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Abstract 
 
Background: Glioma is associated with pathologically high peritumoral brain activity, which 
relates to faster progression. Functional connectivity is disturbed locally and throughout the 
entire brain, associating with symptomatology. We, therefore, investigated how local 
activity and network measures relate to better understand how the intricate relationship 
between the tumor and the rest of the brain may impact disease and symptom progression.  
Methods: We obtained magnetoencephalography in 84 de novo glioma patients and 61 
matched healthy controls. The offset of the power spectrum, a proxy of neuronal activity, 
was calculated for 210 cortical regions. We calculated patients’ regional deviations in delta, 
theta and lower alpha network connectivity as compared to controls, using two network 
measures: clustering coefficient, a measure of local connectivity, and eigenvector centrality 
(integrative connectivity). We then tested group differences in activity and connectivity 
between peritumoral, contralateral homologue regions, and the rest of the brain. We also 
correlated regional offset to connectivity.  
Results: As expected, patients’ peritumoral activity was pathologically high, and patients 
showed higher clustering and lower centrality than controls. At the group-level, regionally 
high activity related to high clustering in controls and patients alike. However, within-
patient analyses revealed negative associations between regional deviations in brain activity 
and clustering, such that pathologically high activity coincided with low network clustering, 
while regions with ‘normal’ activity levels showed high network clustering. 
Conclusions: Our results indicate that pathological activity and connectivity co-localize in a 
complex manner in glioma. This insight is relevant to our understanding of disease 
progression and cognitive symptomatology.  
   
Keywords: graph theory | cancer neuroscience | clinical neurophysiology| brain tumor |  
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Keypoints 

 Regional activity and network clustering are pathologically high in glioma  

 However, high-activity regions show low clustering and vice versa 

 This finding could be relevant to understand functioning and prognosis in glioma 
 

Importance of the study 
Glioma patients show high peritumoral brain activity, which relates to faster tumor 
progression. Moreover, patients have local and global functional network disturbances, 
which associate with cognitive dysfunction and other symptoms. However, how such 
activity and network deviations correlate across and within patients is unclear. We, 
therefore, studied a large cohort of newly diagnosed glioma patients and matched healthy 
controls, extracting activity and connectivity from the entire cortex. We find a surprising 
relationship between deviations in activity and local clustering: while higher activity and 
clustering go hand in hand in controls, the pathologically high activity we observe in 
individual glioma patients coincides with exceedingly low clustering, while areas with 
normal activity levels have pathologically high clustering. These insights indicate an intricate 
relationship between aberrant activity and connectivity throughout the brain in glioma. It 
remains to be seen how this complex relationship impacts tumor growth and potentially 
cognitive deficits.  
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Introduction 

 
 Glioma is the most common type of primary brain tumor. The prognosis is poor, and 
many patients suffer from debilitating symptoms such as cognitive dysfunction. In addition, 
patients show differences in whole-brain neurophysiology compared to healthy controls 
(HCs). Specifically, disturbances in neuronal activity and functional brain network 
connectivity have been found locally as well as throughout the brain. However, it is unclear 
how these indices of brain functioning relate to each other, while the interplay between 
activity and connectivity might be essential for prognosis and patient functioning. 
  In preclinical studies, glioma cells directly and reciprocally interact with their 
immediate neuronal environment.1,2 Via the formation of glutamatergic neuron-to-glioma 
synapses, neuronal spiking activity in the tumor’s proximity directly promotes tumor 
proliferation and invasion .2,3 Translational studies have used magnetoencephalography 
(MEG) as a non-invasive measurement of neuronal activity, reporting high activity around 
the tumor and across the tumor hemisphere as compared to controls.4 This pathologically 
high brain activity relates to shorter progression-free survival,5,6 even when using global 
brain activity measures, further underlining the clinical relevance of activity throughout the 
brain for tumor growth in glioma patients.  
 Glioma patients also show different activity synchronization between brain regions 
(i.e., functional connectivity) compared to healthy people. Functional connectivity is the 
statistical dependency between time series (activity patterns) from different brain regions.7 
Based on the full matrix of pairwise connectivities between brain regions, network (graph) 
theory can be used to extract meaningful network topological markers.8,9 These measures 
can reflect whole-brain or regional topology. Typically, a combination of segregative and 
integrative topological measures are used to characterize the brain network, as the 
combination of local specialization and overall integration is considered essential for 
network functioning.10 Glioma patients show higher local, segregative connectivity, while 
integrative connectivity is lower in comparison to controls.10–13 As is the case for activity, 
higher functional connectivity is associated with shorter survival.14 Moreover, pathologically 
high global clustering, describing the overall segregative properties of the network,8,9 relates 
to poorer cognitive performance.12,13,15,16 Interestingly, these disturbances in local clustering 
are not limited to the peritumoral region: they do not correlate with distance from the 
tumor and are thought to represent a truly global network pathology.12 
 In support of the idea that the interaction between the ‘rest of the brain’ and glioma 
is complex and clinically important, we recently showed that gliomas tend to occur in 
regions with intrinsically higher brain activity in HCs.17 Moreover, while most tumors seem 
to occur in regions with intrinsically high clustering and integrative connectivity in 
controls,12,18,19 patients with gliomas located in regions with intrinsically low clustering have 
more extensively different functional network clustering at diagnosis.12 However, it is 
unclear how activity and connectivity are interrelated throughout the brain. Answering this 
question could help guide our thinking on tumor-brain cross-talk and its impact on disease 
progression and (management of) symptomatology.  

Therefore, we focused on how these two aspects of neurophysiological functioning 
co-occur regionally, not only in the tumor region but throughout the brain, by collecting 
MEG in glioma patients and controls. We hypothesized that high local activity would relate 
to high local clustering, as local activity as measured with MEG already reflects the 
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synchronous activity of large groups of neurons and may therefore imply local clustering.20 
Furthermore, brain regions with higher levels of neuronal spiking activity also show higher 
integrative connectivity in (computational) studies.21–23 We thus hypothesized positive 
correlations between activity and connectivity, at least in HCs. Finally, we explored whether 
the level of peritumoral activity would drive the relationships between distant activity and 
network connectivity, which could indicate global effects of local pathological activity.  

 
  

Materials and Methods 
 
Participants  
 Patient data stemmed from an ongoing study at the Amsterdam UMC location VUmc 
that included newly diagnosed patients with diffuse glioma and has been published on in 
the past (Supplementary Table S1). Inclusion criteria were suspected glioma of grade II or 
higher as defined by the 2006 WHO classification,24 and  age >18 years. Exclusion criteria 
were neuropsychiatric disorders or comorbidities of the central nervous system. We 
analyzed preoperative data only. For a posthoc test on the subtypes of glioma, we used 
molecular tumor markers that were established as part of routine clinical care after 2016 
and the 2021 WHO classification was used to classify patients.25 

A cohort of HCs was measured as part of two studies using the same MEG system 
and procedures,26,27 out of which we selected HCs matching patients’ sex and age at the 
group-level.  
 We investigated activity and network connectivity at three spatial levels in patients: 
(1) the area containing the tumor (peritumoral area), (2) its contralateral homologue, and 
(3) all areas that did not contain tumor (including contralateral homologue area). The main 
focus of this study was the regions that were not infiltrated by tumor on MRI, i.e. the rest of 
the brain (3),but results for the other two spatial levels (peritumoral area and contralateral 
homologue area) can be found in Supplementary Table S2. To define these peritumoral 
regions, tumor masks were either manually drawn in, slice by slice [LD], on post-gadolinium 
T1-weighted and FLAIR anatomical images,28 or automatically segmented using a neural 
network algorithm and visually checked.29 Using all 210 cortical regions of the Brainnetome 
atlas30, individual regions were considered part of the peritumoral area when at least 12% 
of the region’s volume overlapped with the tumor mask (Supplementary materials for more 
information). The contralateral homologue of the peritumoral area (2) was defined as the 
same atlas region(s) where the tumor was located but in the contralateral hemisphere. 
Patients with bilateral tumors or tumors that did not overlap for more than 12% with any 
region were excluded from analyses concerning the peritumoral and homologue areas. The 
rest of the brain included all regions that were not in the peritumoral area and did not 
include any tumor (0% overlap).  

The VUmc Medical Ethics Committee approved all studies, and our research conduct 
followed the Declaration of Helsinki. Participants gave written informed consent before 
participation.  
 
Magnetoencephalography  
 Participants underwent a 5-minute eyes-closed resting-state MEG in supine position, 
using a 306-channel Elekta Neuromag Oy MEG (Helsinki, Finland) system in a magnetically 
shielded room, with a sampling frequency of 1250 Hz and online 0.1Hz high pass and 410Hz 
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antialiasing filters. We used cross-validation signal space separation (SSS), after which raw 
data were visually inspected and malfunctioning channels were excluded [LD]. To remove 
artefacts offline, these channels were removed before applying the temporal extension of 
Signal Space Separation in MaxFilter software (Elekta NeuroMag Oy, version 2.2.15) to the 
raw data. The signal was subsequently filtered between 0.5-45Hz using a single-pass finite 
impulse response filter in MaxFilter. We used a 3D digitizer (Fastrak; Polhelmus, Colchester, 
VT, USA) to digitize 4 or 5 head position indicator coils, as well as the scalp surface and nose 
to enable co-registration the MEG data to the patients’ anatomical MRIs using surface 
matching. Subsequently, a scalar beamformer implementation (Elekta Neuromag Oy, 
version 2.1.28) source-reconstructed31 broadband (0.5-45Hz) MEG time series to the 
centroids27 of the 210 cortical regions of the Brainnetome atlas.30  We then selected 15 
epochs for patients and eight epochs for HCs (each 4 * 4096 samples of 3.27s) for further 
analysis. These were the smallest number of good quality epochs available for any subject in 
the cohorts.  
 
Regional brain activity  
 The offset of the aperiodic part of the power spectrum was used as a proxy for 
neuronal spiking activity.32,33 Power spectra were obtained using Welch’s method with a 
hamming window for each epoch and cortical brain region. These spectra were averaged 
over all epochs per subject to obtain one spectrum per brain region. Finally, the Python 
implementation of the Fitting Oscillations & One Over F (FOOOF) toolbox 
(https://github.com/fooof-tools/fooof32) was used to estimate the offset by fitting the non-
oscillatory part of the power spectrum using the exponential function L: L = b – log(k + Fx). 
The parameter b is the offset, describing the power of the lowest frequency of the power 
spectrum; k is responsible for the bending of the aperiodic part and was set to 0. F is a 
vector containing all frequencies, and x is the slope of the aperiodic part.  
 In order to compare regional offset between patients and HCs, we standardizedd 
patients’ and HCs’ regional values based on the regional mean and standard deviation of 
HCs (Figure 1, Panel A visualizes the standardisation procedure). This allowed us to filter out 
intrinsic regional variations, leaving us with values representing deviations from HCs, 
hereafter referred to as ‘dev’ (e.g. offsetdev) in this study.   
 
Functional networks 

Functional networks were constructed in Python (version 3.19.5). We estimated the 
functional brain network by first employing a fast Fourier transform-based band-pass filter 
to  every epoch per brain region. Functional networks were reconstructed for the delta (0.5-
4Hz), theta (4-8Hz), and lower alpha (8-10Hz) bands since previous studies in glioma have 
predominantly found network alterations for these frequency bands.10,15 We used the Phase 
Lag Index (PLI) to calculate functional connectivity between all 210 cortical regions,34 as it 
has been amply used to establish functional networks in glioma.12,13,15 PLIs were calculated 
per epoch and subsequently averaged over epochs per frequency band. We then 
thresholded and binarized frequency-specific networks using a proportional threshold, 
keeping only the strongest 20% or 30% of connections, yielding six networks per participant 
(two densities for three frequency bands, Supplementary materials for additional 
information).  
 We calculated the local clustering coefficient (CC) and eigenvector centrality (EC) for 
all 210 regions using the Networkx Python package (version 2.3).35 The local CC is based on 
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the connectivity between regions that a region is connected to, specifically the number of 
triangles formed between such regions.9 It is thought to represent segregative, ‘local’ (in 
terms of the network) connectivity. EC reflects the integrative properties of a node.9 It is 
based on the number of connections of the node itself and takes the number of connections 
of its neighbors and neighbor’s neighbors etc., into account.36 

All CC and EC values were standardizedd based on regional means and standard 
deviations of HCs, to represent the deviation from controls (CCdev, ECdev).  
 
Statistical Analysis  

All statistical analyses were performed in Python. To match the patients to the HCs, 
we used Mann-Whitney U and Chi-square tests to check for differences in age and sex 
between the two groups.  

Differences in offsetdev, local CCdev and ECdev between patients’ peritumoral, 
homologue and rest of the brain values and HCs whole-brain valuesdev were calculated using 
the Mann-Whitney U test. To test whether peritumoral and contralateral homologue areas 
differed within patients, Wilcoxon signed-rank tests were used. All tests were  performed 
for two network densities per three frequency bands.  
 Next, we explored the relationship between regional activity and functional network 
connectivity at the group-level (Figure 1, Panel B). We averaged raw offset, EC and CC values 
for every region over all participants per group, obtaining one value per region for the three 
measures. We then correlated offset with EC and CC (for two densities in three bands) using 
the spin test with a Pearson’s correlation implementation and 5000 permutations 
(https://www.github.com/spin-test).37 We used this test because regions located close 
together potentially show similar properties (e.g. activity), which might drive any spatial 
correlation between two variables. The spin test randomly rotates the spherical projections 
of all regional values and calculates the correlation an n number of times. The original 
correlation of interest can then be tested against these null models. We used binomial 
confidence intervals for the p-values to determine the significance of these correlations.  
 We then focused on within-subject effects (Figure 1, Panel C), using standardizedd 
values only. We used linear mixed models (LMMs) to handle within-subject dependencies 
between regions (Supplementary materials for an alternative approach using Pearson’s 
correlations). We fitted a model with offsetdev as the independent variable and CCdev and 
ECdev as predictors and included a random intercept for participants, using the statsmodels 
implementation (version 0.13.2) in Python. We fitted a separate model for every frequency 
band, density and group, yielding 12 models (3*2*2) in total. In another six models, group 
differences were tested through interaction terms (group x CCdev/ECdev). We reran this 
analysis using standardizedd values to obtain the standardizedd beta coefficients as an 
effect size metric. All of the analyses on the relationship between metrics focused on the 
rest of the brain of patients, excluding the (peri)tumoral region.  
 Lastly, using Pearson’s correlations, we tested whether peritumoral offsetdev was 
associated with the correlations (within-subject correlations, Supplementary materials) 
between activity and regional network characteristics throughout the brain. We used the 
mean offsetdev across all peritumoral regions and the mean of the three peritumoral regions 
with the highest offsetdev to be maximally sensitive to any effects.  

All p-values were adjusted for multiple comparisons (across frequency bands and 
densities) using the false discovery rate (FDR38) and were deemed significant at adjusted p < 
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0.05 (pFDR). Results that were replicated for both network densities (20%, 30%) were 
deemed robust.  
   

Results 
 
Participant characteristics  

MEGs of 84 glioma patients and 61 HCs were analyzed (Table 1 for participant 
characteristics).  
 
Higher activity and clustering in patients 

Patients’ offsetdev was significantly higher than controls’ values in all areas: the 
peritumoral area (mean = 1.559, SD = 1.513, U = 3554, pFDR = <.001), contralateral 
homologue area (mean = 0.373, SD = 1.168, U = 2616, pFDR = .006) and rest of the brain 
(mean = 0.375, SD = 1.269, U = 3319, pFDR = .004), suggesting that brain activity is 
pathologically high throughout the brain in glioma patients (Figure 2A). Furthermore, within 
patients, peritumoral offsetdev was higher than its contralateral homologue (Z = 133, p < 
.001).  
 Compared to HCs, CCdev was higher peritumorally (delta band), in the contralateral 
homologue (delta, lower alpha band) and the entire rest of the brain (all bands, Table 2, 
Table 3, Figure 2B). Delta band ECdev was lower in patients in the rest of the brain but not in 
the peritumoral area or its homologue (Table 2, Table 3, Figure 2B). These results suggest 
that clustering is globally higher in glioma patients, while integrative connectivity is lower in 
the non-tumoral areas. CCdev and ECdev did not differ between the peritumoral area and its 
homologue within patients (Supplementary Table S3, Figure 2B).  
 A posthoc test revealed similar profiles for the different subtypes of glioma 
(Supplementary materials and Supplementary Table S4, Table S5, Table S6). 
   
Positive group-level regional correlations 

Raw offset values related positively to clustering across frequencies in HCs and 
patients, while it related positively to theta band EC in HCs, but not patients (Supplementary 
Table S7).  
  
Negative within-subject regional correlations 

With respect to clustering, LMMs revealed that within patients, regional offsetdev 
related negatively to regional lower alpha band CCdev in the rest of the brain of patients (Table 
4, Figure 2C). This relationship differed significantly from that in HCs (Supplementary Table 
S8), where no significant associations were found for the lower alpha band (Supplementary 
Table S9). HCs did show a positive relationship between offset and CC in the delta band ( 
Supplementary Table S9).  

These results counterintuitively indicate that in patients, regionally, pathologically 
high offset associates with lower deviating CC, even though our previous results established 
pathologically high offset and CC in patients throughout the brain. As can be seen in Figure 
2C, offsetdev values that were more similar to HCs (around 0) were associated with 
pathologically high CCdev.  

Similarly, offsetdev related negatively to lower alpha band ECdev (Table 4, Figure 2C). 
Again, there was a significant difference between patients and HCs in this relationship 
(Supplementary Table S8), with HCs not showing an association between offsetdev and ECdev 
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in the lower alpha band (Supplementary Table S9). Conversely, HCs showed a positive 
relationship between offsetdev and ECdev in the delta band (Supplementary Table S9), which 
differed significantly from that in patients (Supplementary Table S8). 

As a second approach to investigate the within-subject relationships, we used 
Pearson correlations, which yielded similar results as the LMMs (Supplementary materials 
Table S10). In addition, a posthoc test revealed that these negative relationships were 
predominantly present in IDH-wildtype glioblastomas (for the relationship between CCdev, 
ECdev and offsetdev) and IDH-mutant, 1p/19q codeleted gliomas (for the relationship 
between ECdev and offsetdev, Supplementary materials Table S11, Table S12).  
 
Activity-dependence of regional correlations 

We found no significant associations between peritumoral offsetdev and the within-
patient associations between regional offsetdev and either CCdev or ECdev (Supplementary 
Table S13), suggesting that the negative correlations between activity and connectivity 
throughout the brain were not dependent on the level of peritumoral activity.  
 
 

Discussion 
 We investigated how regional brain activity and functional network connectivity 
relate to each other in patients with glioma and healthy subjects. We surprisingly found that 
although both brain activity and network clustering were significantly higher throughout the 
brains of glioma patients compared to controls, non-tumoral regional deviations in activity 
and clustering correlate negatively within patients. In other words, regions marked by 
pathologically high brain activity typically show very low network clustering compared to 
controls, while areas with regular brain activity have very high network clustering. The 
regions with normal clustering are between these extremes, which display only slightly 
higher activity than controls.  
  As expected, brain activity was higher around the tumor, which aligns with others’ 
and our previous work.2,4 We may speculate that around the tumor, heightened activity is 
driven by reciprocal neuron-glioma cell interactions,1,2 by increased glutamate being present 
around the tumor,40 or both. The mechanisms leading to heightened activity further away 
from the tumor, as we find here and in our previous work,2,4 remain elusive. Do invasive 
glioma cells form neuron-glioma synapses far away from the tumor? Does high activity in 
the peritumoral region somehow ‘spread’ to other brain areas?  
  We also observed deviant functional network connectivity in patients, as expected. 
Local clustering, representing segregative connectivity throughout the brain, was higher in 
patients than in controls. Several studies, some using data from the same cohort, align with 
this finding, particularly for the theta band.12,13,15,16 Furthermore, patients’ regional 
centrality, a measure of integrative connectivity, was lower compared to controls for the 
delta band, in line with previous work.10 Overall, these observations corroborate previous 
MEG and functional MRI studies, suggesting that local, segregative connectivity is higher 
while integrative connectivity is lower in glioma.10,11,13,41–43  

But what mechanisms could be at the core of such widespread network disturbances 
in segregative and integrative connectivity? We could speculate that the growing tumor 
initially has a local impact on the functional network, which subsequently affects the 
network on a larger scale, seeing as other regions ‘take over’ some functioning from locally 
affected regions, as postulated in the cascadic network failure model.44 On a more cellular 
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level, invasive glioma cells might directly affect the functional network topology throughout 
the brain. Glioma, and especially the aggressive IDH-wildtype glioma (glioblastoma), are 
marked by highly invasive cells that infiltrate the surrounding brain via white matter tracts, 
blood vessels, and microtubules, beyond the area where the mass of the tumor is located. 
There, these invasive cells adhere to other cells, such as neurons.45 Potentially, the invasive 
cells may spread in the brain and impact the local environment and functioning of neuronal 
cell populations further away from the mass of the tumor, thereby impacting functional 
network dynamics throughout the brain. Especially clustering is typically a local network 
process (although the measure itself is not based on anatomical (Euclidean) distance and 
could thus also pick up connectivity between functionally connected but spatially distant 
regions), and such local cellular dynamics might regionally disturb the clustering in regions 
further away from the tumor. However, the extent of neurogliomal synapses commonly 
formed at locations distant from the tumor is unknown. As such, the exact mechanisms 
underlying the observed functional network differences remain to be elucidated; we might 
expect that several mechanisms, for instance cellular invasion and cascadic network failure, 
are at play simultaneously. Longitudinal studies investigating these processes on multiple 
scales are warranted.  

 Our findings confirm the hypothesis that higher regional brain activity generally 
relates to higher connectivity, as seen in our group-level results performed on raw values 
instead of deviations from the controls. Indeed, few studies have investigated the 
relationship between brain activity and connectivity and found that they positively relate to 
each other in the healthy setting.21–23  

Interestingly, our within-subject analyses revealed a different relationship between 
activity and patient connectivity deviations. When zooming in on the within-subject level, an 
interesting pattern emerged: deviations in brain activity and lower alpha clustering related 
negatively, indicating that pathologically high brain activity went hand in hand with very low 
clustering across regions within the same patient. This was particularly surprising as we 
found both brain activity and clustering to be higher throughout the brains of patients. This 
negative relationship may indicate that different regions showed these two types of 
neurophysiological deviations. Based on our findings, we may speculate that regions with 
the highest activity, as we show in the group comparisons, have pathologically low levels of 
clustering. Conversely, regions with more typical activity levels are either normal or very 
high regarding their level of clustering. This study was cross-sectional, so we cannot draw 
clear conclusions on the chronological emergence of deviations in clustering and brain 
activity. However, we may hypothesize that in regions where brain activity is highest, 
intrinsic oscillatory patterns might be altered such that it disconnects from regions that it is 
normally connected to. For regions showing activity that is similar to HCs but very high 
clustering, we may postulate that this pattern of deviations has a protective nature: maybe 
high clustering helps to maintain more normal levels of activity throughout the brain by 
‘breaking up’ the functional network. Such a scenario has been posited in epilepsy 
previously, as epilepsy patients show less integration and heightened segregation of the 
functional network in the interictal period.46 The epileptic zone seems to be functionally 
isolated from other regions through higher connectivity within itself and lower 
centrality.47,48 It has been speculated that such isolation and breaking up of the functional 
network might lower susceptibility to new seizures.47,49 This mechanism may also play a role 
in our glioma patients, particularly since almost all suffer epileptic seizures.  
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 Regarding centrality, we similarly found a negative relationship between brain 
activity and centrality in the lower alpha band. This finding was less surprising, as we did 
observe centrality to be lower throughout the brain in the patient group, but only for the 
delta band. This negative relationship might indicate that regions showing the most 
pathologically high activity exhibit the lowest levels of centrality (in the lower alpha band) 
and vice versa. This is relevant in the context of the cascadic network failure model, where 
regions that are very central to the network take over functions from other regions that are 
affected by the lesion.44 Such taking over of activity is thought to cause the central region to 
overload and eventually fail as a hub in the network. Speculatively, we may interpret that 
such failing of regions is reflected in the current results: regions with the highest level of 
activity failed to be central integrators and showed the lowest level of centrality, even 
though we cannot establish the timeline of activity and centrality changes in this study. 
Another issue to consider is that peritumoral activity is pathologically high in glioma, while 
glioma is also known to occur most often in regions that are intrinsically high in activity and 
connectivity in controls.18,19 Based on our cross-sectional data, we cannot disentangle 
whether high-activity regions in glioma patients were premorbidly already highly active or 
became pathological upon glioma occurrence. Furthermore, we found lower EC in patients 
only for the delta band but found a negative relationship with activity for the lower alpha 
bands. As our results are frequency dependent, this warrants caution in the interpretations 
of these results.  
 Finally, we explored whether higher peritumoral brain activity affects the 
relationships between deviations in activity and network characteristics. Our analysis 
showed that the level of brain activity in the peritumoral area did not relate to the observed 
relationships. This suggests that local, aberrant activity around the tumor is likely not the 
primary driver of network-activity correlations further away in this cohort but that more 
complex mechanisms are at play.   
 This study has several limitations. Firstly, the study was cross-sectional and 
correlational, making it difficult to derive firm conclusions about the mechanisms underlying 
the observed disturbances and their interplay. Studying this longitudinally before tumor 
resection would be ideal for understanding how deviations develop over time. However, 
these data are almost impossible to collect in this patient population, as treatment starts as 
soon as possible. A second limitation of the current study is the small correlation values and 
coefficients that we observed, particularly in the within-subject analyses. We tried to 
counter this by employing different types of analyses (Supplementary materials) and ways 
to threshold the functional networks to test the robustness of results, allowing us to draw 
cautious conclusions. Also, specific preprocessing choices may affect the activity measures 
used in this study. For example, the lowest frequency that can be measured from the MEG 
signal determines the fitting of the FOOOF model and the offset that is captured. Therefore, 
specific choices in the preprocessing and specific filtering of the MEG signal before analysis 
affect the offset that can be measured. Future studies should focus on further exploring the 
parameter space and how specific preprocessing choices may affect results. The same holds 
for choices in the construction of the connectivity matrix and thresholding and binarisation 
of the constructed functional networks.  
 

Conclusion 
While brain activity and local clustering are pathologically high throughout the brain in 
glioma patients, regionally, these neurophysiological deviations present in a complex 
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manner. Regions with the highest activity show lower-than-normal clustering. Future 
studies should focus on further characterising these whole-brain deviations and their 
development over time. This might aid in understanding such disturbances better and 
uncover how neuron-glioma interactions shape clinical functioning and influence prognosis.  
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Figure 1  
A Visual representation of the standardisation procedure to obtain regional deviation values 
for offset, CC and EC. We filtered out premorbid regional variation in these measures using 
the regional mean and standard deviation of HCs. B Conceptual representation of the 
group-level analysis. For both patients and HCs we obtained the regional means of the raw 
offset, EC and CC values. We then performed the spin-test37 to relate offset to EC and CC on 
the group-level. C Conceptual representation of the within-subject analysis, for which we 
used LMMs to relate deviations in offset and network measures in the rest of the brain to 
each other.  
 
Figure 2  
A Offset in peritumoral, homologue and non-tumoral (rest of the brain) areas in glioma 
patients and the whole brain of HCs. B Delta, theta and lower alpha band local CC (higher 
panel) and EC (lower panel) in patients (rest of the brain) and HCs (at 30% density of the 
network). C Within-subject relations between offsetdev and lower alpha band CCdev (higher 
panel) and ECdev (lower panel). The left column shows the correlations plotted for the 
different subgroups investigated. The right column shows the relationship between offsetdev 

and and CCdev (higher panel) and ECdev (lower panel) with a regression line and confidence 
interval (shaded region) drawn based on all data points. The y-axis represents offsetdev while 
the x-axis represents the network metrics. All relationships are plotted for the rest of the 
brain of patients for the lower alpha band and 30% density of the network. For all three 
subplots, we used raincloud plots, consisting of a half-density plot, a boxplot and a scatter 
plot, to visualize the findings. This type of visualization enables us to show several aspects of 
the data that would be lost if only using one of these three modalities. The half density plot 
visualizes the distribution of datapoints, while the boxplot enables us to show descriptive 
statistics at the same time. Finally the scatter shows the raw data points, giving us another 
insight in the distribution of the data. These plots were created with the help of the python 
implementation for raincloud plots (https://github.com/pog87/PtitPrince)50.  
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Table 1 Participant characteristics 

Characteristics Healthy controls (N = 61) Glioma patients (N = 84) 

Age (mean (SD)) 48.03 (9.62) 45.68 (15.23) 

Sex (number of females (males)) 27 (34) 23 (61) 

Tumor WHO grade (II/III/IV) NA 37/30/17 

Tumor histology (GBM/A/O/NA) NA 30/30/23/1 

Tumor volume, corrected for headsize (mean ml (SD)) NA 39.8 (38.0) 

Tumor side (left/right/bilateral) NA 49/31/4 

IDH-mutant, 1p/19q non-codeleted glioma (number (%)) NA 28 (33.3) 

IDH-mutant, 1p/19q-codeleted glioma (number (%)) NA 17 (20.2) 

IDH-wildtype glioblastoma (number (%)) NA 30 (35.7) 

Unknown molecular subtype (number (%)) NA 9 (10.7) 

Epilepsy (yes (no)) NA 70 (14) 

KPS (median (range) / NA) NA 100 (50 - 100) / 11 

Note. SD = Standard Deviation, GBM = Glioblastoma, A = Astrocytoma, O = Oligodendroglioma, NA = Not available  

 
 
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 26, 2023. ; https://doi.org/10.1101/2023.04.20.23288814doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.20.23288814
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 

Table 2 Network characteristics (density 20%) in the investigated areas of patients and their comparison to whole brain characteristics of HCs 

Measure Delta Theta Lower Alpha 

 20% 20% 20% 

 mean 

(SD) U 
p 

(pFDR) 

mean 

(SD) U 
p 

(pFDR) 

mean 

(SD) U 
p 

(pFDR) 

Clustering Coefficient    

Peritumoral Area 0.370 

(1.179) 

2910 <0.001 

(<0.001**) 

0.257 

(1.447) 

2254 0.316 

(0.507) 

0.129 

(1.323) 

2232 0.368 

(0.507) 

Contralateral Homologue Area 0.276 

(1.137) 

2817 <0.001 

(<0.001**) 

0.289 

(1.301) 

2167 0.557 

(0.557) 

0.233 

(1.227) 

2619 0.006 

(0.009*) 

Rest of the brain 0.327 

(1.225) 

3857 <0.001 

(<0.001**) 

0.324 

(1.410) 

3634 <0.001 

(<0.001**) 

0.316 

(1.363) 

3424 <0.001 

(<0.001**) 

HCs 0 

(0.992)  

 0 

(0.992)  

 0 

(0.992)  

 

Eigenvector Centrality          

Peritumoral Area 0.139 

(1.313) 

2288 0.244 

(0.717) 

-0.010 

(1.114) 

1967 0.717 

(0.717) 

-0.092 

(1.044) 

1674 0.08 

(0.470) 

Contralateral Homologue Area 0.037 

(1.059) 

2121 0.713 

(0.966) 

0.058 

(1.109) 

2167 0.557 

(0.966) 

-0.031 

(1.079) 

1983 0.775 

(0.966) 

Rest of the brain -0.061 

(1.089) 

1663 <0.001 

(<0.001**) 

-0.032 

(1.118) 

2163 0.110 

(0.166) 

-0.033 

(1.139) 

2093 0.061 

(0.121) 

HCs 0 

(0.992)  
 0 

(0.992)  
 0 

(0.992)  
 

          

Note. * indicates p <0.05, ** indicates p<0.001; HCs = Healthy controls; SD = Standard Deviation; U = U statistic of the Mann-Whitney U test; pFDR =  False Discovery 

Rate adjusted p-value. For network characteristics p-values were corrected for the different frequencies and densities. The means of the measures were calculated with the 

values standardized on the regional means and SD of HCs (dev). Therefore, the mean of HCs is 0 and the SD around 1. 
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Table 3 Network characteristics (density 30%) in the investigated areas of patients and their comparison to whole brain characteristics of HCs 

Measure Delta Theta Lower Alpha 

 30% 30% 30% 

 mean 

(SD) U 
p 

(pFDR) 

mean 

(SD) U 
p 

(pFDR) 

mean 

(SD) U 
p 

(pFDR) 

Clustering Coefficient    

Peritumoral Area 0.364 

(1.156) 

2920 <0.001 

(<0.001**) 

0.246 

(1.466) 

2169 0.551 

(0.551) 

0.155 

(1.350) 

2212 0.423 

(0.507) 

Contralateral Homologue Area 0.335 

(1.159) 

2906 <0.001 

(<0.001**) 

0.297 

(1.320) 

2295 0.231 

(0.277) 

0.225 

(1.209) 

2670 0.003 

(0.005*) 

Rest of the brain 0.399 

(1.231) 

3948 <0.001 

(<0.001**) 

0.351 

(1.377) 

3711 <0.001 

(<0.001**) 

0.295 

(1.290) 

3390 <0.001 

(<0.001**) 

HCs 0 

(0.992) 

  0 

(0.992) 

  0 

(0.992) 

  

Eigenvector Centrality          

Peritumoral Area 0.128 

(1.305) 

2206 0.439 

(0.717) 

-0.017 

(1.098) 

2163 0.570 

(0.717) 

-0.036 

(1.030) 

1944 0.637 

(0.717) 

Contralateral Homologue Area 0.035 

(1.079) 

2020 0.913 

(0.966) 

0.072 

(1.097) 

1972 0.735 

(0.966) 

-0.025 

(1.046) 

2034 0.966 

(0.966) 

Rest of the brain -0.058 

(1.106) 

1582 <0.001 

(<0.001**) 

-0.023 

(1.122) 

2208 0.157 

(0.188) 

-0.019 

(1.127) 

2308 0.310 

(0.310) 

HCs 0 

(0.992)  
 0 

(0.992) 

  0 

(0.992)  
 

          

Note. * indicates p <0.05, ** indicates p<0.001; HCs = Healthy controls; SD = Standard Deviation; U = U statistic of the Mann-Whitney U test; pFDR =  False Discovery Rate 

adjusted p-value. For network characteristics p-values were corrected for the different frequencies and densities. The means of the measures were calculated with the values 

standardized on the regional means and SD of HCs (dev). Therefore, the mean of HCs is 0 and the SD around 1. 
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Table 4 Linear mixed model with offsetdev as dependent and ECdev and CCdev as independent variables for the rest of the brain of patients 

Frequency, 

Density 
Variable Coefficient [CI] 

Std coefficient 

(beta) 
Z p pFDR 

Delta       

20% Intercept 0.383 [0.225, 0.542]  4.734 <0.001  

 ECdev 0.005 [-0.010, 0.020] 0.004 0.681 0.496 0.541 

 CCdev 0.011 [-0.003, 0.025] 0.011 1.541 0.123 0.211 

30% Intercept 0.381 [0.223, 0.540]  4.708 <0.001  

 ECdev -0.001[-0.016, 0.013] -0.001 -0.189 0.850 0.850 

 CCdev 0.013[-0.001, 0.027] 0.013 1.85 0.064 0.150 

Theta       

20% Intercept 0.385 [0.226, 0.544]  4.75 <0.001  

 ECdev 0.013 [-0.001, 0.028] 0.012 1.778 0.075 0.150 

 CCdev 0.007 [-0.007, 0.020] 0.007 0.984 0.325 0.390 

30% Intercept 0.384 [0.225, 0.543]  4.739 <0.001  

 ECdev 0.011 [-0.004, 0.025] 0.009 1.436 0.151 0.227 

 CCdev 0.008 [-0.006, 0.022] 0.008 1.111 0.267 0.356 

Lower Alpha       

20% Intercept 0.392 [0.234, 0.551]  4.845 <0.001  

 ECdev -0.063 [-0.077, -0.048] -0.056 -8.349 <0.001 <0.001** 

 CCdev -0.025 [-0.039, -0.012] -0.027 -3.636 <0.001 <0.001** 

30% Intercept 0.398 [0.240, 0.557]  4.922 <0.001  

 ECdev -0.056 [-0.071, -0.042] -0.05 -7.564 <0.001 <0.001** 

 CCdev -0.044 [-0.058, -0.030] -0.044 -6.103 <0.001 <0.001** 

       

Note. * indicates p <0.05, ** indicates p<0.001; A random intercept was fitted for participants; CI = Confidence interval for coefficient; Std = Standardized; pFDR = False 

Discovery Rate adjusted p-value. The p-values were corrected for the different frequency bands and densities. Only the independent variables were included in this 

correction.  
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