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Abstract - Continuous and automatic monitoring of an 

individual's physical activity using wearable devices provides 

valuable insights into their daily habits and patterns. This 

information can be used to promote healthier lifestyles, 

prevent chronic diseases, and improve overall well-being. 

Smart glasses are an emerging technology that can be worn 

comfortably and continuously. Their wearable nature and 

hands-free operation make them well suited for long-term 

monitoring of physical activity and other real-world 

applications. To this end, we investigated the ability of the 

multi-sensor OCOsense™ smart glasses to recognize 

everyday activities. We evaluated three end-to-end deep 

learning architectures that showed promising results when 

working with IMU (accelerometer, gyroscope, and 

magnetometer) data in the past. The data used in the 

experiments was collected from 18 participants who 

performed pre-defined activities while wearing the glasses. 

The best architecture achieved an F1 score of 0.81, 

demonstrating its ability to effectively recognize activities, 

with the most problematic categories being standing vs. 

sitting. 

Keywords - human activity recognition, smart glasses, IMU 

I. INTRODUCTION 

Smart sensing with wearable devices has enabled 
numerous applications in ubiquitous computing. One of the 
tasks that has emerged as an important pre-requisite for 
other applications is Human Activity Recognition (HAR). 
HAR is a broad field of study that identifies a person's 
movements or actions based on sensor data. It covers a 
broad range of activities, from typical indoor activities, 
such as walking, talking, standing, and sitting, to more 
focused activities, such as those performed in a kitchen or 
factory floor [1]. HAR can also be used for tracking 
transportation modes [2] and stress levels [3], or as a part 
of disease severity detection methods for various diseases 
such as Parkinson’s disease and depression monitoring [4]. 
In healthcare, HAR is used in identifying symptoms of 
movement disorders or neurological diseases, aiding in 
diagnosis or symptom management [5]. 

Historically, collecting sensor data for HAR was a 
challenging and expensive process, which required custom 
hardware. This made it difficult to collect and analyze data 
on a large scale and limited the potential applications of the 
technology. However, with the widespread availability of 
smartphones and other wearable devices for fitness and 
health monitoring, this scenario has changed significantly. 

With the recent development of technology, sensor data can 
be easily obtained, and therefore a larger amount of 
HAR-based studies can be made. 

Body movements are among the main measurable 
components of behavior and play a significant role in the 
study of HAR. The use of motion sensor devices, such as 
accelerometers and gyroscopes, has made it possible for 
scientists to measure human behavior outside of the 
laboratory environment. These devices supply researchers 
with objective and quantitative data based on the three 
spatial dimensions, making it possible to analyze human 
movements in detail. 

Over the years, a number of wearable devices and 
sensors have been proposed for automatic detection of 
everyday activities. Early studies in this field explored the 
use of sensors placed on different parts of the body, so they 
can enhance detection accuracy. Over time, the selection of 
sensors was refined, taking into account two key factors, 
the capability of the sensors to precisely detect daily 
activities, and the practicality that encompasses user 
comfort and acceptability. As a result, the most commonly 
used devices for HAR are smartphones, wristbands, and 
smartwatches. However, the recent advancements in 
technology have enabled the development of compact, 
lightweight, and stylish smart glasses. Therefore, the 
researchers in this field started exploring the possibility to 
detect everyday activities using data coming from sensors 
embedded in smart glasses [6][7]. This device is suitable 
for HAR because it can provide an immersive and hands-
free experience, enabling the user to perform physical 
activity without any distractions. 

In this study, we investigated the ability of the multi-
sensor OCOsense™ smart glasses to recognize everyday 
activities. For this purpose, we evaluated three end-to-end 
deep learning architectures that showed promising results 
when working with sensor data in the past. Additionally, 
we explored the inter-subject variability for the recorded 
activities. Finally, we explored how we can include 
temporal information and detect transitions between 
activities. 

II. RELATED WORK 

The HAR domain has been thoroughly explored in the 
past using body-worn sensors. Most of the multi-sensor 
HAR approaches involve machine learning (ML) 
algorithms (e.g., Random Forest (RF), Support-vector 
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Machines (SVM), and k-Nearest Neighbors (KNN)) to 
build models from features extracted from each modality of 
the body-worn sensor. More recently, researchers started 
exploring novel approaches based on deep learning (DL) 
for HAR [8][9].  

In the field of HAR, sensors are usually placed on the 
wrists, ankles, hips, waist, or torso of the user. Approaches 
using head-mounted devices are rather scarce. Loh et al. 
[10] used a head-worn accelerometer, barometer, and GPS 
sensors with an SVM for fitness activity classification. 
Additionally, Zhang et al. [6] and Farooq et al. [11] 
proposed the use of head-mounted sensors to detect eating 
and chewing events. Head-AR [12] is a method based on 
weighted ensemble learning used for HAR from sensors 
mounted on a VR device. 

Despite the limited work in the field, the use of smart 
glasses for human activity recognition is a promising 
approach with a unique set of challenges. To this end, Faye 
et al. [13] published a dataset that is collected with 
commercially available glasses, smartwatch, and 
smartphone. The smart glasses provide data from an 
embedded IMU. This dataset has, however, some 
noticeable drawbacks. First, only one user participated in 
the experiment. Moreover, there is no well-defined set of 
activities or well-defined protocol, which makes it difficult 
to evaluate or extend.  

Another use of Electrooculography (EOG) J!NS 
MEME glasses have been demonstrated by Ishimaru et al. 
[14]. The study provides a signal level assessment of 
MEME glasses and shows the ability to distinguish 4 
activities (typing, reading, eating, talking) with an accuracy 
of 70% for 6 second windows and up to 100% for a 1-
minute majority decision.  

Meyer et. al [15][16] conducted two studies that 
propose context-aware human activity recognition (HAR) 
system for smart glasses by combining eye movement 
features from laser feedback interferometry (LFI) sensors 
and head movement features from an IMU. The method 
presented in his studies was DL based approach using 
convolutional neural networks (CNNs). 

More recently, UCA-EHAR was introduced, and it 
consists of 20 subjects performing 8 different activities, 
while wearing Ellcie Healthy (EH) smart glasses equipped 
with a gyroscope, accelerometer, and barometer, was 
proposed by Novac et al. [7]. RNN was used for 
classification of different activities and analysis of the 
power consumption during live inference on the smart 
glasses' microcontroller was performed. 

Another effort to develop a system for HAR using smart 
glasses (Google Glass Explorer Edition XE 22) has been 
made by Wang et al. [17]. The authors compare the 
classification performance of a Support Vector Machine 
(SVM) with data collected either from a smartphone or 
smart glasses for four activities (biking, jogging, movie 
watching, and video gaming). 

III. DATA 

A total of 18 young adult research volunteers (9 males 
and 9 females) aged between 18 – 37 (23 ± 5) participated 
in the data collection process, which included individuals 

engaging in activities of daily living (ADL) in a realistic 
home environment. There were no strict criteria that needed 
to be met for individuals to participate in the study. Instead, 
all individuals who were able to comfortably wear the one-
size-fits-all glasses were considered eligible to participate. 
This approach ensured that the sample size was not limited 
by factors such as age, gender, or physical ability. Each 
participant was equipped with emteq’s OCOsense™ smart 
glasses (Figure 1), which are fitted with: (i) a 9-axis inertial 
measurement (IMU) sensor (accelerometer, gyroscope, and 
magnetometer), (ii) pressure sensor; and (iii) 
optomyography sensors that measure skin movement. For 
this study, we used only the data provided by the IMU and 
pressure sensor. During the data collection procedure, the 
sensors were continuously sampled at a fixed rate of 50Hz. 

The data from the smart glasses was streamed in real-
time via Bluetooth to an application running on an iPad. 
The researcher conducting the data collection also 
performed real-time labeling. To facilitate this, the app 
featured a screen with buttons representing pre-determined 
activities. The researcher selected the appropriate button 
based on the activity being performed by the participant. 
Additionally, the dataset consists of synchronized video 
data from five external cameras placed around the 
apartment, which ensures labeling the activities as 
accurately as possible. 

Prior to the start of the data collection procedure, each 
participant was instructed on how to wear the glasses 
properly, and we ensured the fit and comfort. The data 
collection procedure involved three predefined scenarios 
that covered the activities of interest. 

Each participant was instructed about the scenarios, 
however, there was no limitation on how to perform a 
specific activity. The predefined scenarios resulted in three 
categories of activities: 

• Posture activities – included activities related to the 
posture of the participant, such as sitting, standing, 
walking, lying and transitions between sitting and 
standing. 

• Personal hygiene activities – included activities that 
are part of an individual’s daily hygiene routine, 
namely, washing hands and brushing teeth. 

• Dietary intake activities – included activities that are 
related to nutrient intake, such as eating and drinking. 
 
 

 

Figure 1. OCOsense™ smart glasses. The green colored rectangles 
represent the OCO™ sensors. The 9-axis IMU is represented by the 

purple rectangle. 
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Each participant was recorded for 2 hours, resulting in a 

dataset with 36 hours of labelled data. For the purposes of 

this study, we analyzed the following activities: sitting, 

standing, lying, walking, eating, drinking and hygiene, 

which includes washing hands and brushing teeth. The 

distribution of the data is shown in Figure 2.  

IV. METHOD 

Before passing the data as an input to the selected DL 
architectures we filtered the signals using a fifth-order 
median filter. Once the data was filtered, we generated 
magnitude for the accelerometer and gyroscope sensors. 
The next step in the process was to select the optimal 
window size for windowing the data. We tested various 
window sizes, and experimentally we determined that 
window size of 4 seconds contains enough temporal 
information from where the models can learn the patterns 
between the different activities. As a result, the signals were 
segmented using a window size of 4 seconds with a 2 
second slide between consecutive windows. 

Once the signals were prepared, we used them as an 
input to three end-to-end DL architectures. The chosen DL 
architectures are based on well-known architectures used in 
the past for various problems, such as computer vision and 
time-series related topics. In this study, the selected 
architectures were adjusted to work with one dimensional 
signals. 

• Spectro-Temporal Residual Neural Network 
(STResNet). For each sensor utilizes channel-specific 
residual blocks and spectrograms to extract temporal 
and frequency information. This architecture already 
proved to be successful in previous studies for various 
applications, such as HAR from smartphone sensors 
[18], for heart failure detection from heartbeat sounds 
[19], for monitoring driver distractions from 
physiological and visual signals [20]. 

• Inception Network – combines multiple blocks of 
channel-specific inception modules, which should 
increase the performance of vanilla CNNs. This 
performance of this architecture was evaluated in a 
previous study aimed at detection of eating habits 
based on smartwatch data [21].   

• Feature Level Fusion Network – combines channel-
specific CNNs and bidirectional LSTM networks to 
extract features from the raw sensor data and further 
aggregates the extracted features by using feature level 
fusion. This network was successfully implemented in 
detecting gait abnormalities using data from wrist-
worn inertial sensor [22]. 

For all three architectures the cross-entropy loss was 
used as the objective function for training. Furthermore, all 
the models were trained using an Adam optimizer with a 
dynamic learning rate. The initial learning rate was set to 
1e-3 and decreased by a factor of 0.1 every fifty epochs. To 
avoid overfitting to the training data, we used early 
stopping callback for all architectures. The callback was set 
to monitor the F1-macro score of the validation set. If the 
F1-macro score was not improved over ten epochs the 
training was stopped. The main reason for monitoring the 
F1-macro score is because it provides unweighted mean of 
the F1-scores calculated for each class separately. This way 
can have a general sense of how well the trained models 

 

Figure 2. Distribution of the seven activities. 

perform over all classes. For all models NVIDIA Titan Xp 
GPU was used to accelerate the training process. 

V. EXPERIMENTAL SETUP AND RESULTS 

To estimate the performance of the previously 
described DL architectures, we used a 6-fold cross 
validation (CV) approach. The created folds were 
participant-based, which means that the data from one 
participant only appeared in a single fold. The training 
procedure is repeated 6 times, each time using a different 
fold as the testing set. By using subject-based k-fold cross-
validation, the inter-subject variability of the data is taken 
into account and helps to reduce the risk of overfitting. To 
assess the performance of the trained models, we used the 
F1-macro score and accuracy. The reported results in this 
study are obtained using predictions for all folds, across all 
tasks and they are shown as a mean value with the standard 
deviation between folds.  

A. Performance Evaluation 

Table 1 shows the performance of each architecture 
described in Section IV, including F1-macro score, model 
size, and the number of parameters. Based on the obtained 
results, we can see that all architectures show promising 
results. 

As shown, STResNet performed the best with an 
F1- macro score of 0.81. Additionally, the standard 
deviation of the results obtained with the STResNet 
architecture is quite small, which suggests that this DL 
approach can learn general characteristics and perform well 
on data from unseen participants. Also, obtaining stable 
results over all participants proves our hypothesis that IMU 
data from head-mounted device is less prone to movement 
noise, hence a model based on such data can perform well 
on new participants. The other two architectures show 
similar results, however, it can be seen that the Inception 
architecture is a bit unstable based on the standard deviation 
between the folds. Additionally, if we compare the F1-
macro score of the Inception and Feature Fusion 
architectures to the STResNet architecture and take into 
account the size of the models, we can say that the 
difference in performance is acceptable. To gain better 
understanding of each architecture performance the 
confusion matrices are shown in Figure 3. This analysis 
provides us with an understanding of the model’s strengths 
and weaknesses, which can be useful for optimization. 
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TABLE 1: PERFORMANCE EVALUATION OF EACH DL ARCHITECTURE 

 
For the STResNet architecture, it is evident that the 

model is able to accurately detect activities such as hygiene, 
lying, and walking. However, the model faced some 
challenges when differentiating between standing and 
sitting. Additionally, in some cases, the model misclassifies 
eating and drinking activities. The drinking activity 
sometimes is predicted as sitting and less often as standing.  

The Feature Fusion and Inception architectures also 
exhibit similar limitations as STResNet. Specifically, the 
Feature Fusion network had a higher misclassification rate 
for the eating activity. Meanwhile, the Inception 
architecture had the lowest F1-Macro score for drinking 
due to a higher rate of misclassifying drinking as sitting. In 
comparison with STResNet, the misclassification of 
drinking and eating activities with sitting and standing is 
noticeably higher.  

One of the key issues for all three architectures is the 
differentiation between standing and sitting. This was in a 
way expected, given that these two activities resemble each 
other when looking through the prism of an IMU in smart 
glasses, i.e., the orientation of the IMU is similar during the 
two activities. Mixing drinking and eating activities with 
sitting and standing also arises from this issue. During the 
drinking activity, the subjects were in a seated position. 
Additionally, the eating activity was also primarily 
performed while sitting. This is the cause for misclassifying 
these activities. Nonetheless, we can see that the STResNet 
architecture in some situations managed to differentiate 
between standing and sitting. The reasoning why we expect 
the models to learn the difference is analyzed in more 
details in the subsection Exploring Standing vs. Sitting. 

 

B. Sampling Rate Analysis  

The OCOsense™ smart glasses provide sensor data 
sampled at a fixed rate of 50 Hz. Based on studies done in 
this field [18], it was established that this sampling 
frequency is sufficient for most activity recognition tasks. 
However, high sampling frequency and processing large 
amount of data can significantly reduce the device’s battery 
life. To try to mitigate these issues we decided to further 
evaluate the best performing architecture (STResNet) with 
down sampled sensor data to 25Hz and 10 Hz.  

The results for this experiment are shown in Table 2. It 
can be clearly seen that the best performance was achieved 
with 50 Hz data. However, if we compare the results with 
those achieved when the data was down sampled to 25 Hz, 
it can be noticed that the performance was decreased 
minimally. Given the results in similar fields, it's not 
surprising that 25 Hz is sufficient for recognizing human 
motion. Additionally, the training time for the model was 
reduced by almost one third. The reduced training time of 
the model with 25 Hz data was also an important 
consideration, as it allows multiple experiments to be 
conducted and do analysis faster. 

The experiment where the data was down sampled to 
10Hz resulted in more significant loss of 0.06 F1-macro 
score compared to the results where 50 Hz data was used. 
Nonetheless, these results still show that the model is 
capable of learning how to differentiate the activities in 
most of the cases. Similarly as before, by further reducing 
the sampling frequency to 10 Hz, the training time of the 
models was reduced to only one third of the original 
training time when the data was sampled with 50 Hz. 

C. Sensor-specific Experiments 

To understand the usefulness of each sensor modality, 
we investigated the performance of the STResNet 
architecture by using each modality individually as well as 
their combinations. The list of sensor modalities tested in 
this experiment includes data from accelerometer (A), 
gyroscope (G), magnetometer (M), and pressure (P) sensor. 
As a result, we had to repeat the training procedure 15 
times. Based on the results from the previous section we 
decided to reduce the training time and worked with 25 Hz 
data.  

 
F1-Macro 

Model size 

(MB) 

Network 

Parameters 

STResNet 0.81±0.025 516 44,044,203 

Inception 0.74±0.07 121 7,988,775 

Feature Fusion 0.76±0.04 143 9,648,395 

Figure 3. Confusion matrices for each DL HAR model.    
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TABLE 2: SAMPLING RATES ANALYSIS - RESULTS 

Sampling rate 

(HZ) 
F1-Macro 

Elapsed time 

(hh:mm:ss) 

50 0.81±0.025 01:23:50 

25 0.79±0.025 0:58:49 

10 0.75±0.025 0:27:01 

 
The obtained results are shown in Figure 4. The 

comparison of the results using data from a single sensor 
modality is colored with blue bars and shows that the 
accelerometer and the gyroscope are the most informative. 
Additionally, we can see that when using only data from 
the pressure sensor we cannot differentiate between 
activities. 

Furthermore, based on the combinations of data from 
two sensor modalities, which are colored with yellow, we 
can see that in certain situations we get improvement over 
models based on a single sensor modality. The best 
performing model is based on a combination of data from 
gyroscope and magnetometer. Next, we have the 
combination of accelerometer and gyroscope, which also 
outperforms all single modality results. The remaining 
combinations did not introduce any improvement over the 
best performing single sensor modality.  

The results where combinations of three sensor 
modalities are combined are shown with green bars on the 
plot. Here we can see that in all cases the models based on 
three sensor modalities outperform all previously discussed 
combinations. It is interesting to notice that by combining 
accelerometer, gyroscope, and pressure data the results 
were improved by 0.07 compared to only accelerometer 
and gyroscope data combination.  

Finally, the red colored bar shown in Figure 4 
represents the results when data from all four sensor 
modalities is combined. Here, it can be clearly seen that 
model based on all sensor modalities outperforms all 
previously discussed combinations. Also, we can see that 
our idea to include pressure data in the model results in 
improvement, compared to only working with 
accelerometer, gyroscope, and magnetometer. 

D. Exploring Standing vs Sitting 

The confusion matrix presented in Figure 3 showed that 
the STResNet model wrongly predicted classes standing 
and sitting.  To further investigate the separability of these 

 

 
Figure 4. Sensor-specific experiments. A-Accelerometer, G-Gyroscope, 

M-Magnetometer, P-Pressure sensor. 

activities we included transitions from sitting to standing 

and vice versa and analyzed the raw signal acquired from 

the pressure sensor.   
The result from the analysis is visualized in Figure 5. 

The different activities are color-coded. The figure shows 
that the pressure of the subject changes during the four 
different activities. One interesting observation is that 
during the transitions “sitting down” and “standing up” the 
pressure increases and decreases accordingly.  Being able 
to recognize these transitions accurately using data from the 
pressure sensor, may be useful in distinguishing between 
standing and sitting activities. Thus, a possible solution for 
the standing vs. sitting problem would be to have a 
temporal model that tracks the transitions (“sitting down”, 
“standing up”). Once we know the last transition of the 
user, we can more easily infer whether the user is sitting or 
standing. For example, if the last transition was “sitting 
down,” then “sitting” is a more probable next activity than 
“standing.” 

VI. CONCLUSION 

In this study, we analyzed data from the novel 
OCOsense™ multi-sensor smart glasses and their ability to 
recognize everyday activities in combination with deep 
learning models. For this purpose, we collected a HAR 
dataset that includes common activities of daily living. 

We explored three end-to-end deep learning models for 
HAR, including STResNet, Inception, Feature Fusion 
models. The best performing model, STResNet, achieved 
an overall f1-macro score of 0.81 and an accuracy of 0.80. 
Notably, the model achieved these results without the need 
for extensive feature engineering in an end-to-end manner, 
highlighting the power of deep learning in activity 
recognition.  

Additionally, we conducted an experiment where we 
tested different sampling frequencies. The performance 
decreased slightly when the data was down-sampled to 25 
Hz. A bit larger reduction was obtained when testing with 
10 Hz, however, the results were still acceptable. 

The analysis where we evaluated the contribution of 
individual sensor modalities and their combinations 
showed that the gyroscope is the most informative when 
working with a single modality. Additionally, this 
experiment showed that combination of all sensor 
modalities resulted in the best performance. 

Although the presented results in this study are 
promising, there are still open challenges that we plan to 
improve in the near future. For instance, the challenge of 
accurately distinguishing between sitting and standing 
activities remained present in all experiments. The reason 
is that the orientation of the head (i.e., the glasses and the 
IMU) is the same during these two activities. However, we 
showed that by explicitly analyzing transitions using 
pressure data we might be able easily distinguish these 
classes. Additionally, future work for this study can include 
expanding the dataset to include a more diverse population 
and a wider range of activities. Furthermore, testing the 
model in real-world scenarios and evaluating its 
performance in various environments can provide valuable 
insights into its practical applicability. 
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Figure 5. Pressure sensor signal visualization during sitting, standing 

sitting-to-standing and standing-to-sitting transition data. 

Another important aspect is to investigate the 

generalization capability of the proposed model on other 

datasets. 
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