FC features extracted from our discovery 

cohort, we built robust machine learning models using this algorithm combined with data augmentation 

and feature selection. To reduce the number of FC features, two-sample t-tests were used to identify 

significantly different FCs between CUD patients and healthy controls, using a threshold of p < 0.05. 

XGBoost was then trained with the selected FC features to classify subjects as CUD patients or healthy 

controls. The classification workflow is summarized in Figure S10B. The hyperparameters of XGBoost 

were set as follows: learning rate = 0.5, maximum depth of a tree = 5, L1 regularization = 10, L2 

regularization = 15, and the number of trees = 10. The classification performance was evaluated by 10-

fold cross-validations for metrics including accuracy, sensitivity, and specificity. It should be noted that 

the statistical analysis-based feature selection step was done on the training set alone. The generated 

feature mask will then be applied to the test set for feature selection and classification.  

To further validate the generalizability of the identified FC signature to unseen data, we applied 

ten well-trained XGBoost models from each run of the cross-validation to predict diagnostic labels of 

subjects in an independent replication cohort. The predicted labels were determined by averaging the 

probabilities of predicted labels from the ten models, followed by classification performance evaluation. 

Site effects in FC features were examined using statistical t-tests between different cohorts (Figure S13). 

To facilitate the replication analysis, we applied ComBat 83, a powerful site-effect correction method, to 

harmonize the FCs across different datasets based on demographic information including gender and age. 
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Supplementary Materials 
Figure S1. Visualization of all CUD-discriminative FCs. Histogram indicated the node 

strength calculated from the sum of the linked FC importance. VIS, visual network; SMN, 

somatomotor network; DAN, dorsal attention network; VAN, ventral attention network; LIM, 

limbic network; FPC, frontoparietal control network; DMN, default mode network.  
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Figure S2. Statistical difference in the classifier-identified discriminative FCs between CUD 

patients and healthy controls, examined by two-sample t-tests. (A) All significant 

hyperconnections (CUD > healthy controls). (B) All significant hypoconnections (CUD < 

healthy controls). Histogram indicated the node strength calculated from the sum of the linked 

FC importance. VIS, visual network; SMN, somatomotor network; DAN, dorsal attention 

network; VAN, ventral attention network; LIM, limbic network; FPC, frontoparietal control 

network; DMN, default mode network. Only the significant t values that survived FDR were 

shown.   
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Figure S3. The importance of network-level functional connectivity. (A) We grouped the 

importance of FC features defined from the frequency of the feature occurrence in XGBoost 

models based on Yeo’s 7 networks. Then the network-level importance sorted in descending 

order, was shown in light grey. The difference between sorted and adjacent importance was 

calculated and visualized in deep grey. The network importance is dramatically decreased with 

the largest adjacent difference when it comes to the VIS-DAN connectivity. (B) To further assess 

the significance of important FCs for further analyses, we randomly permuted FCs in each 

pairwise network 1000 times and calculated the difference between the average permute 

performance and the raw performance as feature importance. The sorted importance was plotted. 

The top 5 important network FCs, which were significantly (pfdr < 0.05) larger than the permuted 

results, were on the left of the vertical line. Only 4 network-level FCs with significant 

importance were observed in both calculation strategies (VIS-DAN, LIM-DMN, SMN-FPC, 

VAN-FPA). Therefore, we only analyzed the association between the top 4 discriminative 

network-level FCs with cognitive behavioral assessments. 
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Figure S4. Classification of the CUD and HC in discovery cohort with comorbid 

confounder control. We regressed out the comorbid variables for each FC, using the simple 

linear regression models and then trained the models with same hyperparameters in 10-fold cross 

validations. (A) Averaged classification performance: the accuracy, sensitivity, and specificity 

are 0.71 ± 0.14, 0.67 ± 0.20, and 0.74 ± 0.14, respectively. (B) The CUD-discriminative 

signature.   
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Figure S5. Site classification. All subjects (including 145 patients with multiple mental 

disorders such as attention-deficit/hyperactivity disorder, bipolar disorder) from UCLA-CNP 

were used for classification. (A) The performance of classifying all subjects from UCLA-CNP or 

the combination of NYU and SUDMEX-TMS datasets (accuracy = 0.58; sensitivity = 0.53; 

specificity = 0.70). The performance of distribution was from 1000 random permutations, 

accuracymean = 0.48; sensitivitymean = 0.47; specificitymean = 0.54 (B) To fairly objectively 

compare the site classification performance with the reproduced diagnosis classification 

performance and avoid the size effect of different sample sizes, we randomly subsampling all 

subjects from UCLA-CNP to the size of healthy controls from UCLA-CNP 1000 times. The 

average performance randomly subsampling subjects from UCLA-CNP or the combination of 

NYU and SUDMEX-TMS datasets (accuracy = 0.61 ± 0.03; sensitivity = 0.53 ± 0.06; specificity 

= 0.70 ± 0) was plotted. 
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Figure S6. CUD classification reversely. To further verify that the generalizability of our CUD 

discriminative FC signatures in independent cohort was not primarily dominant by the site effect, 

we trained the classification models in the independent cohort with same strategy in Figure S5B 

first. The performance was evaluated with ten-fold cross validation. Then, the obtained 

discriminative signatures were tested using the discovery cohort. (A) The accuracy, sensitivity, 

and specificity of models in independent cohort are 0.77 ± 0.10, 0.78 ± 0.12, and 0.75 ± 0.13, 

respectively. (B) The accuracy, sensitivity, and specificity of models applied in the discovery 

cohort are 0.63, 0.63, 0.63, respectively.   
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Figure S7. Control study of prediction of the craving visual analog scale (VAS) score 

changes specific to active rTMS treatment. To verify our hypothesis that the phenotyping FCs 

own advantage in reflecting the rTMS treatment response, we implement two control studies. (A) 

We used all FCs to predict the active rTMS VAS score change in ten 5-fold cross validations. 

The predicted scores were averaged from ten models. R2 = 0.07 and Pearson’s r = 0.42, P = 

0.037 based on the one-sided test against the alternative hypothesis that r > 0. (B) The Wilcoxon 

signed-rank test of the predicted performance from ten models, training with discriminative FC 

and all FC. The higher R2 and r in scatterplot than the mean of ten models were due to the 

ensemble learning effect 1. (C) We randomly subsampled all FC features as equal to the size of 

phenotyping FCs in differentiating CUD and HC. The distributions of the r and R2 were shown. 

The vertical line was the performance from discriminative FC.   
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Figure S8. Visualization of the CUD-discriminative FCs involved in repetitive transcranial 

magnetic stimulation treatment response prediction. (A) The rTMS predictive FC signature. 

(B) We grouped the importance of predictive FCs into the seven typical networks including 

visual network (VIS), somatomotor network (SMN), dorsal attention network (DAN), ventral 

attention network (VAN), limbic network (LIM), frontoparietal control network (FPC), and 

default mode network (DMN). 
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Figure S9. Association between the discriminative FCs and treatment-outcome-predictive 

FCs. (A), (B) We visualized the correlation between the top 2 active rTMS treatment response 

predictive FCs and active rTMS VAS score change in scatter plot as illustrative examples. These 

two FCs were between the oribitofrontal cortex (LH LIM OFC 1) and anterior cingulate cortex 

(RH Cont PFCmp 2), and between middle temporal cortex (LH DMN Temp 3) and superior 

oribitofrontal cortex (RH LIM OFC 1). (C), (D) The correlation between these two FCs and 

sham rTMS VAS score change. (E), (F) These two FCs distribution between CUD and HC in the 

discovery and independent cohorts. The data in discovery cohort was augmented twice. These 

two FCs were significantly and specifically correlated to the VAS score change and significantly 

different between CUD and HC. (G) Venn diagram indicating the association between 

discriminative and abnormal FCs (551) with active rTMS treatment outcome. Discriminative 

atypical FCs were defined as the discriminative FCs identified by our classification models and 

the significantly atypical FCs detected by two-sample t-tests comparing CUD and HC subjects, 

with those surviving FDR correction (pfdr < 0.05). The number of discriminative atypical FCs 

was equal to the sum of hyperconnections and hypoconnections. Deeper bluer shading indicates 

larger treatment predictive weights. The red numbers in the red rectangle represents the 

overlapping numbers between the top 100 treatment predictive FCs and all discriminative 
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atypical FCs in descending order.  

Figure S10. Illustration of our proposed analytical framework. (A) Region of interests (ROIs) 

level time series were extracted from fMRI BOLD signals based on the Schaefer atlas. 

Functional connectivity was calculated by Pearson’s correlation in time series between any pair 

of ROIs. (B) The functional connectivity features were used to train the XGBoost model to 

classify the subjects into CUD patients or healthy controls. (C) Utilized phenotyping functional 

connectivity (FC) features, a relevance vector machine (RVM) model was employed to predict 

changes in visual analog scale (VAS) scores for patients undergoing repetitive transcranial 

magnetic stimulation (rTMS) treatment. 
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Figure S11. The significant (pfdr < 0.05) Pearson’s correlation between each FC and mean 

of framewise displacements after FDR correction for each dataset. (A) Correlation matrix of 

the SUDMEX-CONN dataset. (B) Correlation matrix of the UCLA-CNP dataset. (C) Correlation matrix 

of the SUDMEX-TMS dataset. Correlation matrix of the NYU dataset is not visualized here since only 

two FCs significantly correlated to FCs.
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Figure S12. Effects of data augmentation on classification performance. When the 

augmentation time was equal to 0, the models were trained with FCs extracted from all-sequence 

time series. When the augmentation time was equal to 1, the models were trained with the FCs 

extracted from all-sequence time series and from the first semi-sequence time series. When the 

augmentation time was equal to 2, the models were trained with the FCs extracted from all-

sequence time series, from the first semi-sequence time series (the first 150 volumes) and from 

the second semi-sequence time series (the last 150 volumes). When the augmentation time was 

equal to 3 or 4, one or two more FC features were extracted from randomly segmented time 

series with a length of 150 volumes. Without augmentation, the accuracy was 0.70 ± 0.07, 

sensitivity was 0.66 ± 0.21, and specificity was 0.74  ± 0.16. Applying augmentation once, 

accuracy was 0.76 ± 0.09, sensitivity was 0.74  ± 0.15, and specificity was 0.78 ± 0.10. Applying 

augmentation twice, the accuracy was 0.83 ± 0.10, sensitivity was 0.80 ± 0.18, and specificity 

was 0.85 ± 0.10. Applying augmentation three times, the accuracy was 0.82 ± 0.11, sensitivity 

was 0.84 ± 0.13, and specificity was 0.82 ± 0.15. Applying augmentation four times, the 

accuracy was 0.84 ± 0.07, sensitivity was 0.83  ± 0.16, and specificity was 0.85 ± 0.14. Finally, 

we augmented the FC twice to pursue exhaustive analysis since the performance was no longer 

further increased. 
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Figure S13. The two-sample t-test comparisons of each FCs across different datasets. (A) 

Comparisons of FCs in SUDMEX-CONN dataset and NYU dataset (SUDMEX-CONN versus 

NYU). (B) Comparisons of FCs in the SUDMEX-CONN dataset and UCLA-CNP dataset 

(SUDMEX-CONN versus UCLA-CNP). (C) Comparisons of FCs in UCLA-CNP dataset and 

NYU dataset (UCLA-CNP versus us NYU). (D) Comparisons of FCs in SUDMEX-CONN 

dataset and SUDMEX-TMS dataset (SUDMEX-CONN versus us SUDMEX-TMS). (E) 

Comparisons of FCs in SUDMEX-TMS dataset and NYU dataset (SUDMEX-TMS versus us 

NYU). (F) Comparisons of FCs in UCLA-CNP dataset and SUDMEX-TMS dataset (UCLA-

CNP versus us SUDMEX-TMS). All t values shown in the panels survived FDR correction 

(pfdr<0.05).  
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Table S1. Results of two-sample t-test comparison of the top 4 discriminative network-level 

connections between healthy controls and patients diagnosed with other clinical diagnostic labels in 

MINI International Neuropsychiatric Interview – Plus Spanish version 5.0 (MINI), including 

substance abuse and suicide diagnosis. These conditions have been suggested to be highly related to 

CUD 2. The p-values between each connection and all clinical variables (including MINI and the 

measurements using in Table S2) were corrected for FDR. Significant results from the t-tests, prior to 

FDR correction (p < 0.05), are displayed in bold and those that passed FDR correction (p < 0.05) are 

highlighted in italic.  

 

  

 

DMN-LIM VAN-FPC SMN-FPC VIS-DAN 

t p p
fdr

 t p p
fdr

 t p p
fdr

 t p p
fdr

 

Suicide risk -2.75 0.007 NS -0.23 0.818 NS 1.20 0.234 NS 0.22 0.828 NS 

Alcohol abuse -2.80 0.006 NS 1.67 0.098 NS 2.50 0.014 NS 1.76 0.082 NS 

Stimulants used 
history 

0.79 0.431 NS -0.03 0.978 NS -0.04 0.965 NS -3.36 0.001 0.011 

Hallucinogens used 
history 

-3.43 0.002 0.025 0.97 0.336 NS -0.28 0.776 NS -0.45 0.655 NS 

Inhalants used history -4.43 <0.001 0.002 1.66 0.099 NS 0.85 0.402 NS 2.36 0.020 NS 
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Table S2. Correlation between the top four discriminative network connections and clinical 

assessments. The scales using here were summarized as follows: World Health Organization 

Disability Assessment Schedule 2.0 (WHODAS), Cocaine Craving Questionnaire General 

(CCQ-G), Barratt Impulsiveness Scale version 11 (BIS), Symptom Checklist-90-revised (SCL). 

Significant results from the t-tests, prior to FDR correction (p < 0.05), are displayed in bold and 

those that passed FDR correction (p < 0.05) are highlighted in italic. 

 

DMN-LIM VAN-FPC SMN-FPC VIS-DAN 

r p p
fdr

 r p p
fdr

 r p p
fdr

 r p p
fdr

 

WHODAS total -0.19 0.026 NS 0.18 0.034 NS 0.08 0.364 NS 0.18 0.035 NS 

WHODAS 
cognition 

-0.17 0.046 NS 0.20 0.016 NS 0.07 0.394 NS 0.17 0.045 NS 

WHODAS 
mobility 

-0.10 0.259 NS 0.11 0.201 NS 0.10 0.229 NS 0.07 0.414 NS 

WHODAS self-
care 

-0.03 0.740 NS 0.15 0.075 NS 0.12 0.175 NS 0.04 0.674 NS 

WHODAS 
getting along  

-0.16 0.064 NS 0.12 0.156 NS 0.11 0.201 NS 0.08 0.356 NS 

WHODAS life 
activities 

-0.11 0.216 NS 0.15 0.081 NS 0.06 0.475 NS 0.06 0.481 NS 

WHODAS 
participation 

-0.15 0.084 NS 0.14 0.112 NS 0.02 0.838 NS 0.15 0.074 NS 

CCQ-G -0.21 0.082 NS -0.04 0.737 NS -0.26 0.031 NS 0.06 0.593 NS 

BIS cognitive -0.03 0.760 NS 0.09 0.369 NS 0.15 0.111 NS 0.13 0.162 NS 

BIS motor -0.07 0.462 NS 0.13 0.168 NS 0.14 0.143 NS 0.14 0.145 NS 

BIS non-planning -0.17 0.071 NS 0.17 0.080 NS 0.11 0.247 NS 0.27 0.004 0.026 

BIS total -0.12 0.230 NS 0.15 0.108 NS 0.16 0.093 NS 0.22 0.021 NS 

SCL 
somatization 

-0.04 0.635 NS 0.11 0.249 NS 0.21 0.023 NS 0.17 0.06 NS 

SCL obsessive 
compulsive 

-0.08 0.366 NS 0.20 0.031 NS 0.17 0.055 NS 0.14 0.136 NS 

SCL 
interpersonal 

sensitivity 
-0.10 0.294 NS 0.17 0.065 NS 0.18 0.041 NS <0.01 0.98 NS 

SCL depression -0.16 0.085 NS 0.24 0.007 NS 0.25 0.006 0.046 0.10 0.296 NS 

SCL anxiety -0.19 0.041 NS 0.23 0.011 NS 0.26 0.004 0.038 0.03 0.706 NS 

SCL hostility -0.08 0.399 NS 0.21 0.021 NS 0.21 0.018 NS 0.13 0.158 NS 

SCL phobic 
anxiety 

-0.17 0.064 NS 0.18 0.046 NS 0.22 0.016 NS 0.10 0.269 NS 

SCL paranoid 
ideation 

-0.03 0.776 NS 0.14 0.122 NS 0.18 0.052 NS <0.01 0.975 NS 
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SCL 
psychoticism 

-0.17 0.060 NS 0.20 0.027 NS 0.18 0.045 NS 0.03 0.775 NS 

SCL total -0.14 0.113 NS 0.21 0.019 NS 0.22 0.013 NS 0.11 0.211 NS 
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Table S3. Correlation between the top four discriminative network connections and 

tobacco use history. 

 

DMN-LIM VAN-FPC SMN-FPC VIS-DAN 

t/r p p
fdr

 t/r p p
fdr

 t/r p p
fdr

 t/r p p
fdr

 

Tobacco use 
in the last 

year 
2.08 0.040 NS -2.04 0.044 NS -0.64 0.521 NS -2.71 0.008 0.031 

Amount of 
cigarettes per 

day 
2.83 0.063 NS 2.46 0.09 NS 0.58 0.562 NS 2.81 0.064 NS 

Years of 
tobacco use 

-0.25 0.008 0.033 0.21 0.027 NS <0.01 0.99 NS 0.19 0.045 NS 

Tobacco age 
of onset 

-0.17 0.087 NS 0.06 0.578 NS <0.01 0.98 NS 0.122 0.231 NS 
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Table S4. Demographic information of the discovery cohort (SUDMEX-CONN dataset).  

Demographic variables HC  CUD  Statistic values 

 
n % n % χ2 p 

Gender       

Male 47 84 62 87 0 1 

Female 9 16 9 13   

unknown 2  0    

 mean std mean std t p 

Age 31.4 ± 8.2 31.2 ± 7.3 0.15 0.88 
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Table S5. Demographic information of New York University datasets. 

Demographic variables CUD 

Gender  

Male, No. (%) 26 (90) 

Female, No. (%) 3 (10) 

Age, mean ± sd 34.2 ± 9.1 
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Table S6. Demographic information of SUDMEX-TMS datasets. The statistical comparison 

was only applied for the patients with rTMS treatments in two weeks. 

 CUD 

Demographic variables Active rTMS Sham rTMS Statistic values No treatment 

 n % n % χ2 p n 

Gender        

Male 21 84 18 90   8 

Female 4 16 2 10 0.02 0.88 0 

 mean std mean std t p mean ± std 

Age 35.9 ± 6.8 33.3 ± 8.4 1.13 0.27 39.9 ± 4.86 
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Table S7. Demographic information of UCLA-CNP datasets. 

Demographic variables HC Other disorders Statistic values 

 n % n % χ2 p 

Gender       

Male 65 80 87 58   

Female 16 20 58 42 8.78 0.003 

 mean std mean std t p 

Age 34.2  ± 9.1 34.8 ± 9.5 0.47 0.64 
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Table S8. Demographic information of the replication cohort. 

Demographic variables HC  CUD  Statistic values 

 
n % n % χ2 p 

Gender       

Male 65 80 71 87 0.77 0.38 

Female 16 20 11 13   

 mean std mean std t p 

Age 34.2 ± 9.1 35.7 ± 8.2 -1.12 0.26 
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