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Abstract 

Objective: The classification of clinical note sections is a critical step before doing more fine-grained 

natural language processing tasks such as social determinants of health extraction and temporal 

information extraction. Often, clinical note section classification models that achieve high accuracy 

for one institution experience a large drop of accuracy when transferred to another institution. The 

objective of this study is to develop methods that classify clinical note sections under the SOAP 

(“Subjective”, “Object”, “Assessment” and “Plan”) framework with improved transferability. 

Materials and methods: We trained the baseline models by fine-tuning BERT-based models, and 

enhanced their transferability with continued pretraining, including domain adaptive pretraining 

(DAPT) and task adaptive pretraining (TAPT). We added out-of-domain annotated samples during 

fine-tuning and observed model performance over a varying number of annotated sample size. 

Finally, we quantified the impact of continued pretraining in equivalence of the number of in-domain 

annotated samples added.  

Results: We found continued pretraining improved models only when combined with in-domain 

annotated samples, improving the F1 score from 0.756 to 0.808, averaged across three datasets. This 

improvement was equivalent to adding 50.2 in-domain annotated samples.  

Discussion: Although considered a straightforward task when performing in-domain, section 

classification is still a considerably difficult task when performing cross-domain, even using highly 

sophisticated neural network-based methods.  

Conclusion: Continued pretraining improved model transferability for cross-domain clinical note 

section classification in the presence of a small amount of in-domain labeled samples. 
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Introduction and background 

Electronic Health Record (EHR) systems contain important clinical information in 

unstructured text, and natural language processing (NLP) is an important tool for its 

secondary use. Clinical note section classification is a foundational NLP task, as it facilitates 

many downstream tasks, and section information has been found beneficial for a diversity of 

clinical NLP tasks including named entity recognition [1], abbreviation resolution [2], cohort 

retrieval [3] and temporal relation extraction [4]. In this work we describe experiments on the 

task of clinical note section classification [5], using the SOAP (“Subjective”, “Objective”, 

“Assessment” and “Plan”) note framework to label note sections. In clinical practice, SOAP-

style notes are widely used note-writing format taught for documenting the daily care of 

patients [6], [7]. Automatically classifying sections into SOAP categories is beneficial for 

better understanding the sourcing of information extracted by other NLP systems. For 

example, SDOH information may be more likely to be found in the social history section of a 

clinical note which is a “Subjective” section in the SOAP framework. Medication mentions 

may have different interpretation if they are in an “Objective” section (e.g., treatments in a 

medication list) versus a “Subjective” section (e.g., medication misuse in a social history). In 

addition, state-of-the-art NLP models (pre-trained transformers) have memory constraints 

that limit the number of words they can process [8], so processing only relevant sections may 

make these models more applicable. 

Existing work in section classification [9], [10] has shown that the task is solvable for a given 

dataset, but that performance drops substantially when applying a trained system to a new 

dataset. In contrast to the SOAP task, those works used finer-grained section categories, 

which vary across datasets and have fewer training instances per label. In simplifying the 

section classification task to the SOAP classification task, we make it possible to perform 

more cross-domain experiments, and simplify the task to examine the cross-domain 
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performance loss in a setting where we can eliminate one variable – the differences in the 

output space. 

In clinical note section classification, researchers have found that statistical methods and 

modern pre-trained transformers (e.g., BERT [8]) achieved high performance for single 

institution modeling [9], [10]. In a study for classifying emergency departments reports into 

SOAP sections, researchers built a SVM classifier with lexical syntactic, semantic, contextual 

and heuristic features with SVM and the macro-F1 score was 0.85 [11]. In Rosenthal et al. 

[10], BERT achieved 0.99 and 0.9 F1 score for two section classification datasets with fine-

grained section names. In Tepper et al. [9], researchers studied performing note segmentation 

and section classification together with fine-grained section names. Maximum Entropy 

Classifiers with fine-grained features (e.g., capital letters, numbers, blank lines, previous 

section names) achieved an F1 score of over 0.9 for two discharge summary datasets and one 

radiology report dataset. When transferring models learned from one dataset to another, the 

F1 score dropped to 0.6.  

Domain adaptation refers to the study of improving model's transferability from a source 

dataset to a target dataset and is a common theme in clinical NLP. In a study for psychiatric 

notes deidentification, three domain adaptation techniques, instance pruning, instance 

weighting, and feature augmentation were applied to a conditional random field (CRF) model 

for improving its adaption to the target dataset [12]. In Li et al. [13], researchers improved 

model adaption by training models on multiple domains and creating an ensemble. In Xing et 

al. [14], multi-task learning was applied on the task of segmenting words in Chinese medical 

text as a domain adaptation method. The model was trained on multiple tasks with the goal of 

learning the domain invariant features. 

Objective  
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The objective of this study is to develop methods that classify clinical note sections with 

SOAP (“Subjective”, “Object”, “Assessment” and “Plan”) labels. The secondary objective of 

this work is to examine the generalizability of existing datasets and methods by performing 

cross-domain validation, and to attempt to address any performance degradation with domain 

adaptation methods. 

Methods 

Datasets 

We used three independent datasets across multiple health systems and different note types. 

The first dataset (discharge) consists of discharge summaries from the i2b2 2010 challenge 

from Partners Healthcare and Beth Israel Deaconess Medical Center [9]. The second dataset 

(thyme) includes colorectal clinical notes of the THYME (Temporal History of Your 

Medical Events) corpus of Mayo Clinic data [15]. The third dataset (progress) consists of 

MIMIC-III progress notes derived from providers across different specialty intensive care 

units [16], [17]. We created classification instances for each dataset by extracting sections 

from all the notes. While all three datasets had available section label annotations, the section 

labels were different across datasets. To facilitate cross-domain experiments, an expert 

physician informaticist (MA) mapped each dataset’s section labels into SOAP (“Subjective”, 

“Object”, “Assessment” and “Plan”) labels [11], [18]. The sections that did not fit into the 

SOAP framework (e.g., comments, addendum) were labeled as “Others”. This created a 5-

way classification instance for each section. Table 1 presents the size, average word count, 

label distribution and train/test split ratio for each dataset. During SOAP mapping, we 

observed that some section headers covered both “Assessment” and “Plan” contents (e.g., the 

“Assessment and Plan” section label in the progress dataset). We mapped such sections to 

the “Assessment” label. As a result, the progress dataset has a section count of 0 for the 

“Plan” category in Table 1. When splitting the dataset into training and test set, for 
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discharge, we randomly split the dataset with a 0.8/0.2 ratio. For thyme and progress, we 

followed the original train/test splits[15], [17].  

Table 1. Size, average section word count, and label distribution of the discharge, thyme and 
progress dataset. 

dataset 
total 

section 
counts 

average 
word 
count 

“Subjective” 
section 
count 

“Objective” 
section count 

“Assessment” 
section count 

“Plan” 
section 
count 

“Others” 
section 
count 

train/ 
test split 

discharge 1372 61 318 686 243 103 22 0.8/0.2 
thyme 4223 74 1878 1329 676 100 240 0.73/0.27 

progress 13367 46 4521 7039 787 0 1020 0.89/0.11 
 
In-domain and cross-domain section classification 

We used the pre-trained transformer framework for section classification. We fine-tuned 

BioBERT [19] for the thyme, discharge and progress datasets. We used BioBERT as the 

BERT implementation because BioBERT was pretrained using biomedical texts and 

performed better than BERT on a variety of biomedical NLP tasks, including named entity 

recognition, relation extraction and question answering [19]. Other domain-appropriate BERT 

variants (e.g., BioClinicalBERT) are already pre-trained on MIMIC-III, the source of our 

progress dataset, so we avoid those models for the initial fine-tuning experiments to avoid data 

leakage. 

We first measured the classification performance for the three datasets, both in the in-domain 

and cross-domain settings. These performance values represented the upper and lower 

bounds for our subsequent experiments. We measured the in-domain classification 

performance by testing the fine-tuned model on the same dataset’s test set. We measured the 

cross-domain classification performance by testing the fine-tuned model on the other two 

datasets’ test sets. We defined source domain as the dataset used for model fine-tuning, and 

target domain as the dataset used for model testing. We denote an experiment as FTsource if 

the model was fine-tuned on a source domain and tested on a target domain different from the 

source; we denote an experiment as FTtarget if the model was both fine-tuned and tested on the 

same domain. 
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When fine-tuning BERT, we used a learning rate of 1e-5, epoch size of 40 and batch size of 

10. These hyperparameters were tuned using the training set. The best model during model 

training (determined by the best F1 score on the held-out validation set) was saved and used 

for testing. The same hyperparameter settings are used in the cross-domain experiments to 

simulate the realistic case where target domain resources are usually too limited to conduct 

individualized hyperparameter search. The micro-F1 score (referred to as F1 score in future 

sections) was used as the evaluation metric. We implemented the Huggingface Transformers 

pipeline with AdamW optimizer for fine-tuning [20]. Experiments in this study were done on 

a 24GB NVIDIA TITAN RTX GPU with FP16 precision. 

Continued pretraining 

Recent work has provided evidence that continued pretraining of pretrained language models 

on a target domain allows for better adaptability of the model [21]. Domain-adaptive 

pretraining (DAPT) is an unsupervised domain adaptation technique where a pre-trained 

model is trained for additional steps, using the same pre-training task of masked language 

modeling objective, on a large collection of unlabeled data from the target domain. Task-

adaptive pretraining is similar, but uses a smaller amount of target domain data – only that 

portion that was labeled for the task of interest. For example, for the progress dataset, the 

domain-adaptive pretraining used the entire MIMIC-III dataset, and the task-adaptive 

pretraining considered the training set of progress. In previous work on general domain 

datasets [21], both DAPT and TAPT improved better cross-domain performance, and 

combining them sequentially (i.e. DAPT+TAPT) obtained the best performance. We thus 

experimented with pre-trained transformer models that have been adapted either with DAPT 

or DAPT+TAPT. In these experiments, the DAPT, TAPT, or DAPT+TAPT training is done 

on top of a base language model (BioBERT), followed by fine-tuning BERT on  labeled 

examples in a source and/or target domain (as in the FTsource experiments in the last section). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 24, 2023. ; https://doi.org/10.1101/2023.04.15.23288628doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.15.23288628
http://creativecommons.org/licenses/by-nc-nd/4.0/


We denote these experiments as DAPT + FTsource and DAPT + TAPT + FTsource in the 

remainder of the paper. 

We note that existing work in the clinical domain could be interpreted as DAPT. For 

example, BioClinicalBERT[22] was created by doing continued pretraining on MIMIC-III 

[16] using BioBERT [19] as a starting point. From the perspective of downstream tasks that 

use MIMIC-III as a target domain (e.g., the progress dataset), comparing a BioBERT that 

has been fine-tuned on a source domain to BioClinicalBERT that has been fine-tuned on a 

source domain is essentially testing DAPT. Since BioClinicalBERT has already been shown 

to perform well on multiple tasks, in this work we use the existing BioClinicalBERT 

checkpoint as our DAPT model when progress is the target domain. When thyme is the 

target domain, we used an unreleased section of additional unlabeled notes for the patients in 

the THYME labeled corpus [15] to perform the continued pre-training for DAPT. For 

discharge, no additional unlabeled data is available. As a proxy, we again used MIMIC-III 

and used BioClinicalBERT as the DAPT model for progress. 

In DAPT pretraining for thyme, we followed the setup of the BioClinicalBERT paper [22] and 

used a maximum training step count of 15000 and a learning rate of 5e-5. For TAPT, we 

followed the continued pretraining paper [21] and trained the model on the labeled data from 

the target domain (with the masked language modeling task, so it is still unsupervised) for 100 

epochs with other settings being the same. 

Our TAPT experiments used only the training splits of the discharge, progress, and thyme 

datasets. 

To summarize our experimental settings, Table 2 presents the configuration details of 

experiments for when the thyme dataset is the target domain. The corresponding tables for 

discharge and progress datasets are included in Online Supplement.  
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Table 2. Description of in-domain and cross-domain experiments with thyme being the target 
domain. 

method experiment source 
domain 

target 
domain 

number of target domain 
labeled samples added to 

fine-tuning 
DAPT corpus TAPT corpus 

In-domain and cross-domain 
section classification 

FTtarget thyme 

thyme 

all 

unlabeled notes 
in THYME 

corpus 

thyme training 
set 

FTsource 

discharge or 
progress 

0 Continued pretraining 
DAPT + FTsource 

DAPT + TAPT + FTsource 

Combining unsupervised and 
supervised domain adaptation 

FTsource + target 
10,20,30,40,50 DAPT + FTsource + target 

DAPT + TAPT + FTsource + target 

 
 
Combining unsupervised and supervised domain adaptation 

In the DAPT and DAPT+TAPT experiments, we used only the source domain data for BERT 

fine-tuning, simulating the realistic setting where no annotation is possible at the target site 

(i.e., unsupervised domain adaptation). We next performed experiments that simulate the 

possibility that a small amount of labeled data is available at the target site, by including small 

numbers of labeled samples from the target domain during BERT fine-tuning (i.e., supervised 

domain adaptation). We also explore how the addition of labeled target domain data interacts 

with DAPT and TAPT. We varied the number of target domain samples from 10, 20, 30, 40 to 

50. We denote these experiments as FTsource+target, DAPT+FTsource+target, and 

DAPT+TAPT+FTsource+target. 

Quantifying the value of unsupervised domain adaptation 

Both unsupervised and supervised domain adaptation are expected to provide performance 

increases over no adaptation, but they both require additional effort and have trade-offs in terms 

of implementation difficulty. If a practitioner is looking for guidance on whether to do 

continued pre-training or more data labeling, it would be useful to compare the value of these 

different methods in the same units. To facilitate this comparison, we analyzed our previous 

experiments to measure the value of unsupervised domain adaptation in terms of its 

equivalence to a number of labeled target domain samples. For example, if the FTsource+target 

model obtained an F1 score of 0.7 with 10 labeled target samples, and FTtarget has an F1 score 
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of 0.68 with 59 labeled samples, and 0.71 with 60 labeled samples, it means the value of the 

source domain training is equivalent to 60-10=50 additional target samples. 

To calculate these values, we first extended our FTtarget experiments on labeled data amounts 

ranging from 10 to 200 with an interval of 10, computing the F1 score for each experiment. 

We then linearly interpolate between consecutive labeled data amounts (e.g., between 10 and 

20), which allows us to create a function  that returns an estimated F1 score for 

every whole number n of labeled data amounts between 10 and 200. While this function is not 

invertible, we can create a pseudo-inverse: 

which, given an F1 score f, returns the lowest number of labeled target instances in the FTtarget 

experiment that matched or exceeded that score. Then, for each of the cross-domain settings 

(FTsource+target, DAPT+FTsource+target, and DAPT+TAPT+FTsource+target), we have F1 scores for a 

range of 10 to 50 labeled data points from the experiments above. For each cross-domain 

setting and the corresponding target domain samples included (e.g., FTsource+target, 10),  we can 

get from f1-1target(f) the minimum number of target domain samples FTtarget would need to match 

that score. For each setting we report the added value of the added component (e.g., for 

DAPT+FTsource+target we report the added value over FTsource+target) to isolate the value of each 

intervention. 

Results 

In-domain and cross-domain section classification  

Table 3 shows the results of the in-domain and cross-domain experiments with fine-tuning, 

DAPT+FT, and DAPT+TAPT+FT. When moving from in-domain to cross-domain, the F1 

scores dropped from 0.97-0.99 range to 0.541-0.717 range. The average in-domain (FTtarget) F1 

score is 0.977. The average cross-domain (FTsource) F1 score is 0.618. 
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Table 3. F1 scores of in-domain and cross-domain models, with DAPT and TAPT when 
applicable. The best F1 score for each combination of source and target domain is in bold. 

source domain (®) discharge thyme progress 

target domain (¯)  FT DAPT + FT DAPT + TAPT + FT FT DAPT + FT DAPT + TAPT + FT FT DAPT + FT DAPT + TAPT + FT 

discharge 0.972 - - 0.572 0.6 0.675 0.541 0.5 0.501 

thyme 0.601 0.469 0.53 0.99 - - 0.646 0.632 0.544 

progress 0.656 0.67 0.749 0.717 0.58 0.528 0.973 - - 

 
Continued pretraining 

Table 3 also shows that continued pretraining led to a decreased performance when thyme was 

the target domain. The effect of continued pretraining was mixed for progress and discharge. 

No significant performance improvement was observed when continued pretraining (DAPT or 

DAPT+TAPT) was applied directly on cross-domain section classification.  

Continued pretraining and fine-tuning with target domain labeled data 

Figure 1 shows learning curves when some target-domain labeled data was provided for fine 

tuning. When comparing before and after continued pretraining (DAPT or DAPT+TAPT), we 

found continued pretraining generally improved model performance when combined with 

small numbers of target domain instances. 
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Figure 1. F1 scores of FTsource + target, DAPT+FTsource + target, and DAPT+TAPT+FTsource + target 
with 10, 20, 30, 40 and 50 target domain samples for different source and target domain 

experiments. For example, thyme → discharge represents the experiment with thyme being 
the source domain and discharge being the target domain. 

   
Figure 2. Dataset averaged F1 scores of FTsource + target, DAPT+FTsource + target, and 

DAPT+TAPT+FTsource + target with 10, 20, 30, 40 and 50 target domain samples included in 
fine-tuning. 

 
Figure 2 shows the average learning curve across the 6 comparisons. On average, continued 

pretraining (DAPT or DAPT+TAPT) improved over the model without it (FTsource + target) 

consistently. When comparing within continued pretraining models (DAPT FTsource + target and 

DAPT+TAPT+FTsource + target), we found applying TAPT after DAPT further increased the F1 

score for four out of five sample sizes. 

Quantifying the value of continued pretraining 

Figure 3 visualizes the method for estimating the value of continued pre-training and the 

results from the DAPT+TAPT+FTsource+target experiment. First, the results from Figure 2 are 

overlaid with F1 scores from the FTtarget experiments extended to use up to 200 target domain 

samples. We project horizontal lines from several points on the DAPT+TAPT+FTsource+target 

curve until they intersect with the FTtarget curve. For example, at the left of the figure, 

DAPT+TAPT+FTsource+target achieved an F1 score of 0.74 when 10 target domain samples 

were included, and it intersects the FTtarget curve when n=99. This corresponds to f1-

1target(0.74) = 99, meaning the value of the transfer learning and pre-training is equivalent to 
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an additional 89 target domain samples for FTtarget. The equivalent visualizations of the 

FTsource+target, and DAPT+TAPT+FTsource+target curves are included in Online Supplement. 

 
 

 
Figure 3. Dataset averaged F1 scores of FTtarget with target domain labeled samples varying 

from 10 to 200, overlaying with Figure 2. Horizontal dotted lines between 
DAPT+TAPT+FTsouce+target and FTtarget curves visualize applying f1-1target(f) on the F1 scores 

of DAPT+TAPT+FTsouce+target for obtaining the equivalent FTtarget training sample size. 
 
Table 4 shows the equivalent target domain sample size of the three cross-domain models, 

estimated by applying f1-1target(f) to every cross-domain setting with target domain sample 

size varying from 10 to 50 (and corresponding to the length of the horizontal lines in Figure 

3). We averaged them over sample size, and by subtracting between incrementally different 

settings, we find 29.4 target domain samples being the added value of DAPT over 

FTsource+target, and 50.2 being the added value of DAPT+TAPT over FTsource+target. 

Table 4. The effective target domain sample size of FTsource+target, DAPT+FTsource+target, and 
DAPT+TAPT+FTsource+target with target domain sample size varying from 10 to 50. The added 
value of DAPT and DAPT+TAPT over FTsource + target are shown in parenthesis. 
training strategy (®)  
target domain (¯) 
labeled sample size 

FTsource + target DAPT+FTsource+target DAPT+TAPT+FTsource+target 

10 58 87  89 
20 90 99 129 
30 110 149 136 
40 97 148 194 
50 137 156 195 
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average 98.4 127.8 (29.4) 148.6 (50.2) 
 
Discussion 

Our results show that, while SOAP section classification is a straightforward task for humans, 

and one that can be effectively solved for individual datasets, current state of the art methods 

did not solve the task in a generalizable way. Part of the challenge may be attributable to 

different institutions having different documentation practices by providers, different note 

types in the EHR, and changes in label distribution. Many tasks are not adequately tested in 

out-of-sample environments across different domains and we provided a rigorous approach 

across multiple centers and note types to show that even “simple” tasks are difficult to 

generalize. The results also follow a similar finding in a finer-grained version of the task [9], 

as well as other clinical NLP tasks [23], but is perhaps more surprising here due to the 

relative simplicity of the task and the degree to which it is solved within each dataset. The 

attempts to leverage large language models and multiple fine-tuning and continual training 

approaches still did not completely overcome the cross-domain challenges. 

The experiments between different combinations of training sets and training methods 

highlight trade-offs between different ways of mitigating the performance drop-offs when 

crossing domains. Unsupervised adaptation methods like DAPT and TAPT show benefits 

that are equivalent to dozens of target-domain training samples, but only when some target 

samples are already annotated. We also noted minimal performance gain from TAPT over 

DAPT, unlike prior work [21]. The small benefit from TAPT could be due to the fact that 

transfer learning already brought knowledge to the model in a similar form as pretraining. 

One important direction moving forward is to regularly report quantification of this type of 

information across tasks, so that different NLP tasks can be situated amongst each other in 

terms of the relative benefit they receive from unsupervised adaptation versus labeling 

additional instances. 
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The high value of unsupervised domain adaptation of pre-trained transformers is an 

encouraging result of this work. We caution, however, that it does not tell a complete story. 

Target domain annotation and continued pretraining, our two adaptation methods, both can 

be challenging and require resources at a target site. So, while the improvements of DAPT 

and TAPT are large in some cases, for this task they do seem to require some small amount 

of target-domain labeling. It could be the case that annotating a few hundred more instances 

is actually a more efficient decision than setting up continued pretraining infrastructure. In 

summary, even for the straightforward SOAP section classification task, these questions 

around adapting NLP systems are complex. 

Each of the individual datasets we used were derived from single centers, which may be a 

contributing factor to the lack of generalizability. Future work in this task should explore the 

benefits of incorporating more variability in the types of notes and health systems used as 

source training data, to see whether combinations of datasets generalize better.  

Future work should also extend to the segmentation version of the task, to see whether the 

same conclusions apply in that setting. Finally, future work should study whether the same 

findings may also be applicable to the more fine-grained section classification task, where the 

problem is more challenging due to lack of label standardization and sparsity of different 

section labels. 

Conclusion 

The classification of clinical note sections is a critical step for downstream natural language 

processing tasks such as named entity recognition, cohort selection and temporal information 

extraction. In this study, we used continued pretraining to improve the transferability of such 

models. We studied three datasets from different institutions and found the average F1 score 

dropped from 0.977 to 0.618 when switching from in-domain to cross-domain prediction. We 

found that continued pretraining was not suitable when only source domain labeled samples 
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were included in model training. When target domain labeled samples were included in 

model training, continued pretraining had an improvement on model transferability.  
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Table 5. Description of in-domain and cross-domain experiments with discharge being the 
target domain. 

method experiment source 
domain 

target 
domain 

number of target domain 
labeled samples added to 

fine-tuning 
DAPT corpus TAPT corpus 

In-domain and cross-domain 
section classification 

FTtarget discharge 

discharge 

all 

MIMIC-III discharge 
training set 

FTsource 

thyme, 
progress 

0 Continued pretraining 
DAPT + FTsource 

DAPT + TAPT + FTsource 

Combining unsupervised and 
supervised domain adaptation 

FTsource + target 
10,20,30,40,50 DAPT + FTsource + target 

DAPT + TAPT + FTsource + target 

 
 
Table 6. Description of in-domain and cross-domain experiments with progress being the 
target domain. 

method experiment source 
domain 

target 
domain 

number of target domain 
labeled samples added to 

fine-tuning 
DAPT corpus TAPT corpus 

In-domain and cross-domain 
section classification 

FTtarget progress 

progress 

all 

MIMIC-III progress 
training set 

FTsource 

discharge, 
thyme 

0 Continued pretraining 
DAPT + FTsource 

DAPT + TAPT + FTsource 

Combining unsupervised and 
supervised domain adaptation 

FTsource + target 
10,20,30,40,50 DAPT + FTsource + target 

DAPT + TAPT + FTsource + target 
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Figure 4. Dataset averaged F1 scores of FTtarget with target domain labeled samples varying 

from 10 to 200, overlaying with Figure 2. Horizontal dotted lines between FTsouce+target, DAPT 
+FTsouce+target, and DAPT+TAPT+FTsouce+target and FTtarget curves visualize applying f1-

1target(f) on the F1 scores of FTsouce+target, DAPT +FTsouce+target, and 
DAPT+TAPT+FTsouce+target for obtaining the equivalent FTtarget training sample size. 
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