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Abstract 
Multiple neuropathological changes are involved in Alzheimer’s disease (AD). AD hallmark biomarkers 
are amyloid-beta, tau pathology, and neuronal and synaptic loss. Other possible brain tissue-related 
biomarkers, such as iron and myelin content in the brain, are less frequently studied. Thanks to 
quantitative MRI (qMRI), tissue parameters such as magnetization transfer (MT), effective transverse 
relaxation (R2*), and proton density (PD) can be determined quantitatively, enabling the detection of 
microstructural tissue-related alterations in aging and neurodegenerative diseases. The current study 
investigated the co-occurrence of neurodegeneration (as measured with synaptic density), increased iron 
content, and decreased myelin content in Alzheimer’s disease. The study involved 24 amyloid-positive 
patients (AD, 11 males) and 19 healthy controls (HC, 9 males). All participants underwent a multi-
parameter mapping MRI protocol, from which quantitative maps for MTsat and R2* were estimated. 
Synaptic density was indexed by the total volume distribution map (Vt) derived from [18F] UCB-H PET 
imaging. First, groups were compared with univariate statistical analyses applied to R2*, MTsat and Vt 
maps. Then multivariate General Linear Model (mGLM) was used to detect the co-occurrence of changes 
in R2*, MTsat, and Vt at the voxel level. Univariate GLM analysis of R2* showed no significant 
difference between the two groups. In contrast, the same analysis for MTsat resulted in a significant 
between-group difference in the right hippocampus at the cluster level with a corrected threshold (P-value 
< .05). The mGLM analysis revealed a significant difference in both right and left hippocampus between 
the AD and HC groups, as well as in the left precuneus, right middle frontal, and left superior 
orbitofrontal gyrus when all three modalities were present, suggesting these regions as the most affected 
despite the diverse changes of myelin, iron, and synapse degeneration in AD. Here, the mGLM is 
introduced as an alternative for multiple comparisons between different modalities, as it reduces the risk 
of false positives due to the multiplicity of the tests while informing about the co-occurrence of 
neuropathological processes in dementia. 
 
Keywords: Alzheimer’s disease, qMRI, PET, Multivariate analysis 
 
* Corresponding author. 
a Contributed equally 

Email addresses: c.phillips@uliege.be (Christophe Phillips), christine.bastin@uliege.be 
(Christine Bastin) 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 17, 2023. ; https://doi.org/10.1101/2023.04.14.23288516doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.04.14.23288516
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction 
Concomitantly with an increase in average life expectancy, a major epidemiologic trend of the current 
century is the rise of neurodegenerative diseases worldwide, among which Alzheimer’s disease (AD) is 
the most common type, with 60 to 80 percent of the cases (Calabrò et al., 2021). Despite an incipient 
decrease in incidence, notably because of the prevention of vascular diseases in western countries, AD 
prevalence is expected to rise because this neurodegenerative disease increases exponentially with age 
(Azam et al., 2021; C.-C Tan, 2014). It is recognized that AD pathological processes unfold decades 
before the emergence of clinical signs of cognitive decline (Dean et al., 2017; Gonneaud and Chételat, 
2018; Tan et al., 2014). These pathological processes include a progressive accumulation of amyloid-beta 
plaques and tau neurofibrillary tangles (NFT), in addition to synaptic and neuronal loss (Gulisano et al., 
2018; Jack et al., 2013; Spillantini and Goedert, 2013; Tan et al., 2014; Yin et al., 2021). According to the 
amyloid cascade hypothesis (Jack et al., 2013), amyloid plaques are the initial cause of AD, triggering tau 
NFT, synaptic and neuronal loss. However, this view has changed notably with the constant development 
of novel imaging tools (Calabrò et al., 2021; Yin et al., 2021). For instance, tau NFT seems to collocate 
much more with synaptic and neuronal loss than amyloid neuritic plaques. Likewise, once AD cognitive 
symptoms are detected, tau NFT burden follows cognitive decline more closely than amyloid plaques 
(Musiek and Holtzman, 2015). Besides tau pathology, synaptic loss appears as the best correlate of 
cognitive decline in patients with Mild Cognitive Impairment (MCI) and with AD (DeKosky and Scheff, 
1990; Scheff et al., 2006; Terry et al., 1991). Also, in about 40% of cognitively normal older individuals, 
neurodegeneration (hippocampal atrophy) precedes detection of amyloid plaques (Jeremic et al., 2021; 
Villemagne et al., 2011). However, amyloid plaques might be required for tau NFT to expand from 
subcortical to cortical areas. Therefore, the relationships between AD hallmarks are more complex than 
first apprehended and could arise (partly) from relatively independent phenomena converging to AD. 
Accordingly, the identification of the early events in the AD pathophysiological cascade with in vivo 
noninvasive methods is critical to increase our understanding of the disease and inform the search for a 
treatment. 
In the quest for early biomarkers, it has been suggested that changes in brain microstructure are among 
the first manifestations of AD (Bartzokis, 2011). Increased iron levels are associated with dysfunction of 
oligodendrocytes, notably impacting myelin repair. Moreover, an increase in free iron is toxic, inducing 
oxidative stress and inflammation, cell dysfunction, and, ultimately, cell death (Bartzokis, 2011; Bulk et 
al., 2018; Calabrò et al., 2021). So, it is hypothesized that myelin breakdown and increases in iron levels 
are very early events in the physiopathology of Alzheimer’s disease. In support of this "myelin and iron" 
hypothesis, histological studies showed that myelin breakdown in early AD occurs mainly in frontal and 
temporoparietal areas (Bartzokis, 2011; Bulk et al., 2018; Kalpouzos et al., 2017; Zecca et al., 2004). 
Increased iron content was also found in frontal and temporal areas of AD patients (Bulk et al., 2018; 
House et al., 2008). Moreover ex-vivo studies showed that altered iron accumulation is positively 
correlated with the number of amyloid-beta plaques in these areas (Duijn, 2017; van Bergen et al., 2016). 
Elevated iron content has also been observed in the hippocampus of AD patients (Zeineh et al., 2015). 
Additionally, higher levels of ferritin (i.e., the principal iron storage protein of the body) in the 
cerebrospinal fluid (CSF) are associated with the poorer cognitive performance of cognitively normal, 
MCI and AD participants, and predicted MCI conversion to AD (Ayton et al., 2015; Peng et al., 2021).  
Novel neuroimaging tools can be used to assess brain microstructure. Indeed, specific MRI parameters 
have differential sensitivity for structural aspects of tissue such as fiber coherence, macromolecules, 
myelin, iron, and water content. Recently developed quantitative MRI techniques offer, through their 
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sensitivity to microstructural tissue properties, a unique opportunity for establishing in vivo the link to 
findings of postmortem histological assessment of brain tissue. Notably, Multi-Parameter Mapping 
(MPM) has been used to create quantitative brain maps that lead to a highly specific inference of tissue 
properties such as myelin water fraction (i.e., myelination) and iron content in the gray matter (Draganski 
et al., 2011). Consistently with ex-vivo histological studies indicating degeneration of myelin sheaths with 
healthy aging (Peters, 2002), myelin water fraction as measured by MPM magnetization transfer 
saturation maps (MTsat) was found to decrease with aging in the corpus callosum as well as in frontal and 
parietal white matter (Callaghan et al., 2014). Additionally, in line with ex-vivo evidence of increased iron 
content in basal ganglia in normal aging (Bulk et al., 2018), MPM imaging detected in vivo a positive 
correlation between iron deposit in the basal ganglia and age (Callaghan et al., 2014; Draganski et al., 
2011). Increased iron content was related to lower blood oxygen level dependent (BOLD) signal in older 
adults (Kalpouzos et al., 2017).  
In this context, our main objective was to use quantitative MRI to detect in vivo microstructural changes 
(myelin water fraction and iron content) in individuals with AD diagnosed by significant amyloid burden 
in the brain by comparison to healthy older individuals (amyloid-negative and cognitively healthy). In 
AD, investigation of brain microstructure with quantitative MRI has only recently started. One study 
(Acosta-Cabronero et al., 2016) used quantitative susceptibility mapping in MRI to show that AD patients 
have increased iron content in the putamen, caudate nucleus, and amygdala. The same authors (Acosta-
Cabronero et al., 2013) indicated that in healthy older adults, iron accumulation can be found in frontal 
lobes, affecting brain regions related to motor functions. Steiger and colleagues observed a decrease in 
gray matter volume and myelin, and an increase of iron in widespread brain regions including the basal 
ganglia in older adults using quantitative MRI technique (Steiger et al., 2016). Another work directly 
evaluated, in healthy older participants, the concurrent relation between CSF markers of  amyloid-beta 
and tau AD pathology, and MRI relaxometry-based measures of myelin content in the brain (Dean et al., 
2017). They found that lower CSF amyloid-beta and higher tau levels were related to regional decreases 
in the brain MRI myelin measures, particularly in brain regions known to be preferentially affected in 
AD, including white matter in the frontal, temporal, corpus callosum, and cingulum regions.  
To our knowledge, no study has used quantitative MPM to assess in-vivo myelin and iron in AD 
concomitantly. Moreover, little is known about in-vivo co-occurrence of cerebral microstructural changes 
and synaptic loss. The latter can be assessed with PET imaging using radiotracers binding to synaptic 
vesicle protein 2A (SV2A). With SV2A-PET imaging, AD-related decreased synaptic density was found 
in several cortical areas and the thalamus, with the most significant effect size in the hippocampus (Bastin 
et al., 2020; Chen et al., 2018). 
In the current study, co-occurrence of microstructural changes with reduced regional cerebral uptake of 
[18F]UCB-H PET indexing synaptic density was assessed with a multivariate model applied to the 
different imaging modalities (MPM and SV2A-PET). If myelin decrease and iron burden are early events 
preceding synaptic loss and neuronal death (Bartzokis, 2011), one should observe a co-occurrence in 
microstructural changes and decreased synaptic density, likely in the hippocampus whose alteration 
drives symptoms in the patients (Bastin et al., 2020). Of note, in the current cross-sectional study, we 
cannot assess the chronology of pathological changes across the different modalities. Nevertheless, we 
hypothesize that, if pathological processes are triggering one another as suggested by Bartzokis (2011), 
one should observe co-localization of pathological changes in the brain. 
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2 Methods 
2.1 Participants 
The data come from a published study that focused on in-vivo imaging of synaptic loss (Bastin et al., 
2020). Two groups of older participants were included in the study. The first group consisted of 24 
amyloid-positive patients from the AD continuum (Aβ-positive group). These patients were recruited 
from the Memory Clinic at Liege University Hospital. They were diagnosed based on current NIA-AA 
criteria (Albert et al., 2011; Jack et al., 2018; McKhann et al., 2011). As part of the initial diagnostic 
process, [18F]FDG-PET was used as a biomarker of neurodegeneration in all patients. Also, global 
cognition was assessed with the Mini-mental state examination (MMSE). Aβ positivity was determined 
based on [18F]Flutemetamol-PET by qualitative visual inspection and by cortical standardized uptake 
value ratios (SUVR) above a quantitative threshold determined in a database of healthy older adults 
(Bastin et al., 2020). In Aβ-positive group, 6 patients were diagnosed with MCI (MMSE between 26 and 
30) and 19 with probable AD, with MMSE scores between 14 and 26 (mild stage, MMSE > 20, n = 15; 
moderate stage, MMSE< 20, n = 4). The second group comprised 19 cognitively healthy controls (HC) 
(with MMSE between 28 and 30). In the HC group, amyloid-negativity was confirmed in eight 
participants, while there was no biomarker-related information for the others. Both groups were matched 
for age, sex, and education. 

2.2 Data acquisition 
Our data consists of dynamic PET and MRI. 

2.2.1 SV2A-PET 
Dynamic PET acquisitions were carried out using a Siemens/ CTI (Knoxville, TN) ECAT HR+ PET 
scanner. An intravenous bolus of [18F]UCB-H[37] of 157.06 8.96 MBq was administered. For a total of 
100 minutes, the dynamic PET was conducted with time frames of 6*10s, 8*30s, 5*120s, and 17*300s. 
All PET images were reconstructed using filtered back projection (Hann filter, 4.9 mm FWHM), 
including corrections for measured attenuation, dead time, random events, and scatter using standard 
software (ECAT 7.1, Siemens/CTI, Knoxville, TN). The transaxial resolution in water, under these 
acquisition and reconstruction conditions, is 6.5–7 mm (voxel size 2.57 x 2.57 x 2.43 mm3). A mean 
unchanged plasma fraction was calculated for each group and used for modeling based on blood samples 
collected in 7 controls and 6 patients. Further information on PET acquisition and processing can be 
found in (Bastin et al., 2020). 
 

2.2.2 Multi-Parametric Mapping quantitative MRI  
MRI data has been acquired on a 3T whole-body MRI-scanner (Magnetom Prisma, Siemens Medical 
Solution, Erlangen, Germany) using a standard 32-channel head receiving coil. The whole-brain MRI 
acquisitions included a multiparameter mapping protocol (MPM) (Weiskopf et al., 2013), from which 
(semi)quantitative maps of magnetization transfer saturation (MTsat), proton density (PD), transverse 
relaxation (R1), and effective longitudinal relation (R2*) can be estimated. This protocol consists of 3 co-
localized 3D multi-echo fast low angle shot (FLASH) acquisitions with 1 mm isotropic resolution and 2 
additional calibration sequences to correct for inhomogeneities in the RF transmit field (Lutti et al., 2010). 
The FLASH datasets were acquired with predominantly PD, T1 and MT weighting determined by the 
repetition time and flip angle, referred to in the following as PDw, T1w and MTw echoes. MTw contrast 
was obtained using an additional off-resonance Gaussian-shaped RF pulse. All three had high bandwidth 
to minimize off-resonance and chemical shift artifacts. Volumes were acquired in 176 sagittal slices using 
a 256x224 voxel matrix. GRAPPA parallel imaging was combined with partial Fourier acquisition to 
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speed up acquisition time to approximately 20 min. B1 field mapping images (transmit B1+ and receive 
B1- fields) were also acquired to reduce spatial heterogeneities related to B1 effect, which was essential 
for proper quantification of T1 (or R1=1/T1) in particular. Finally, B0 field mapping images were 
acquired for image distortions correction: two magnitude images acquired at 2 different TE’s, and pre-
subtracted phase images. 

2.3 Image data processing 
Collected data were anonymized and organized according to the Brain Imaging Data Structure (BIDS) 
(Gorgolewski et al., 2016) and its extensions for PET (Knudsen et al., 2020) and qMRI (Karakuzu et al., 
2022) data, the latter using BIDSme (https://github.com/CyclotronResearchCentre/bidsme), and the 
former with custom MATLAB scripts. All information needed for subsequent analysis was incorporated 
into the dataset. Data is available from the corresponding authors upon reasonable request. 

2.3.1 MRI 
To obtain the quantitative maps, MRI data were processed with SPM12 (www.fil.ion.ucl.ac.uk/spm) and 
the hMRI (https://hmri.info/) toolbox, where the latter is an extension to SPM (Tabelow et al., 2019). 
T1w, PDw, and MTw images acquired at multiple TEs were extrapolated to TE=0 to increase the signal-
to-noise ratio and remove the otherwise remaining R2* bias (Tabelow, 2019). The TE=0 extrapolated 
MTw, PDw, and T1w images were used to calculate MT saturation, R1 and apparent signal amplitude A* 
maps. A* maps were rescaled to generate PD maps. All quantitative maps were corrected for 
inhomogeneities from local RF transmit field (B1+). The receive bias field map (B1-) was used to correct 
PD maps for instrumental biases (Ashburner and Friston, 2005). R2* maps were estimated using the 
ESTATICS method from the three different FLASH acquisitions by accounting for the varying contrasts. 
The ordinary least squares (OLS) log-linear fit was also used to detect and down weight echoes affected 
by motion artifacts (Weiskopf et al., 2014). R1 maps were corrected for the radio frequency (RF) transmit 
field inhomogeneity B1+ (Preibisch and Deichmann, 2009). Quantitative maps were segmented into gray 
matter (GM), white matter (WM), and cerebrospinal fluid (CSF) using the unified segmentation approach 
as implemented in SPM (Ashburner and Friston, 2005). Inter-subject registration of the GM and WM 
tissue maps was performed using DARTEL, a nonlinear diffeomorphic algorithm (Ashburner, 2007). This 
algorithm estimates the deformations that best align the tissue probability maps by iterative registration of 
these maps to their average. The tissue probability maps were then normalized to the stereotactic space 
specified by the Montreal Neurological Institute (MNI) template using the resultant DARTEL template 
and deformations. Then, specific tissue-weighted smoothing, with a 3mm FWHM isotropic kernel, was 
applied to avoid mixing values from different tissues classes, as would happen with standard Gaussian 
smoothing. 
A GM mask was created using the mean segmented MTsat image from all subjects to be later used as an 
explicit mask in the statistical analysis. 

2.3.2 PET 
PET data were processed as described previously (Bastin et al., 2020). In brief, [18F]UCB-H PET 
dynamic frames were corrected for motion without re-slicing. The images were corrected for partial 
volume effects (PVE) using the iterative Yang voxel-wise method implemented in the PETPVC toolbox 
(Thomas et al., 2016), with GM, WM, CSF and “other” as ROI masks. Kinetic modeling using PVE-
corrected dynamic PET data and image-derived input function was done with PMOD (Version 3.7, 
PMOD Technologies, Zurich, Switzerland). Input function was derived from the dynamic images (Bahri 
et al., 2017) and corrected for metabolites using the measured group mean unchanged plasma fraction. 
Logan graphical analysis (with t* = 25 min) was used to calculate the distribution volume (Vt) map of 
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[18F]UCB-H in the brain. Finally individual Vt maps were coregistered with their corresponding MTsat 
map, then their spatial normalization transformations were applied to warp the Vt maps in the same 
reference space. 

2.4 Statistical analyses 
All analyses focused on GM only as PET images indexing synaptic density are only interpretable for gray 
matter. Therefore, an explicit mask for GM was applied on all the analysis. Since each parametric map 
has a specific unit, e.g., Hertz for R2* images and ml/cm3 for Vt maps, their intensities are not directly 
comparable. Thus, all maps were Z-transformed - per modality and across subjects - using the grand mean 
and variance over each voxel, to ensure comparability of different modalities for our multivariate 
analysis. All statistical analyses were performed on the standardized data. 
For quantitative MRI, we decided not to investigate R1 and PD maps, as they are proportional to multiple 
tissue properties at the same time, and would lead to underestimation of microstructural changes that we 
are interested in. Three modalities (MTsat, R2*, and Vt) were individually analyzed using a univariate 2-
sample t-test GLM with age and sex of the participants as covariates. We tested for the difference 
between the two groups for each modality. The t-student contrast defined for MTsat maps was HC>AD, 
hypothesizing that healthy controls have more myelin than AD patients, considering MTsat maps are 
proportional to the level of myelin in the brain. For R2* maps, we used contrasted AD>HC, testing 
hypothesizing that R2* values in AD group are superior to those of healthy subjects, as increased iron 
load is considered toxic. For Vt maps, we also tested the difference between groups (HC>AD). 
A MANOVA model was specified using the design matrixes of the three univariate models in the MSPM 
toolbox (Gyger et al., 2021), a newly developed toolbox working under SPM as a multivariate extension 
of univariate GLM (Chen et al., 2014; M Mcfarquhar, 2016). The multivariate GLM (mGLM) models the 
multivariate observations as Y=XB+E, where Y43×3=�Y1,Y2,Y3�  is the multi-modal data matrix, each 
row of Y represents one subject, and each column of Y represents one modality MTsat, R2*, and Vt at a 
single voxel; and X43×4= �X1,X2,X3,X4�is the design matrix, representing the AD and HC groups in the 
first two columns, and age and sex of the participants in the last two columns.  The matrix B is a 4 × 3 
matrix of size of regression coefficients; and E is the residual matrix of size 43 × 3. 
X43×4= �X1,X2, X3,X4�. The matrix � is estimated using an ordinary least-square method:  

B
^

=�XTX�-1
XTY , the matrix of predicted response value  is Y�=XB�, and the residual matrix is E=Y-Y�  . 

The regression model can be used to partition the total variation in the outcome into explained variance 
and unexplained variance. In this sense, the total sums of square and cross products (SSCP) terms are 
calculated as: SSCPTotal=SSCPModel+SSCPResidual. The SSCP matrix is used to estimate the variance-
covariance matrix of the predictor variables in linear regression analysis, and can be presented as  

SSCPTotal=(Y
^ T

Y
^

-Ny
¯
y
¯
T

)+ETE, where N=3 , the total number of observations. To test the null hypothesis 

that all the coefficients in B are equal to zero, we can compute the eigenvalues of SSCPModelSSCPResidual
-1 . 

Therefore, we must solve (Eq. 1) for finding the q eigenvalues λ and corresponding eigenvectors: 

det(
Y
^ T

Y
^

-Ny
¯
y
¯T

ETE
-λIq)=0 (1) 

 
Then the Wilk’s lambda summary statistics Λ is calculated based on the eigenvalues solving the equation 
of eigen-decomposition for the determinant matrix as follow: 
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Λ = 
|SSCPModel|

|SSCPModel+SSCPResidual| = � 1

1+λi

q

i=1

 (2) 

 
To test the hypothesis of the association between all dependent variables and contrasts among predictors, 
we applied this linear hypothesis: H0: CBL = 0, where L3×3 is a full rank matrix to test the hypothesis, 
here an identity matrix to test the hypothesis for the joint effect of all modalities (columns of B). The 

contrast matrix C=	1,-1,0,0
 would perform a standard F-test to assess the difference between the 2 
groups, AD and HC. Then, SS matrices associated with the hypothesis are calculated as follows: 

SSCPHyp= �CB
^

L�
T

�CB^L� (3) 

SSCPResidual= L �E
^ T

E
^�LT (4) 

    
Then the Wilk’s lambda summary statistics Λ is calculated by (Eq. 2). As there were three dependent 
variables in our model, it is interesting to extract the contribution of each modality (dependent variables) 
to the test statistics Λ, called canonical vector. This contribution corresponds to the eigenvectors  of 

SSCPModelSSCPResidual
-1  and can be calculated by solving (Eq. 1) for each eigenvalue, see (Tabachnick and 

Fidell, 2007) for mathematical details.  
Due to the lack of directionality in F-Tests, we are not able to interpret the results of the canonical 
vectors. Therefore, for illustrative purposes only, we extracted the original values, before the z-score 
transformation, from the 3 maps used at the voxels within significant cluster. This sheds light on the 
difference in real tissue property values. 
Statistical inference will be performed in the Results section using a p-value < .05 “family-wise error 
rate” (FWER) corrected, at the voxel or cluster extent levels. For the latter, the cluster forming threshold 
used will be a voxel level p<.001 uncorrected. 
 

3 Results 
 
3.1. Univariate analyses 
Controlling for age and sex, the two-sample t-test on MTsat maps revealed a significant difference at 
cluster-level (PFWE<.05) between AD patients and healthy controls which covers the right hippocampus 
and amygdala indicating lower values in AD than in controls (Figure 1-B). No significant difference in 
R2* maps, representative of iron level content in the brain, was detected between the groups. However, it 
is worth mentioning that, at a more lenient statistical threshold (p < .001 uncorrected), the results for R2* 
analysis show differences bilaterally in the superior part of orbitofrontal cortex as well as in the left 
hippocampus and right mid-temporal gyrus. 
Vt data shows higher intensities in healthy controls compared to Alzheimer’s patients in the left and right 
hippocampus and amygdala at voxel-level (PFWE <.05) as well as left posterior and anterior insula, right 
and left thalamus, and middle cingulate gyrus at cluster level (Figure 1-A). Coordinates and anatomical 
labels of the peaks are presented in Table1.  
 
3.2. Multivariate analysis 
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The multivariate GLM (mGLM) model, controlling for the effect of age and sex, shows significant 
difference at voxel-level (PFWE <.05) between the two groups in both left and right hippocampus and 
amygdala. Differences were also observed in the right middle frontal gyrus and left inferior parietal cortex 
as well as the right orbitofrontal cortex (Figure 2). Coordinates and anatomical labels of the peaks are 
presented in Table 2.  
Canonical vectors are evaluated for the mGLM model for each modality. The canonical vectors at the 
peak voxel of the above-mentioned clusters are illustrated in Figure 3. Currently, it is not possible to 
summarize and evaluate whether the profile of canonical vectors within a particular cluster is uniform or 
diverse. Furthermore, the interpretation of the findings is limited due to the lack of directionality of 
effects based on F-tests. 
The violin plots in Figure 2 represent the distribution of values within the five significant clusters from 
the mGLM model in the original quantitative maps (before Z-transformation and after correcting for age 
and sex) to illustrate that the difference we detected, using the mGLM, is genuinely derived from which 
tissue property in each cluster. This measure of contribution reveals visually the rate of contribution of 
each modality within the multivariate model. 
The multivariate approach results for the difference in the right hippocampus concur with those of the 
univariate analyses of MTsat and Vt maps. Other regions in the frontal and parietal cortex appeared to 
show combine alteration in AD patients in the mGLM approach but were not observed in the univariate 
analyses. This suggests that using the mGLM we can increase the sensitivity by performing only one test 
instead of multiple univariate tests. 

4 Discussion 
In this study, we investigated the association of synaptic density, myelination, and iron accumulation in 
patients with Alzheimer’s disease (i.e., presence of cerebral amyloid burden) compared to healthy 
individuals. The three different markers are assumed to play a role during AD, with a hypothesized 
cascade of pathological processes whereby increased iron and decreased myelin would lead to neuronal 
death and a reduction of synapses (Bartzokis, 2011). Only a longitudinal study could capture this 
hypothetical chronology. Nevertheless, we hypothesized that, when reaching the clinical stage where 
amyloid-positive individuals demonstrate symptoms of cognitive decline, co-occurrence of changes in the 
three pathological markers should be seen if they were linked in previous stages. Although the current 
study is based on a small sample of participants, the findings suggest that combining different image-
derived AD risk factors in a multimodal analysis cohort allowed us to identify specific regions of the 
brain harboring a co-occurrence of several neuropathological processes involved in the early stage of AD. 
The univariate comparison of AD patients and controls for each microstructural cerebral map already 
provides complementary findings to the scarce data assessing in-vivo Alzheimer-related changes in iron 
burden and myelination. Although myelin is continuously generated throughout life (Chen, 2021; 
Nasrabady et al., 2018), as we age, myelin generation decreases which affects cognitive functioning 
(Wang et al., 2020, 2018). Myelin deficits are shown to cause neurological setbacks such as motor 
dysfunction and neural degeneration (Wang et al., 2018). Furthermore, demyelination is shown to be 
associated with higher levels of amyloid beta (Bartzokis et al., 2007; Nasrabady et al., 2018). Bartzokis et 
al showed that amyloid beta positivity is negatively correlated with myelination while positively 
associated with iron content in the brain (Bartzokis et al., 2007). Su et al. reported that the iron content in 
the brain increased in one year compared to the baseline in AD participants and that iron accumulation 
was correlated with the neuropsychiatric behavior of participants (Su et al., 2016). More generally, little is 
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known about the GM myelination in the brain (Timmler and Simons, 2019). This is the first study to 
investigate myelination in GM using quantitative MRI method in Alzheimer’s disease. Our analysis on 
the MTsat maps indicates lower myelination values in the right hippocampus of the amyloid-positive 
patients compared to healthy controls. These results agree with the previous findings on myelin deficits 
that lead to motor dysfunction, impaired cognitive functions, psychiatric disorders, and neurodegenerative 
disease (Chen, 2021; Wang et al., 2018).  
Previous in-vivo studies (Duijn, 2017; Zeineh et al., 2015) showed that although iron content in the brain 
is not affected by normal aging, in case of AD, accumulation of iron is observed in plaques, activated 
microglia, and, in the most severe cases of AD, in the mid-cortical layers along myelinated fibers. Duijn 
et al also showed a difference in iron and myelin distribution in frontal cortex between the healthy 
controls and AD patients that are visible after development of AD pathological hallmarks (Duijn, 2017). 
Moreover, (van Bergen et al., 2016) showed that cerebral iron is significantly positively associated with 
Aβ positivity in MCI. Here we failed to observe any significant group difference at the corrected 
statistical threshold for R2* maps indicative of iron content. However, at a more lenient statistical 
threshold, regions showing increased iron content correspond to those described in previous studies.  
The most important findings are provided by the multivariate results indicating that there is a significant 
co-occurrence of demyelination, synaptic loss, and iron accumulation, in the hippocampal area bilaterally, 
frontal, and parietal regions of AD brains compared to healthy brains. Assuming that the probability maps 
are independent, the canonical vector information on the contribution of each factor shows that synaptic 
density and myelination contribute the most in the mGLM, while R2* maps contribute the least in all 
clusters (see Figure 3). The fact that co-occurrence of demyelination, iron accumulation and decreased 
synaptic density was found in the hippocampus may point to the determinant contribution of pathology to 
this region for the symptomatology from the early clinical stages of AD. Indeed, the emergence of 
symptoms, which concern memory in the typical form of AD, is related to neurodegeneration in the 
medial temporal lobe, against the background of amyloid pathology that reaches a plateau in the early 
stages of AD (Timmers et al., 2019). Amyloid burden in itself would not induce any cognitive decline, 
but its combination with neurodegeneration is the precipitating factor for the occurrence of cognitive and 
functional symptoms (Timmers et al., 2019). Additionally, neurodegeneration of frontal and parietal areas 
is also responsible for cognitive decline in early AD (Salmon et al., 2008; Yang et al., 2012). The current 
data may indicate that neurodegeneration is not an isolated determinant of symptoms onset. 
From a methodological point of view, the multivariate analysis approach should be preferred over the use 
of several, one per modality studied, comparisons as it limits the implicit risk of false positive due to the 
multiplicity of tests with the multiple GLMs tests. 
In addition to considering iron content and myelin using quantitative MRI, the novelty of the current 
study lies in the whole-brain assessment of combined changes in biomarkers of AD. However, there is 
still the need to acquire a larger dataset in which we can verify the microstructural changes of the brain 
through time from healthy controls to the different stages of AD, and whether they are chronologically 
associated with synaptic loss. More generally, the current study illustrates the importance of studying AD 
via its different pathological factors, as it is believed that there is a cascade of processes that lead to AD. 
Moreover, if we can characterize AD using non-invasive imaging techniques, we would have the 
opportunity to detect and study this disease in earlier stages where interventions should be the most 
effective. 
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Figure 1. Statistical parametric maps of the univariate analysis for AD and HC groups testing for the directional 
difference between the groups after adjusting for sex and age. The results are overlaid on the average MTsat image 
and are displayed at p < .05 corrected at cluster-level. A) The results testing for VtAD<VtHC specify lower values in 
the AD patients bilaterally in the hippocampus as well as the thalamus, middle cingulate gyrus, and left posterior 
and anterior insula.   B) The results testing for MTsatAD<MTsatHC show smaller intensities in the right hippocampus 
of the AD group. 
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Figure 2. Distribution of voxel values within each MSPM significant cluster. Each violin plot represents the 
distribution, across the subjects in their group (AD in blue and HC in red), of mean values in the original 
quantitative map within each cluster, after adjusting for sex and age. White circles represent the median value within 
each group per cluster. The range of y axes is based on the variations within each modality. The first and third 
quartiles are shown with darker shadows within each violin. The mean value within each group per modality and 
cluster is shown with the horizontal line. 
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Figure 3. Canonical vectors at the peak voxel of the significant clusters in the mGLM model. 
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Table 1. Significant differences between patients with Alzheimer’s disease and healthy controls for MTsat and Vt 
maps. Brain regions were labeled with the aal3 atlas toolbox in SPM. This table shows up to 2 peaks (at least 8mm 
apart) within each cluster. Coordinates are MNI coordinates. 

Peak [x y z] 
coordinates 

Cluster P-
value 

(FWER) 

Cluster 
size 

Brain region 

MTsat (df=39) 
[31 –7 –27] .001 2508 Right Hippocampus 
[24 -7 -21]   Right Amygdala 

Vt (df=39) 
[25 –10 -14] .000 1983 Right Hippocampus 
[26 -9 –18]   Right Amygdala 

[-29 –14 –15] .000 2219 Left Hippocampus 
[-14 -21 17]   Left Thalamus 

[3 -6 9] .000 229 Right Thalamus 
[-42 -7 2] .000 303 Left Posterior Insula 
[0 –18 33] .001 217 Middle Cingulate Gyrus 

[-38 15 –12] .001 201 Left Anterior Insula 
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Table 2. Significant differences between AD and HC groups in the mGLM model. Brain regions were labeled with 
the aal3 atlas toolbox in SPM. This table shows up to 2 peaks (at least 8mm apart) within each cluster.  

MSPM (df=37) 

Peak [x y z] 
coordinates  

Cluster 
P-value 
(FWER)  

Cluster 
size  

Brain region 

[25 -10 -14] .000 1772 Right Hippocampus 
[30 -7 -22]   Right Amygdala 

[-27 -12 -15] .021 895 Left Hippocampus 
[-30 -8 -23]   Left Amygdala 
[40 49 22] .028 115 Right Middle Frontal 
[-62 -44 35] .045 19 Left Inferior Parietal 

[8 34 -27] .047 13 Right Orbitofrontal 
 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 17, 2023. ; https://doi.org/10.1101/2023.04.14.23288516doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.14.23288516
http://creativecommons.org/licenses/by-nc-nd/4.0/

