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ABSTRACT  

Background: Amyotrophic lateral sclerosis (ALS) displays considerable clinical, genetic and 
molecular heterogeneity. Machine learning approaches have shown potential to disentangle complex 
disease landscapes and they have been utilised for patient stratification in ALS. However, lack of 
independent validation in different populations and in pre-mortem tissue samples have greatly limited 
their use in clinical and research settings. We overcame such issues by performing a large-scale 
study of over 600 post-mortem brain and blood samples of people with ALS from four independent 
datasets from the UK, Italy, the Netherlands and the US.  

Methods: Hierarchical clustering was performed on the 5000 most variably expressed autosomal 
genes identified from post-mortem motor cortex expression data of people with sporadic ALS from the 
KCL BrainBank (N=112). The molecular architectures of each cluster were investigated with gene 
enrichment, network and cell composition analysis. Methylation and genetic data were also used to 
assess if other omics measures differed between individuals. Validation of these clusters was 
achieved by applying linear discriminant analysis models based on the KCL BrainBank to the 
TargetALS US motor cortex (N=93), as well as Italian (N=15) and Dutch (N=397) blood expression 
datasets. Phenotype analysis was also performed to assess cluster-specific differences in clinical 
outcomes. 

Results: We identified three molecular phenotypes, which reflect the proposed major mechanisms of 
ALS pathogenesis: synaptic and neuropeptide signalling, excitotoxicity and oxidative stress, and 
neuroinflammation. Known ALS risk genes were identified among the informative genes of each 
cluster, suggesting potential for genetic profiling of the molecular phenotypes. Cell types which are 
known to be associated with specific molecular phenotypes were found in higher proportions in those 
clusters. These molecular phenotypes were validated in independent motor cortex and blood 
datasets. Phenotype analysis identified distinct cluster-related outcomes associated with progression, 
survival and age of death. We developed a public webserver (https://alsgeclustering.er.kcl.ac.uk) that 
allows users to stratify samples with our model by uploading their expression data. 

Conclusions: We have identified three molecular phenotypes, driven by different cell types, which 
reflect the proposed major mechanisms of ALS pathogenesis. Our results support the hypothesis of 
biological heterogeneity in ALS where different mechanisms underly ALS pathogenesis in a subgroup 
of patients that can be identified by a specific expression signature. These molecular phenotypes 
show potential for stratification of clinical trials, the development of biomarkers and personalised 
treatment approaches.  
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BACKGROUND  

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which displays considerable 
genetic heterogeneity. Mutations in approximately 40 genes are known to be linked with ALS and can 
explain the majority of familial cases and approximately 20% of sporadic cases1 (SALS). However, a 
further 130 genes have been proposed to contribute to its risk or act as disease modifiers2,3. In 
approximately 90% of people with ALS, the disease is labelled as sporadic, without an apparent 
family history of the disease, with the remainder classed as familial4. ALS is also phenotypically 
variable, with differences in age and site of onset (spinal-innervated muscles vs bulbar), the balance 
of upper and lower motor neuron involvement, rate of disease progression, and the presence of 
cognitive or non-motor symptoms5. Furthermore, a multitude of molecular processes have been 
implicated in its pathogenesis, in part due to the vast number of causative and modifier genes 
associated with ALS that code for diverse cellular functions6. It is therefore plausible that there is no 
universal approach to the treatment of people with ALS, especially given that many therapeutic 
strategies target specific molecular pathways. For example, the protective action of Riluzole on motor 
neurons is proposed to be the result of a reduction in glutamate-mediated excitotoxicity7.  

Machine learning (ML) approaches can be used to help us to understand the genetic and molecular 
complexity and heterogeneity of ALS, for example, by finding patterns in biological and clinical data 
that distinguish some groups of patients from the others. These subgroups can aid in identifying the 
best candidates for therapeutics which target specific biological processes. ML has previously been 
applied to brain expression data to stratify people with SALS into molecular subgroups8–11 and has led 
to valuable insights into the genomic heterogeneity of ALS. However, some of these studies 
integrated samples from different brain regions to generate clusters and characterise their molecular 
architectures10–12. This design would not reflect motor neuron-specific ALS pathogenesis. Other 
studies adopted a case-control framework8,9,11, which could lead to reduced power given the potential 
decoupling between mechanisms underlying risk and clinical presentation13–15. Furthermore, previous 
work has not been validated in independent datasets or in different populations and did not 
investigate whether molecular subtypes identified in post-mortem brains are reflected in other tissues 
available pre-mortem. Such factors have greatly limited the applicability and impact of these results. 
We therefore aimed to identify and validate molecular and phenotypic patterns across multiple 
independent datasets, tissue types and populations, to generate gene expression derived molecular 
subtypes of ALS that can be utilised for stratification in in the design and interpretation of future 
research and clinical studies. 
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METHODS 

A schematic overview of our study protocol is highlighted in Figure 1. 

 

Figure 1. A graphical overview of our study design and analysis protocol. 1) A total of four cohorts were used in 
this study. Motor Cortex: KCL BrainBank (UK), cluster generation; TargetALS (USA), validation. Blood (PBMC): 
Zucca (Italy), validation; van Rheenen (Netherlands), validation. 2) The cohorts for which bulk RNAseq 
sequencing data was generated underwent processing using an in-house pipeline. 3) The non-smooth 
nonnegative matrix factorisation algorithm (nsNMF) was ran using the 5000 most variably expressed genes from 
KCL BrainBank as input, with k=3, 100 runs and 1000 iterations. There were 794 genes which were informative 
and uniquely assigned to one cluster. Gene enrichment and pathway analysis was performed for each cluster to 
obtain their molecular architectures, followed by cell composition analysis of the samples assigned to each 
cluster. We identified three genetically and molecularly distinct clusters which reflect previously investigated 
mechanisms of ALS pathogenesis. 4) Linear discriminant analysis (using sample cluster assignments from KCL 
BrainBank to train the model) was applied to the replication datasets, using the intersection of dataset-expressed 
genes and KCL BrainBank-derived informative genes. 5) Subgroup phenotype analysis was performed on all 
datasets, using various collected clinical and omics variables. 

 
Study Cohorts  
We obtained raw post-mortem primary motor cortex bulk RNA sequencing data in FASTQ format from 
two datasets. The first, which was used to generate the clusters, consisted of 112 people from the UK 
with SALS from King’s College London and the MRC London Neurodegenerative Diseases Brain 
Bank (KCL BrainBank)16. We additionally obtained matching whole genome sequencing (WGS), 
methylation data and clinical data for the KCL BrainBank samples from Project MinE16,17 to perform 
subgroup clinical and omics-based phenotype analysis. For validation of KCL BrainBank-derived 
cluster expression signatures, 168 US samples from 93 people with SALS of North European 
ancestry, present in the Target ALS Human Post-mortem Tissue Core (TargetALS) were used. For 
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further validation of KCL BrainBank-derived clusters, we also processed two peripheral blood 
mononuclear cell (PBMC) datasets; 1) bulk RNA sequencing data in FASTQ format of 15 Italian 
people with SALS (Zucca)18 (NCBI GEO Accession: GSE106443 and GSE115259), and 2) hg18-
aligned log2 transformed and quantile normalised microarray gene probe intensities of 397 Dutch 
people with ALS (van Rheenen)19 (NCBI GEO Accession GSE112681). To determine if the clusters 
were ALS-specific, we also used RNA sequencing data from 59 healthy controls in the KCL 
BrainBank. Sequencing specific methods are described in more detail in the Supplementary Methods. 
The basic demographics of each of the datasets used in this study are detailed in Supplementary 
Table 1. 
 
Bulk RNA Sequencing Data Processing  
Paired FASTQ files from KCL BrainBank, TargetALS and Zucca datasets were interleaved using 
BBMap reformat v38.18.0 under default options before adapters were right-clipped and both sides of 
each read were quality-trimmed with BBMap bbduk v38.18.0. The interleaved FASTQ files were 
aligned to hg38 using STAR v2.7.10a20 under default settings. Raw transcript counts for each gene 
were generated on a sample-wise basis before merging into dataset-specific matrices. The 
processing pipeline is available at https://github.com/rkabiljo/RNASeq_Genes_ERVs. Raw counts 
were normalised using the estimateSizeFactors function of DESeq2, before lowly expressed genes 
and sex chromosomes were removed. The whole dataset was standardized using the variance 
stabilising transformation (vsd) function in DESeq221.  
 
Hierarchical Clustering of KCL Samples  
Our hierarchical clustering was based on a protocol that was previously used to identify cortical 
molecular phenotypes of ALS10. Briefly, the 5000 most variably expressed genes, selected based on 
the highest median absolute deviation values, were extracted from the KCL BrainBank gene 
expression matrix. Unsupervised hierarchical clustering was then performed with the non-smooth 
negative factorisation (nsNMF) algorithm, using helper functions outlined in the SAKE package22. The 
optimal number of clusters was identified by running nsNMF with 100 runs and 1000 iterations for 
different values of k (2 to 10). Cluster estimation results are available in Supplementary Table 2. We 
then ran the nsNMF algorithm with k = 3, 100 runs and 1000 iterations, with the resulting consensus 
matrix showing a clear separation of samples (Supplementary Figure 1). Informative gene and sample 
assignment for each of the three clusters was then extracted. The list of informative genes for each 
cluster was then used to characterise their molecular phenotypes by performing gene enrichment 
analysis using the GProfiler2 R package23. Genes from the whole KCL expression matrix were used 
as a custom gene background. The default g:SCS algorithm was used to assess significant 
enrichment for several process and pathway categories in the following databases: Gene Ontology 
(Biological Process (GO:BP), Molecular Function (GO:MF) and Cellular Component (GO:CC)), Kyoto 
Encyclopaedia of Genes and Genomes (KEGG), Reactome, CORUM, TRANSFAC and miRTarBase. 
Additionally, MetaCoreTM (available at https://portal.genego.com) was used to construct cluster-
specific gene pathway networks using the ’analyze network’ algorithm under default options, with the 
network that displayed the highest significance selected as the one that most defines the cluster. 
 
Cell Type Composition Analysis   
Differences in cell composition between the samples in each cluster for both KCL BrainBank and 
TargetALS datasets were assessed with the BRETIGEA R package24 under default options for the 
following cell types: neurons, endothelial cells, astrocytes, microglia, oligodendrocytes and 
oligodendrocyte progenitor cells (OPCs). The singular value decomposition values, which gives us a 
measure of the relative contribution of each cell type to each cluster, were averaged for each cell type 
before differences in composition were calculated using ANCOVA with age at death and post-mortem 
delay included as covariates, with Bonferroni-corrected p-value of <0.05 denoting significance.  
 
Subgroup Phenotype Analysis 
To reveal and compare the phenotypic architecture of each cluster, we extracted several clinical and 
omics variables from each dataset. Due to variations in the phenotypic information collected and 
accessibility of other omics data, we could not extract some phenotypic variables for all datasets. A 
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breakdown of the collected phenotypic variables for each dataset is available in Supplementary Table 
3. Transcriptional age acceleration was calculated by using RNAAgeCalc25 to obtain tissue-specific 
transcriptional age estimates for each dataset before being subtracted from the chronological age 
(age at death for KCL BrainBank and TargetALS, age at last blood draw for Zucca and van Rheenen). 
Telomere length and mitochondrial DNA copy number were obtained by applying TelSeq v0.0.2 26 
and fastMitoCalc v1.227 to the whole genome sequencing BAM files, respectively. Biological age was 
estimated from the methylation beta-value matrix using CorticalClock28 before acceleration was 
calculated by subtracting each value from the age at death. Differences between clusters were 
assessed using one-way ANOVA, with post-hoc Tukey’s test used to determine subcluster-specific 
trends. The normality of each variable for each dataset was assessed using the Shapiro-Wilk test, 
with any variables that were non-normally distributed (p-value < 0.05) being log-transformed before 
analysing with one-way ANOVA. Results were corrected for sex. Additionally, we applied a Cox 
proportional-hazards model to assess differences in age of onset among clusters by combining 
samples from both KCL BrainBank and TargetALS datasets. A p-value of <0.05 denotes significance. 

Code Availability: The implementation of our class assignment model based on the KCL BrainBank 
data, can be used to assign class membership to new expression samples (both microarray and 
RNAseq) and is publicly available at https://alsgeclustering.er.kcl.ac.uk. The code for the analyses 
performed in this study is available at https://github.com/KHP-Informatics/HierarchicalClusteringALS/. 
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The nsNMF algorithm identified 794 of the 5000 most variably expressed genes as being the most 
informative for defining the clusters. Each informative gene was uniquely assigned to one cluster, 
yielding three genetically distinct clusters, each with a unique gene expression profile. There were 
131, 291 and 372 genes which defined clusters 1, 2 and 3 respectively (Figure 2A). Further details of 
the genetic composition of each cluster are available in Supplementary Table 4. The larger proportion 
of the people with ALS (53.6%) were assigned to cluster 1, followed by cluster 2 (25%) and cluster 3 
(21.4%), without substantial differences in male:female ratio (Figure 2B). Almost all C9 positive cases 
(87.5%) were assigned to cluster 1 (Table 1). Six known ALS-associated genes (HSPB1, CAV1, 
CX3CR1, RNASE2, LUM, LIF) were among the informative genes selected for the cluster signatures, 
with visible differences in their expression in samples assigned to their corresponding clusters 
(Supplementary Figure 2).  

Figure 2. Informative gene and sample assignment for the KCL BrainBank, showing distinct separation of genes and samples 

to each cluster (1, 2, 3). A) Number of the 794 informative genes uniquely assigned to each cluster, with the top 5 

contributing genes (defined by posterior probability) listed at the side. B) Distribution of cluster assignment of SALS cases 

alongside the male: female ratio. The coloured scale refers to the posterior probability value.  

Each cluster represents a molecularly distinct phenotype linked to ALS pathogenesis 

Characterising the molecular architectures of each cluster by using gene enrichment and gene 
network analyses, we found that each cluster represents a distinct molecular phenotype. Cluster 1 
was significantly enriched for various neuronal and synaptic signalling-related processes such as 
neuropeptide activity, cAMP signalling, and neuroactive ligand transcription, binding, and receptor 
interaction (Figure 3A, Supplementary Table 5). Network analysis revealed that a mitochondria 
specific signalling network is also present (Figure 3B, p= 1.05E-20). Led by NXPH2, ATP12A, 
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PTPRV, SV2C and C18orf42, this network is enriched for mitochondrial ATP synthesis coupled 
electron transport and the aerobic electron transport chain. 

Cluster 2 was strongly linked with excitotoxicity, as shown by significant enrichments for oxidative 
stress, apoptotic signalling and cell death, and vasculature related processes such as angiogenesis, 
blood vessel development, epithelial cell differentiation and atherosclerosis (Figure 3C). Moreover, 
muscle-system and extracellular-matrix (ECM) specific enrichments (e.g., collagen synthesis and 
degradation, smooth muscle contraction, ECM proteoglycans and degradation) and anti-inflammatory 
pathways (interleukin-4 and interleukin-13 signalling, neutrophil degranulation) from Reactome were 
also associated with this cluster (Figure 3C). The muscle contraction theme was strengthened with 
GO:CC enrichments for banded collagen fibril, supramolecular fiber, myofibril, Z disc, I band, 
sarcomere and the actin cytoskeleton (Supplementary Table 6). Cluster 2 was also enriched for ALS-
gene related NOS3-CAV1 CORUM complex (p = 0.018). Furthermore, the cluster 2 network (Figure 
3D, p = 1.09E-17), which was driven by MFAP4, FPRL1, TUSC5, MRGPRF and suPAR, was 
associated with muscle contraction and actin-myosin filament sliding as well as phospholipase C-
activating G protein coupled signalling. Cluster 3 represents a inflammatory phenotype, with biological 
process enrichment strongly associated with immune response in GO:BP and KEGG (Supplementary 
Table 7), as well as links with adaptive immunity, complement cascade and interferon gamma 
signalling in Reactome and immunoglobulin activity and major histocompatibility complex (MHC) class 
II in GO:MF (Figure 3E). Furthermore, C1q and TLR1-TLR2 CORUM complexes and viral diseases 
present in KEGG, such as Epstein-Barr disease, herpes simplex virus 1 and influenza A were among 
the most significant enrichments (Supplementary Table 7). Nine microRNAs were also significantly 
enriched in cluster 2 (including hsa-miR-335-5p, hsa-miR-146a-5p, hsa-mIR-124-3p, hsa-miR-29a-3p, 
and hsa-miR-204-5p), with hsa-miR-335-5p also being enriched in cluster 3 (Supplementary Tables 6 
and 7). The cluster 3 network (Figure 3F, p = 1.47E-26), defined by GNLY, HSPA7, SLAMF8, 
CLEC17A and Sgo1, is MHC-class II specific and enriched for antigen processing, peptide antigen 
assembly, and presentation of peptides and polysaccharide antigens. Furthermore, the centre of the 
network, GATA-2, was the most significantly enriched TRANSFAC element in cluster 3 (GATAD2A, p 
= 9.56E-17, Supplementary Table 7). 
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Figure 3. Results of gene enrichment and network analyses. Cluster 1:  A) GProfiler2 reveals enrichment for various 

signalling-related processes. B) The most significant sub-cluster reveals a mitochondrial-specific signalling network. Cluster 

2: C) GProfiler2 reveals enrichment for excitotoxicity, oxidative stress, anti-inflammatory and muscle system related 

processes. D) The most significant sub-cluster strengthens the support for muscle contraction processes being at the heart 

of this cluster. Cluster 3: E) GProfiler2 reveals enrichment for pro-inflammatory processes. F) The most significant sub-

cluster reinforces the link to inflammation with the identification of an MHC Class 2 specific network. GO:BP – Gene 

Ontology Biological Process, GO:CC – Gene Ontology Cellular Components, GO:MF – Gene Ontology Molecular Function, 

KEGG: Kyoto Encyclopaedia of Genes and Genomes, REAC: Reactome, TF: Transfac. Red circles present in each network 

represent informative genes identified in each cluster. The descriptions of what the other symbols represent available in 

Supplementary Figure 3. 

 

The identified molecular phenotypes replicate in independent post-mortem motor cortex data 
and blood datasets and are ALS-specific  

To validate the KCL BrainBank derived clusters, we performed linear discriminant-driven cluster 
assignments of the TargetALS, Zucca and van Rheenen samples, using the intersection between the 
genes expressed in each one of them and the 794 genes that were used to define the clusters in the 
KCL BrainBank. 470, 381 and 535 were selected in this way for TargetALS, Zucca and van Rheenen 
datasets, respectively. In this analysis the linear discriminants were derived from the KCL BrainBank 
clustering. Samples from each dataset were assigned to one of the three clusters with high accuracy 
based on average posterior probability (diagonal cells in Figure 4A-C). A breakdown of the sample to 
cluster composition for all datasets is available in Table 1, with a visual inspection of their sample 
assignments available in Supplementary Figure 4. The posterior probability of assignment to each of 
the three clusters for each sample is available in Supplementary Table 8. To determine whether the 
clusters withheld validity in a control dataset, we applied the same modelling to the KCL BrainBank 
controls (demographics available in Supplementary Table 1). All controls were assigned to cluster 1 
(Figure 4D). As the model is constrained to assign each sample to at least one class, we then sought 
to see if there were differences in the expression of the informative genes between cluster 1 cases 
and controls. We found that 66.4% of cluster 1 informative genes were significantly upregulated in 
cases that were assigned to cluster 1 (Supplementary Figure 5, Supplementary Table 9), supporting 
the ALS-specificity of the clusters.  
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Figure 4. Results of linear discriminant analysis-based cluster assignment of A) TargetALS, B) Zucca, C) van Rheenen and D) 

BrainBank controls using the shared informative genes between each dataset and BrainBank cases and the BrainBank 

cases-defined cluster assignment to train the model. The x axis represents the average predicted posterior probability of 

being assigned to one of the three clusters, with the diagonals of the y axis representing the average posterior probability of 

being assigned to the correct cluster. Values are represented as percentages. 
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Distinct cell types contribute to the molecular phenotypes 

When performing cell deconvolution analysis for the KCL BrainBank and Target ALS datasets, we 
found that the samples that were assigned to each cluster had distinctive cell-type profiles which were 
very similar in both datasets (Figure 5). These profiles were reflective of the biological processes and 
networks identified during molecular phenotype analysis. Samples residing in cluster 1 had a higher 
neuronal cell contribution, whilst a higher endothelial cell composition was observed for cluster 2. 
Microglia were more prominent in cluster 3. Astrocytes, oligodendrocytes, and oligodendrocyte 
progenitor cells were also associated with cluster 3 in both datasets. The full results are available in 
Table 2. 

Figure 5. Cell type composition analysis in KCL BrainBank (top panel) and TargetALS (bottom panel) showing that samples in 

Clusters 1, 2 and 3 have a higher neuronal cell, endothelial cell, and microglia contribution, respectively, which reflects their 

enrichment for cell type-related processes. Astrocytes, oligodendrocytes, and oligodendrocyte progenitor cells are also 

associated with Cluster 3. The coloured scale corresponds to the mean singular value decomposition (SVD) of samples 

assigned to each cluster. Values represent the relative percentage change (Δ) of the mean SVD in that particular cluster 

compared to the mean SVD of the other two clusters for each cell type, with the symbols representing significant pairwise 

comparisons of the mean SVD in a particular cluster, compared to Cluster 1 (•), Cluster 2 (†) and Cluster 3 (¥). The cell types 

considered were neurons (neu), endothelial cells (end), astrocytes (ast), microglia (mic), oligodendrocytes (oli) and 

oligodendrocyte progenitor cells (opc). 

 

Clusters present different clinical outcomes and omics measures  

In both KCL BrainBank and TargetALS, we observed that cluster 2 demonstrated differences in 
several phenotypic and omics measures (full results available in Table 3). For instance, cluster 2 
compared to cluster 1, had a higher age of death (Figure 6A-B) and smaller transcriptional age 
acceleration (Figure 6C-D). This trend continues when looking at variables present in one of the two 
datasets, with a 3.87 year slower biological age acceleration being observed in cluster 2 compared to 
cluster 3 in KCL BrainBank (p-value 0.02), and a larger but albeit non-significant increase in disease 
duration in TargetALS samples assigned to cluster 2. We also found trends for longer telomere length 
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and higher mitochondrial DNA copy number in cluster 1 in KCL BrainBank samples. When assessing 
differences in age of onset based on samples combined from KCL BrainBank and TargetALS, we 
found that samples residing in cluster 1 have a lower age of onset compared to clusters 2 and 3 
(Figure 6E; p-value 0.013). For the Zucca and van Rheenen datasets, only age of onset and 
transcriptional age acceleration were available, for which there was no significant alteration in 
outcomes between clusters. The Zucca samples followed a similar trend of smaller transcriptional age 
acceleration in cluster 2 compared to cluster 1 (-5.1 years) and cluster 3 (-1.67 years) as the KCL 
BrainBank and TargetALS datasets, whereas the van Rheenen dataset seemed to follow the opposite 
trend (Table 3). This peculiarity continues when comparing differences in the age of onset of clusters 
in both brain and blood; the age of onset is higher in cluster 2 when looking at KCL BrainBank, 
TargetALS and Zucca datasets, with a lower age of onset in cluster 2 of van Rheenen compared to 
the other clusters (Table 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Subgroup phenotype analysis between samples residing in each cluster, comparing the age of death for A) KCL 

BrainBank and B) TargetALS, and transcriptional age acceleration for  C) KCL BrainBank and D) TargetALS. P-values are from 

performing one-way ANOVA, corrected for sex. E) Cox proportional hazards model for the age of onset of samples from 

both BrainBank and TargetALS datasets, showing that samples from Cluster 1 have a significantly lower age of onset than 

Clusters 2 and 3.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2023. ; https://doi.org/10.1101/2023.04.21.23288942doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.21.23288942
http://creativecommons.org/licenses/by/4.0/


DISCUSSION  

In this study, we used KCL BrainBank motor cortex gene expression data and machine learning to 
identify expression signatures which constitute three biologically homogeneous subgroups of SALS, 
which reflect three previously hypothesised key mechanisms of ALS pathogenesis. These molecular 
phenotypes were driven by different cell types, indicative of their main mode of pathogenesis. The 
mechanisms found in our study have been previously described using expression data29. In our study 
we showed that distinct mechanisms are relevant for distinct subgroups of patients and developed a 
model to stratify patient samples into these subgroups using post- and pre-mortem expression data. 
Moreover, our results were confirmed in independent motor cortex and blood tissue datasets from 
different populations of European ancestry.  

Cluster 1 – Neuronal Signalling Dysfunction 

Genes which constitute the three main subgroups of cortical inhibitory GABAergic interneurons 
(PVALB, SST, VIP)30 were identified in this cluster, which is interesting given alterations in their 
excitability patterns cause global hyperexcitability of corticospinal neurons31. Hyperexcitability of 
motor cortex circuitry has long been hypothesised as a trigger for the spread of ALS pathology32,33. It 
is reasonable to propose that this hypothesis is supported by the evidence presented in this study, 
particularly given the cluster’s enrichment for anterograde trans-synaptic signalling. There were also 
several informative genes related to body mass index, metabolism and energy homeostasis 
(LINC01844, ADCYAP1, CRH, CRHBP, CARTPT, VGF). These processes are linked with worse 
survival and progression outcomes in ALS34–36. 

Cluster 2 – Excitotoxicity / Muscle Contraction 

Several muscle system related enrichments defined this cluster, which suggests that neuromuscular-
based therapeutics could be beneficial for this subgroup of patients. This cluster was also enriched for 
anti-inflammatory signalling processes and contained several neuroprotective microglial secretory 
markers (IL4R, TGFB1I1, TGFBI, CD163)37 as well as the MMP9 metalloproteinase gene, whose 
knockdown slows disease progression in ALS mutant models38–40. With microglia contributing 
minimally to this cluster, and better clinical and omics-based age outcomes defining the clusters 
phenotypic profile, we can postulate that a reversal of pro-inflammatory processes may be occurring 
in this SALS subpopulation. This is further supported by evidence that knockout of the ALS risk gene 
CAV141 in endothelial cells, which were the drivers of pathogenesis for this molecular phenotype, can 
reduce innate immune system signalling via activation of endothelial nitric oxide synthase (NOS3)42; a 
complex of which was observed in our enrichment analysis. 

Cluster 3 - Inflammation 

In this cluster, there was clear involvement of the major histocompatibility complex class II and the 
HLA complex (HLA-DRA, HLA-DMB, HLA-DOA, HLA-DPA1, HLA-DRB1, HLA-DRB5, HLA-DRB6), 
M1 or activated microglia (CD14, CD86, TREM2, TYROBP, TMEM119, TMEM125)37 and pro-
inflammatory metalloproteinases (MMP14), as well as many immune related genes which were 
identified in other motor cortex and spinal cord SALS expression studies8,43,44. Three tentative ALS-
related modifier genes (LUM45, LIF46, CX3CR147), which are involved in proinflammatory processes48–

50 and microglial-induced neuronal cell loss51, were also present in this cluster. 

 
We also discovered that there were distinct clinical and omics-related outcomes that distinguished 
each cluster. Cluster 2 was associated with a slower progression and better outcome across both 
motor cortex and blood datasets. There are several plausible explanations as to why this trend was 
observed; the first is that more people assigned to this cluster may have a history of Riluzole usage 
than other clusters, as it modulates apoptosis, autophagy and excitotoxicity-related processes52,53. 
Another possibility is that there may be genomic variants present in inflammatory genes that abolish 
their effects. This theory is supported by the example of IL18RAP, which is an M1 secretory marker37 
present in this cluster, of whom 3’UTR variants were recently found to protect against ALS, by 
impeding microglial-dependent motor neuron degeneration54. There is also evidence linking increased 
serum levels of the chronic inflammation marker suPAR, encoded by the informative gene PLAUR, 
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with higher biological age acceleration in the normal population55. Therefore, suPAR could be a 
modulator of prognostic outcomes in SALS patients associated with this molecular phenotype. 
Telomere length was longer in cluster 1, which is also an important trend to investigate as there is 
mounting evidence supporting the association between longer telomere length and worsened severity 
of ALS56,57. Indeed, inhibition of the cluster-related gene LINC01844/miR-1255 can increase 
telomerase activity58, therefore the miR-1255 family should be studied as a potential biomarker of 
ALS. 

Our analysis also revealed several known candidate gene biomarkers which could be exploited to 
stratify people with SALS. Cluster 3 contains several well studied serum and CSF biomarkers of ALS 
progression, such as SPP159, the human chitinases CHI3L1 and CHI3L260,61, and complement C362, 
in addition to prognostic and predictive CSF biomarkers such as TREM2, LILRA2 and ITGB263. 
Moreover, cluster 2 was enriched for several potential microRNA biomarkers. The most encouraging 
in terms of its impact on the molecular phenotype are miR-335-5p and miR-29b-3,  as they are 
downregulated in ALS patients64. Additionally, their downregulation in model systems induces reactive 
oxygen species-mediated excitotoxicity65, and intrinsic apoptosis mediated motor neuron loss66. 

There are several limitations of this study which will require further investigation in the context of our 
findings. First, only samples belonging to the KCL BrainBank dataset had matching multi-omics data, 
which meant that cluster-specific effects on omics variables could not be assessed in the other 
datasets. Likewise, both blood datasets had limited clinical information, which did not allow us to 
validate all possible clinical phenotype associations. Furthermore, the van Rheenen dataset displayed 
opposite trends in age-related outcomes. Some potential explanations are that microarray technology 
was used to obtain the transcriptomic profiles translating in a lower number of genes samples and 
lower class assignment accuracy, and that the Dutch population might present a more distinct 
structure compared to other European countries67. Furthermore, we did not integrate genomic 
variants into our analysis to further enhance our molecular classification, like recent studies that built 
upon their previous clustering analyses11,68.  

In conclusion, we have demonstrated that people with ALS can be successfully stratified into 
molecularly and phenotypically distinct subgroups using gene expression data. Our results support 
the hypothesis that each mechanism underlies a distinct form of ALS pathogenesis and can be 
identified in patients via specific expression signatures. These molecular phenotypes discovered in a 
UK cohort, were validated in independent motor cortex and blood datasets, showing potential to be 
used for clinical trial stratification and the development of biomarkers and personalised treatments. 
We have developed a publicly available web app (https://alsgeclustering.er.kcl.ac.uk) to allow the 
broader scientific and clinical community to use our model for the stratification of samples and 
patients in their studies. 
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 KCL BrainBank  TargetALS Zucca van Rheenen 

 1 2 3 1 2 3 1 2 3 1 2 3 

Number of Samples (%) 60 (53.57) 28 (25.00) 24 (21.43) 97 (57.7) 28 (16.6) 43 (25.6) 13 (86.70) 1 (6.65) 1 (6.65) 335 
(84.38) 

33 (8.31) 29 (7.31) 

Number of Samples with a posterior 
probability ≥ 80% (%) 

NA NA NA 88 (90.7) 22 (78.6) 31 (72.1) 9 (69.2) 1 (100) 0 (0) 275 (82.0) 31 (72.1) 11 (37.9) 

N Males: N Females (Ratio) 35:25 
(1.4) 

15:13 
(1.15) 

15:9 (1.67) 60:37 
(1.62) 

18:10 
(1.80) 

21:22 
(0.95) 

 6:7 (0.86)  0:1 (0)  1:0 (0)  205:130 
(1.58) 

 18:15 
(1.20) 

 16:13 
(1.23) 

No. C9 positive individuals  7 1 0 11  0 4  NA NA NA NA NA NA 

Age at Symptom Onset in Years               
(mean ± SD) 

59.2 ± 
11.4 

63.5 ± 
13.8 

59.7 ± 17.5 59.6 ± 
11.1 

64.9 ± 
9.52 

60.3 ± 
11.5 

63.6 ± 8.6 67.0 ± 0.0 65.0 ± 0.0 62.7 ± 11.9 57.9 ± 
12.0 

60.9 ± 
12.3 

Age at Blood Draw in Years (mean ± 
SD) 

NA NA NA NA NA NA 66.1 ± 9.8 69.0 ± 0.0 68.0 ± 0.0 NA NA NA 

Age At Death in Years                            
(mean ± SD) 

62.5 ± 
11.4 

70.2 ± 
11.4 

64.2 ± 15.6 63.2 ± 
10.2 

69.5 ± 9.0 64.5 ± 8.9 NA NA NA NA NA NA 

Limb Onset (N) 36 10 17 65 22 17 NA NA NA NA NA NA 

Bulbar Onset (N) 15 7 5 14 5 21 NA NA NA NA NA NA 

Limb + Bulbar Onset (N) 1 1 0 7 0 1 NA NA NA NA NA NA 

Diagnostic Delay in Years                      
(mean ± SD) 

0.0015 ± 
0.0013 

0.00047 ± 
0.00085 

0.001 ± 
0.0012 

0.025 ± 
0.32 

0.073 ± 
0.59 

0.12 ± 
0.35 

NA NA NA NA NA NA 

Disease Duration in Years (median 
(IQR)) 

3.00 
(1.96) 

1.71 
(1.81) 

2.25 (1.75) 3.00 
(2.13) 

4.00 
(3.48) 

2.00 
(2.00) 

NA NA NA NA NA NA 

Post-mortem Delay in Hours (mean ± 
SD) 

26.1 ± 
12.10 

26.0 ± 
10.70 

25.9 ± 
13.90 

9.9 ± 6.10 10.0 ± 
7.45 

12.0 ± 
8.26 

NA NA NA NA NA NA 

Mitochondrial DNA Copy Number             
(mean ± SD) 

465 ± 
22.0 

457 ± 
22.4 

459 ± 17.3 NA NA NA NA NA NA NA NA NA 

Telomere Length in Kilobytes (mean ± 
SD) 

4.04 ± 
0.46 

3.98 ± 
0.56 

3.77 ± 0.42 NA NA NA NA NA NA NA NA NA 

Transcriptional Age Acceleration in 
Years (mean ± SD) 

6.16 ± 
9.24 

0.45 ± 
10.90 

5.59 ± 
10.80 

10.50 ± 
8.63 

4.19 ± 
8.08 

8.54 ± 
8.44 

 -23.50 ± 
9.90 

 -28.60 ± 
0.00 

 -26.93 ± 
0.00 

 -41.21 ± 
11.66 

 -36.68 ± 
11.84 

 -38.62 ± 
11.69 

Biological Age Acceleration in Years 
(mean ± SD) 

5.99 ± 
2.92 

4.06 ± 
4.65 

7.93 ± 4.67 NA NA NA NA NA NA NA NA NA 

Table 1. Demographics and omics-based/clinical phenotypes for the samples assigned to each cluster for each dataset. NA represents values that could not be collected due to omics and 

clinical data availability.
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 KCL BrainBank  

Cell Type Cluster 1 Mean ± SEM Cluster 2 Mean ± SEM Cluster 3 Mean ± SEM ANCOVA (F-statistic, p value) Post-Hoc Analysis (Bonferroni p-value) 

Neurons 0.036 ± 0.011 -0.033 ± 0.016 -0.052 ± 0.017 11.284, 3.0E-05 1 * 2; 0.0030, 1 * 3; 1.4E-04, 2 * 3; 1.0000 

Endothelial Cells -0.053 ± 0.009 0.105 ± 0.013 0.009 ± 0.014 48.062, 1.28E-15 1 * 2; 4.98E-16, 1 * 3; 0.001, 2 * 3; 6.0E-6 

Microglia -0.050 ± 0.010 0.023 ± 0.014 0.098 ± 0.015 36.140, 1.02E-12 1 * 2; 1.5E-04, 1 * 3; 9.47E-13, 2 * 3; 0.001 

Astrocytes -0.053 ± 0.010 0.044 ± 0.015 0.080 ± 0.016 31.260, 2.04E-11 1 * 2; 1.0E-06, 1 * 3; 3.05E-10, 2 * 3; 0.304 

Oligodendrocytes 0.005 ± 0.009 -0.092 ± 0.014 0.095 ± 0.015 42.487, 2.62E-14 1 * 2; 2.82E-07, 1 * 3; 4.0E-06, 2 * 3; 9.67E-15 

Oligodendrocyte 
Progenitor Cells 

-0.056 ± 0.010 0.056 ± 0.014 0.075 ± 0.015 36.101, 1.04E-12 1 * 2; 1.37E-08, 1 * 3; 1.72E-10, 2 * 3; 1.000 

 TargetALS  

Cell Type Cluster 1 Mean ± SEM Cluster 2 Mean ± SEM Cluster 3 Mean ± SEM ANCOVA (F-statistic, p value) Post-Hoc Analysis (Bonferroni p-value) 

Neurons 0.270 ± 0.007 -0.042 ± 0.013 -0.034 ± 0.011 16.476, 3.25E-07 1 * 2; 3.9E-05, 1 * 3; 2.2E-05, 2 * 3; 1.000 

Endothelial Cells -0.034 ± 0.007 0.056 ± 0.013 0.040 ± 0.010 28.611, 2.66E-11 1 * 2; 2.19E-08, 1 * 3; 5.55E-08, 2 * 3; 1.000 

Microglia -0.024 ± 0.007 -0.022 ± 0.013 0.075 ± 0.010 34.050, 5.52E-13 1 * 2; 1.000, 1 * 3; 8.99E-13, 2 * 3; 6.03E-08 

Astrocytes -0.035 ± 0.006 -0.004 ± 0.011 0.085 ± 0.009 59.570, 6.43E-20 1 * 2; 0.047, 1 * 3; 2.01E-20, 2 * 3; 2.56E-08 

Oligodendrocytes -0.022 ± 0.006 -0.051 ± 0.011 0.086 ± 0.009 65.506, 2.40E-21 1 * 2; 0.071, 1 * 3; 1.79E-18, 2 * 3; 2.52E-17 

Oligodendrocyte 
Progenitor Cells 

-0.032 ± 0.007 0.026 ± 0.012 0.062 ± 0.010 31.812, 2.66E-12 1 * 2; 2.1E-04, 1 * 3; 4.45E-12, 2 * 3; 0.086 

 

Table 2. Statistical results of cell type contribution analysis using ANCOVA and Bonferroni post-hoc analysis to see cluster-specific trends. Results were corrected for sex and post-mortem delay. 
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KCL BrainBank 

Phenotype Normality (Shapiro-
Wilk W, p-value) 

One-Way ANOVA (F-
statistic, p-value) 

Post-Hoc Analysis (Tukey 
p-value) 

Age at Onset 0.986, 0.618 0.478, 0.622 1 * 2; 0.594, 1 * 3; 0.978, 2 * 
3; 0.763 

Age at Death 0.976, 0.042 2.979, 0.055 1 * 2; 0.051, 1 * 3; 0.988, 2 * 
3; 0.168 

Disease Duration  0.943; 3.5E-04 4.211; 0.018 1 * 2; 0.036, 1 * 3; 0.092, 2 * 
3; 0.890 

Post-mortem Delay 0.951, 4.4E-04 0.178, 0.837 1 * 2; 0.997, 1 * 3; 0.851, 2 * 
3; 0.855 

mtDNA Coverage 0.944, 3.2E-04 1.886, 0.157 1 * 2; 0.988, 1 * 3; 0.145, 2 * 
3; 0.294 

mtDNA Copy Number 0.966; 9.9E-03 1.643, 0.199 1 * 2; 0.231, 1 * 3; 0.458, 2 * 
3; 0.945 

Telomere Length 0.972, 0.028 2.451, 0.092 1 * 2; 0.810, 1 * 3; 0.074, 2 * 
3; 0.350 

Biological Age 
Acceleration 

0.971, 0.025 3.858, 0.025 1 * 2; 0.110, 1 * 3; 0.414, 2 * 
3; 0.020 

RNA Age Acceleration 0.981, 0.142 2.847, 0.063 1 * 2; 0.055, 1 * 3; 0.973, 2 * 
3; 0.203 

TargetALS 

Phenotype Normality (Shapiro-
Wilk W, p-value) 

One-Way ANOVA (F-
statistic, p-value) 

Post-Hoc Analysis (Tukey 
p-value) 

Age at Onset 0.977, 7.1E-03 2.463, 0.088 1 * 2; 0.075, 1 * 3; 0.968, 2 * 
3; 0.194 

Age at Death 0.984, 0.053 4.456, 0.013 1 * 2; 0.009, 1 * 3; 0.765, 2 * 
3; 0.089 

Diagnostic Delay 0.776, 2.9E-14 0.926, 0.398 1 * 2; 0.840, 1 * 3; 0.373, 2 * 
3; 0.867 

Disease Duration 0.705, 2.2E-16 2.403, 0.094 1 * 2; 0.114, 1 * 3; 0.944, 2 * 
3; 0.110 

Post-mortem Delay 0.883, 6.8E-10 1.176, 0.311 1 * 2; 0.892, 1 * 3; 0.405, 2 * 
3; 0.349 

RNA Age Acceleration 0.989, 0.292 6.004, 3.1E-03 1 * 2; 0.002, 1 * 3; 0.420, 2 * 
3; 0.092 

Zucca 

Phenotype Normality (Shapiro-
Wilk W, p-value) 

One-Way ANOVA (F-
statistic, p-value) 

Post-Hoc Analysis (Tukey 
p-value) 

Age at Onset 0.926, 0.242 0.078, 0.926 1 * 2; 0.926, 1 * 3; 0.987, 2 * 
3; 0.986 

RNA Age Acceleration 0.990, 0.999 0.178, 0.839 1 * 2; 0.868, 1 * 3; 0.936, 2 * 
3; 0.992 

van Rheenen 

Phenotype Normality (Shapiro-
Wilk W, p-value) 

One-Way ANOVA (F-
statistic, p-value) 

Post-Hoc Analysis (Tukey 
p-value) 

Age at Onset 0.975, 2.0E-06 2.282, 0.103 1 * 2; 0.100, 1 * 3; 0.738, 2 * 
3; 0.634 

RNA Age Acceleration 0.973, 9.1E-07 2.788, 0.063 1 * 2; 0.082, 1 * 3; 0.479, 2 * 
3; 0.787 

 

Table 3. Statistical results of clinical and omics-based phenotype analysis. Variables that demonstrated non-normality via 

Shapiro Wilk were log transformed before running one-way ANOVA and post-hoc Tukey’s to assess cluster-specific trends. 

Results were corrected for sex. 
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