Abstract
Although deep learning has become state of the art for numerous tasks, it remains untouched for many specialized domains. High stake environments such as medical settings pose more challenges due to trust and safety issues for deep learning algorithms. In this work, we propose to address these issues by evaluating the performance and explanability of a Bidirectional Encoder Representations from Transformers (BERT) model for the task of medical image protocol assignment. Specifically, we evaluate the performance and explainability on this medical image protocol classification task by fine tuning a pre-trained BERT model and measuring the word importance by attributing the classification output to every word through a gradient based method. We then have a trained radiologist review the resulting word importance scores and assess the validity of the model’s decision-making process in comparison to that of a human. Our results indicate that the BERT model is able to identify relevant words that are highly indicative of the target protocol. Furthermore, through the analysis of important words in misclassifications, we are able to reveal potential systematic errors in the model that may be addressed to improve its safety and suitability for use in a clinical setting.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This retrospective study was conducted with the approval of the Stanford Institutional Review Board (IRB) and under a waiver of informed consent. The study was approved for collaboration between Stanford University and the University of California, Berkeley.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
stalebi{at}berkeley.edu
etong{at}stanford.edu
Data Availability
All data produced in the present work are contained in the manuscript