A mobile app for chronic disease self-management for individuals with low health literacy: A multisite randomized controlled clinical trial

Raymond L Ownby¹ @rownby, @cogstim
Drenna Waldrop²
Rosemary Davenport¹
Michael Simonson³
Joshua Caballero⁴
Kamila Thomas-Purcell⁵
Donrie Purcell¹
Victoria Ayala¹
Juan Gonzalez¹
Neil Patel¹
Kofi Kondwani⁶

¹Department of Psychiatry and Behavioral Medicine, Nova Southeastern University, Fort Lauderdale FL
²Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta GA
³Instructional Technology and Distance Education Program, Fischler College of Education, Nova Southeastern University, Fort Lauderdale FL
⁴University of Georgia, Athens GA
⁵College of Health Sciences, Nova Southeastern University, Fort Lauderdale FL
⁶Department of Community Health & Preventive Medicine, Morehouse School of Medicine, Fort Lauderdale FL

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objective: The purpose of this study was to evaluate the effects of a mobile app designed to improve chronic disease self-management in older adult patients with low health literacy and who had at least one chronic health condition, and to assess the impact of delivering information at different levels of reading difficulty.

Methods: A randomized controlled trial was completed at two sites. Individuals 40 years of age and older screened for low health literacy who had at least one chronic health condition were randomly assigned to a tailored information multimedia app with text at one of three grade levels. Four primary outcomes were assessed: patient activation, chronic disease self-efficacy, health-related quality of life, and medication adherence.

Results: All groups showed overall increases in activation, self-efficacy, and health-related quality of life, but no change in medication adherence. No between-group differences were observed.

Conclusions: The mobile app was effective in increasing participants' levels of several psychosocial variables, but reading difficulty level was not significantly related to outcomes.

Registered at clinicaltrials.gov NCT02922439.

Keywords

Health literacy, chronic disease self-management
Introduction

Health literacy, defined as a person’s ability to find, take in, and use health information to attain a desired health status,¹ and is related to health status and health outcomes across a wide range of contexts and health conditions. The 2003 United States (US) National Assessment of Adult Literacy showed that more than 75 million Americans had only basic health literacy skills, indicating that 1 in 4 Americans have problems understanding information about healthcare.² More recent studies of literacy and numeracy skills in the general population suggest that the situation has not changed.³, ⁴ Research also shows that the problem is not limited to the US, with similar findings in Canada, Europe and Africa.⁵-⁷

Further, health literacy is lower in persons from racial and ethnic minoritized groups as well as older adults², ⁸ and may be an important factor in health disparities.⁹, ¹⁰ In the US, 24% of Black persons (9.5 million) and 41% of Hispanic persons (21 million) have below basic levels of health literacy.² Members of minoritized groups have lower levels of health literacy and compelling evidence links race and ethnicity to disparities in health via health literacy.¹¹-¹⁸ Members of racially minoritized groups and older adults are also more frequently affected by chronic diseases such as cancer, high blood pressure, heart attack, stroke, diabetes, asthma, hepatitis, HIV infection, mental health disorders and many others. The twin burdens of chronic disease and low levels of health literacy thus fall disproportionately on those most in need – members of minorities and older adults, all of whom may experience one or more chronic conditions while not having the health literacy skills they need to cope.⁹, ¹⁹ Interventions to improve health literacy are thus clearly needed.
Providing information for patients in clinical settings on self-management of their health conditions may be a useful strategy in addressing low health literacy. In the traditional methods that use pamphlets or handouts supported by conversation in a brief clinical encounter, however, information is often not actually read or remembered, and recommendations may not be implemented.

One strategy to increase the impact of such information on patient behavior is tailoring. Tailoring information, defined as using various methods to create individualized communications for patients, aims to reduce the burden of self-management on health consumers by giving them useful information that is relevant to their needs or concerns and that they can understand and use. Various information interventions have been developed to improve patients’ health literacy, including matching health education content to patient characteristics and tailoring health messaging to make it more directly relevant to patients. While these techniques have often been successful, creating individually-tailored health information is labor intensive and thus may not be widely available.

One solution to the problem of giving patients the information they want and need in a form they can use has been the development of computer-based interventions to automate message tailoring. Computer-based tailoring creates the possibility that high-quality individualized health information can be made available to those who need it. Information can be delivered to patients when they want it and it can target content they are interested in, a process of providing precision health information. Analogous to the processes underlying the precision medicine approach to the somatic treatment of diseases, computer-based tailoring can take a patient’s personal characteristics,
including their expressed concerns or problems, and provide detailed information to help them understand their health conditions and develop self-management skills.

A potentially critical variable in the tailoring process is ensuring that content is appropriate to the patient’s level of health literacy. If information is not understood, even if tailored, it may not impact patients' behavior. Studies show that while experts recommend that materials for patients be written at a 4th or 6th grade level and match patients’ level of health literacy, multiple studies show that most patient education materials are at much more difficult levels.

In this project, we worked to address these issues by developing a tailored information app focused on chronic disease self-management (CDSM) with three versions: one with text at 8th grade level, a second at 6th grade, and a third at 3rd grade level supported by audio narration. We chose CDSM because we believed it was a logical target for a health literacy intervention. In an approach that cuts across specific diseases, CDSM targets problems and skills needed to cope with issues such as fatigue, pain, stress, depression, sleep disturbance and treatment adherence. Studies show that in-person CDSM classes improve patients’ functioning and reduce healthcare utilization but their availability is limited due to the lack of qualified personnel, cost, and accessibility.

Similarly, while interventions have been developed to improve health literacy, they are difficult to scale to levels needed to meet the challenge of low health literacy (millions of persons worldwide) due to their cost. Effective interventions with the potential for wider dissemination at reasonable costs are urgently needed. For many of the problems that are the focus of CDSM, well-defined behavioral strategies exist for
their management (e.g., cognitive behavioral therapy for sleep52 or mood problems53)
holding the possibility that effective tailoring might help patients develop relevant
knowledge and behavioral skills.

Assessments of CDSM programs have focused on a several outcomes, and in
this project, we focused on four that we judged were most relevant to the effects of a
CDSM-targeting intervention and that would allow us to compare our results with those
of other researchers. Patient activation54 is defined as the extent to which they are
actively involved in their healthcare, and has been related to a number of important
health status variables, including emergency department visits, receiving breast cancer
screening as well laboratory measures such as hemoglobin A1C (related to diabetes)
and HDL (high density lipoprotein related to cardiovascular disease risk).55 Activation
has also been associated with self-management behaviors56 as well as quality of life,57
and studies show that interventions that improve patient skills can increase activation.58
Finally, activation is related to self-management behaviors in older adults59 and changes
in activation are related to changes in health outcomes60 and healthcare costs.61

Self-efficacy, or a person’s belief in his or her capacity to reach specific goals,62
is a key concept in understanding health behavior,63 especially in relation to patients’
health behavior62 and in CDSM.43 In-person and internet-delivered CDSM programs
have a positive impact on self-efficacy45, 46 which in turn have been related to self-
management.64-66 Another highly relevant potential outcome of improved CDSM skills is
improved health-related quality of life (HRQOL). Self-reported health status has often
been studies as an outcome in CDSM studies,41, 45, 47 and is clearly an important aspect
of improved self-management skills. Finally, medication adherence is an essential
aspect of self-management behavior. Poor medication adherence is common in patient populations with estimates of adherence ranging from 5567 to 75\%.68 Adherence has been linked to numerous health outcomes,69 increased healthcare costs,70 and studied as an outcome in other studies of CDSM.47

The objective of this study was to assess whether a mobile app for CDSM providing individually-tailored health information would have a positive impact on participants’ activation, self-efficacy, quality of life and medication adherence. It was also hypothesized that information presented at reading levels consistent with expert recommendations (3rd to 6th grade levels) would have a greater impact on these variables than information presented at an 8th grade level.

Method

Initial guidance on content for the app was drawn from a review of existing sources on CDSM supplemented by a qualitative study that explored older patients’ information needs.71 A multidisciplinary team comprising representatives from medicine, nursing, psychology, pharmacy, public health, and education was assembled to develop content. Team members with special expertise in developing culturally and ethnically appropriate education materials were included as well (KTP, KK).

The app was conceived as a series of topical modules that would consist of a series of screens. Based in principles of cognitive load theory-based instructional design,72, 73 each module was planned to include an orientation to its purpose, assessment of the participants’ current status by way of questions, general health information on each topic, individually-tailored content, and a summary. Self-test questions were included to help participants understand how well they learned the
module’s contents. Information was presented as text on a series of screens, supplemented by pictures, graphics, and narrated animations consistent with the principles of multimedia learning.

More extensive information about the development and testing of the app and its contents are available in a paper under review, available as a preprint. Modules with the same content were created at three levels of reading difficulty based on the Fry and Flesch Reading Ease scores of the text they contained (3rd grade, with text narrated; 6th and 8th) using Health Literacy Advisor® (Bethesda MD: Health Literacy Innovations LLC), a software plugin working with Microsoft Word®.

Participants. Participants were recruited from participants in previous studies, from local health clinics and medical practices, and by word of mouth. At the Atlanta site, a paid recruiter visited local churches where she could screen potential participants as well as give them information about participation. Information and race and ethnicity was collected as required by the U.S. National Institutes of Health for grant recipients. Race and ethnicity were self-reported by participants. Gender was also self-reported, with transgender participants considered as the gender of their chosen identity.

Screening. Participants were initially screened to determine their potential eligibility using a brief interview that elicited medical history, medication use, and education. They were administered a short form of the Rapid Estimate of Adult Literacy in Medicine using a previously validated cut-off for health literacy at or below the 8th grade level.

Inclusion and exclusion criteria. To be eligible to participate in the study, participants were required to be 40 years of age and older, have at least one chronic
health condition for which they were currently treated, have an education level less than 16 (i.e., not be a college graduate), and score below the cut-off score on the short form of the REALM. The criterion of having less than a college education was derived from our findings in a previous study31 that no participants who had successfully completed a college degree had inadequate health literacy.

Measures. Participants completed an extensive battery of measures as part of a baseline assessment, with self-report outcome measures administered immediately after completing the intervention and then three months later. Most self-report measures were administered by computer, with questions read aloud by the interviewing software to minimize the impact of participants’ reading skill on their ability to respond to questions. As the baseline visit, participant demographic information, level of education, and medical history were assessed in an individual interview. The medical history interview was based on the medical conditions comprising the Functional Comorbidity Scale82 but expanded to include additional health conditions common in older adults.83 Self-report measures were administered via audio computer-assisted self-interview software (Bethesda MD: Questionnaire Development System) that read all questions aloud to participants to keep effect of reading ability on participant responses to a minimum.

In order to provide a standardized assessment of participants’ reading skills, trained assessors individually administered the Woodcock-Johnson Psycho-Educational Battery84 Passage Comprehension subtest. This measure provides a grade equivalent score that helped characterize participants’ reading levels. The FLIGHT/VIDAS health literacy scale was used in this study because of its desirable psychometric
characteristics85 that include a wide range of scores; other health literacy measures often have ceiling effects that reduce the range of observed scores that make them less useful in statistical analyses.86

The four outcomes we studied were assessed with widely-used measures of each construct. Activation was evaluated with the Patient Activation Measure.54 We used the ten-item version based on the short form that has been shown to have good validity and reliability.87, 88 Self-efficacy was evaluated with the Chronic Disease Self-Efficacy Scale,89 used in multiple studies of CDSM programs. It also has demonstrated reliability and validity.89 The Medical Outcomes Study, Short Form 36 (MOS SF3690) is one of the most widely used measures for understanding psychosocial functioning related to health. It has well-established reliability and validity for use with older adults with chronic health conditions.91-93

The Gonzalez-Lu questions were included as a measure of adherence because they have been validated against electronically-recorded medication adherence and their simplicity.94, 95 As the four questions were highly intercorrelated, we reduced them to single score using principal axis factor analysis and used resulting factor scores as a single measure. This approach avoids the limitations of simply summing a group of items96 and has good psychometric properties.97

\textit{Analyses}. Planned analyses assessed the study hypotheses that persons receiving the intervention would (1) show significant increases in measures of activation, chronic disease self-efficacy, health-related quality of life and medication adherence and (2) that persons receiving the information at 6th and 3rd grade levels
(experimental conditions) would show greater change than those receiving the material at the 8th grade level (control condition).

Preliminary review of data and descriptive measures were obtained using SPSS version 28 (Armonk NY: IBM). Mixed effects random intercept models were evaluated with the statistical program R, version 4.2.1.98 using the \textit{lme4} package.99 All models included participant age, gender, race, and site of data collection as well as time and treatment group and their interaction. Tests of study hypotheses were completed after maximum likelihood estimation using Satterthwaite approximations of \textit{p} values.100 Tests of the statistical significance of within- and between-group differences were obtained using the \textit{emmeans} package using the Tukey correction for multiple comparisons.101

Based on evaluation of between-group differences at the two sites as well as theoretical considerations, model covariates were chosen to control for likely confounders as well as observed between-site differences. They were chosen based on considerations of likely confounding impact on outcome measures (age, gender, race, and education) and observed between-site differences in level of health literacy and level of multimorbidity (FLIGHT/VIDAS health literacy scale and number of health conditions). In addition, because of observed differences in participant characteristics at the two sites, site itself was included as a covariate.

\textit{Sample size}. Target sample size was determined during the planning phase of the project using the mixed effects models simulation routine in PASS 16102 which showed that a minimum sample size of 30 per group would provide a power greater than 0.90 to evaluate study hypotheses as the interaction of treatment group with time.
Effect sizes for the analysis were based on previous observation of the effects of a similar intervention.103

Procedure. After initial screening, potential participants were scheduled for an in-person eligibility visit when, after obtaining verbal consent, they completed measures of health literacy, reading comprehension, a hearing and vision screening, and a medical history interview to determine their eligibility. Eligible persons were then scheduled for a baseline visit during which they completed self-report measures and some individually-administered measures of academic skills. After this baseline visit, participants were randomly assigned to one of the three intervention groups (3rd, 6th, or 8th grade reading level) and returned for the intervention visits. These occurred over two to three weeks with a maximum of two sessions per week during which the participants worked through the CDSM modules for a total of three sessions. During intervention sessions, participants worked through the modules on tablet computers (Microsoft Surface Pros®) as preliminary work suggested that many of them would have difficulty in interacting with the modules on smaller screens.

In the first session, participants reviewed an introductory module that explained the purpose of the information, an adherence module that emphasized not only strategies for treatment adherence but also how to work with health care professionals, and a module on stress, its effects, and management techniques. In the second session, participants reviewed modules on sleep, mood, pain, and memory. Finally, in the third session, they worked with modules on fatigue, shortness of breath, and anger.

After completing the modules, participants returned within several days for the first follow-up visit during which they again responded to self-report measures and
completed an individual semi-structured interview that elicited their reactions to the modules and the extent to which they had adopted any of the recommendations they contained. Three months later, participants returned for a second follow-up visit during which they again responded to self-report measures and completed the same semi-structured interview.

Human subjects approval. All study procedures were completed under protocols approved by the Nova Southeastern University Institutional Review Board (2018-685-NSU) and the Emory University Institutional Review Board (MODCR001-IRB00087112). All participants provided verbal consent for screening and written informed consent for all other study procedures.

Results

Figure 1 presents the CONSORT diagram for participant flow during the trial for both sites combined (separate CONSORT diagrams for each site are provided as supplementary material) and Table 1 presents descriptive data for participants who completed at least one intervention session at each site and for both groups overall. Both participant gender and race were differently distributed at the two sites, with relatively more male and white participants at the Fort Lauderdale site. The two groups of participants did not vary on three of the outcome measures, although Fort Lauderdale participants reported slightly greater medication adherence at a level that approached statistical significance.

(Insert Figure 1 about here)

(Insert Table 1 about here)
The random intercept model for the Patient Activation Measure is presented in Table 2, with model-based means for each group at each time displayed in Figure 2. While the interaction of treatment group with time was not statistically significant, there was a significant effect for time, with all groups showing increases in activation after the intervention. Although level of activation appears to continue to increase between the first and second follow-up visits for the 3rd grade group, the difference between this group’s activation and the other groups was not significant (all $p > 0.50$) and the within-subjects difference also was not significant ($p > 0.50$).

(Insert Table 2 about here)

(Insert Figure 2 about here)

The model for the Chronic Disease Self-Efficacy Scale is presented in Table 3. Education, health literacy, and total number of health conditions as well as time were related to this outcome. Model-derived means are plotted in Figure 3. Although the level of self-efficacy appears to decline for the 8th grade group at second follow-up the difference between the 8th and 3rd grade groups (which appears to increase) was not significant ($p = 0.14$).

(Insert Table 3 about here)

(Insert Figure 3 about here)

The model for health-related quality of life (HRQOL; SF-36 General Health scale) is presented in Table 4. In this model, in addition to the effect of time, participants’ HRQOL was positively related to their level of education and inversely related to the number of health conditions they reported. Inspection of Figure 4 shows that the most pronounced effect on this outcome measure was observed at the three-month follow-up.
The overall effect for time was associated with a moderate effect size of 0.50. Within group analyses showed that the 8th grade group improved significantly from baseline to the second follow-up ($t_{486} = 2.94, p = 0.01$), while the 3rd grade group improved significantly only between the first and second follow-up ($t_{486} = 2.66, p = 0.02$). Although the 6th grade group appears to have improved from the first to second follow-up, this change was not significant ($t_{475} = 1.61, p = 0.24$).

(Insert Table 4 about here)

(Insert Figure 4 about here)

Finally, the model for self-report medication adherence (Gonzalez-Lu factor score) is presented in Table 5. For medication adherence, no overall effect for time was observed nor was there an interaction of time with treatment group. Both the 8th grade and 3rd grade groups reported significantly greater adherence at baseline ($t_{450} = 3.66, p < 0.001$) and ($t_{456} = 3.67, p < 0.001$), respectively. These group differences were maintained at the first follow-up, but only the 8th grade group was still significantly different from the 6th grade group at the second follow-up ($t_{516} = 2.52, p = 0.03$). Although the 6th grade group appeared to improve adherence between the first and second follow-up, this improvement only approached significance ($t_{477} = 2.07, p = 0.10$).

(Insert Table 5 about here)

(Insert Figure 5 about here)

Discussion

The purpose of this study was to investigate the impact of a tailored information app for CDSM in older persons chronic health conditions and low health literacy. We
hypothesized that the app would have a positive effect on four outcomes that reflect patients’ attitudes and beliefs about their ability to manage their health, activation, self-efficacy, HRQOL, and medication adherence. Results partially support this hypothesis, as we saw a significant positive impact of the app on three of the outcomes, activation, self-efficacy, and health-related quality of life. We did not find a significant change in participants’ self-report of medication adherence.

Outcome measures for this study were chosen because of their relevance to older person’s ability to manage their health and their use in previous studies, allowing us to compare results of the automated app with those of similar in-person and internet-delivered CDSM interventions. Other researchers, for example, have found that CDSM programs can have a positive impact on self-efficacy for disease management.41, 45, 47 One trial of delivering a CDSM intervention via the internet46 did not include self-efficacy as an outcome. A number of studies, however, have included self-reported general health (here we have termed it health-related quality of life or HRQOL) as an outcome, frequently finding positive effects of a CDSM intervention including a trial of delivering it via the internet.46 Improved health-related quality of life was observed in this study as well, associated with a moderate effect size (0.50) that has been described as clinically meaningful for QOL outcomes in other areas.104

These results are thus similar to those observed in studies of in-person CDSM programs that have been shown to have a positive impact on activation,105 self-efficacy, and HRQOL. This suggests that some of the drawbacks to providing in-person CDSM interventions (cost, lack of trained personnel, accessibility) may be addressed by providing patients access to CDSM as a digital therapeutic. While it is true that the
development of the mobile app was expensive initially, after initial deployment this sort of app can be inexpensive to maintain while providing access to large numbers of patients. We106 and others107 have shown that initial development and ongoing deployment costs can be substantially offset by benefits such as improved self-management behavior. Lindsay et al.,61 for example, showed that a substantial increase in activation was associated with lower follow-up costs, especially in high risk populations.

Given the common critique of applications that do not provide patients information at the 3rd to 6th grade level, it is not clear why we did not find an effect of the modules’ text difficulty favoring the two experimental groups (3rd and 6th grade text) over the control (8th grade text). A possible explanation comes from research on educational applications in other situations in which researchers found a “contiguity effect”108 in which learners presented text and graphics in close proximity, as was done in this study, resulted in superior learning compared to a condition in which graphic and text elements were separated. In more recent studies, research has shown that use of multimedia as an adjunct to traditional instruction may enhance comprehension and learner motivation.109 Other research has shown that incorporating information technology in interventions may enhance patient engagement,110 an effect that was not controlled in our research design. Future research may help clarify whether multimedia instruction can help persons with low health literacy even when the text of the information presented is too difficult.

Limitations of this study include the nature of the sample, which was nonwhite in the majority, and differences between the two study sites on some variables. While we
included variables on which the sites differed as covariates in statistical models as well as using site as an additional covariate, it is possible that the observed differences may have affected the study’s outcomes. On the other hand, in our search for persons with low health literacy, we succeeded in recruiting a large number of participants health literacy skills that might place them at a disadvantage in managing their health, and the study shows that the intervention was successful in increasing activation, self-efficacy, and HRQOL. The lack of between-site differences on outcome variables also supports the usefulness of the intervention, as it appears to have been efficacious in two diverse settings. A significant limitation is the lack of a finding on control vs experimental group outcomes. Although lack of differences related to reading difficulty is a concern, the clear effect of time suggests that the intervention had a significant impact on participants. Even without significant between-group differences, the alternative that participants improved in activation, self-efficacy, and HRQOL spontaneously over time is implausible. Additional research on possible mediators and moderators of change in these measures would be useful in further understanding these finding and enhancing the efficacy of the app.

Conclusions

In this study we investigated the effects of a mobile app for CDSM in older persons with low levels of health literacy and chronic health conditions. Although we hypothesized that modules that presented content at the 8th grade level would be less effective than those at lower levels, this hypothesis was not supported. Clear effects of the intervention over time, however, suggest that it had positive effects for all groups. Future development of the app will include additional analyses of possible mediators.
and moderators of its effects to better understand how it works and ultimately have an even greater impact.
Declaration of conflicting interests

Drs. Ownby and Waldrop are applicants on a US patent application (US 2021/0065908) focused on automated assessment of patient understanding of health information. Dr. Ownby is a stockholder in Enalan Communications, Inc., a company that develops digital therapeutics.

Ethics approval

This study was approved by the Institutional Review Boards of Emory University (MODCR001-IRB00087112) and of Nova Southeastern University (2018-685-NSU)

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was supported by the U.S. National Institutes of Health, National Heart, Lung, and Blood Institute (grant numbers R01HL096578 and R56HL096578) and the National Institute on Minority Health and Health Disparities (grant number R01MD010368).

ORCID IDs

Raymond L. Ownby: https://orcid.org/0000-0001-9433-2820
Drenna Waldrop: https://orcid.org/0000-0002-4119-7343
Michael Simonson: https://orcid.org/0000-0003-3478-7879
Kamilah Thomas-Purcell: https://orcid.org/0000-0002-7523-128X
Donrie Purcell: https://orcid.org/0000-0002-4710-9412

Notes

Roles of authors: RLO analyzed the data and drafted the manuscript. RLO, DW, MS, RD, JC, KK, and KTP contributed to conceptualization, investigation, methods, validation; RLO and DW were responsible for funding acquisition; RLO, RD, VA, JS,
NP and DP conducted data curation, supervision, and project administration. All authors read and approved the final manuscript.

Guarantor: RLO
References

31. Ownby RL, Acevedo A and Waldrop-Valverde D. Enhancing the impact of mobile health literacy interventions to reduce health disparities. *Quarterly Review of Distance Education* 2019; 10: 15-34.

Table 1. Description of participants completing at least one intervention session

<table>
<thead>
<tr>
<th>Variable</th>
<th>Atlanta</th>
<th>Fort Lauderdale</th>
<th>Total</th>
<th>(\chi^2)</th>
<th>df</th>
<th>(p)</th>
<th>Effect Size (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>65</td>
<td>79</td>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>118</td>
<td>47</td>
<td>165</td>
<td>22.15</td>
<td>1</td>
<td>< 0.001</td>
<td>0.56</td>
</tr>
<tr>
<td>White</td>
<td>7</td>
<td>34</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonwhite</td>
<td>176</td>
<td>92</td>
<td>268</td>
<td>37.78</td>
<td>1</td>
<td>< 0.001</td>
<td>0.71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean (SD)</th>
<th>(t)</th>
<th>df</th>
<th>(p)</th>
<th>ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in Years</td>
<td>58.10 (8.61)</td>
<td>1.18</td>
<td>307</td>
<td>0.24</td>
<td>0.14</td>
</tr>
<tr>
<td>Education Years</td>
<td>12.02 (1.76)</td>
<td>1.75</td>
<td>307</td>
<td>0.08</td>
<td>0.20</td>
</tr>
<tr>
<td>Total Number of Health Conditions</td>
<td>5.92 (2.66)</td>
<td>4.28</td>
<td>307</td>
<td>< 0.001</td>
<td>0.50</td>
</tr>
<tr>
<td>WJ Reading Grade(^1)</td>
<td>6.60 (4.10)</td>
<td>2.44</td>
<td>307</td>
<td>0.02</td>
<td>0.28</td>
</tr>
<tr>
<td>Flight/Vidas Health Literacy(^1)</td>
<td>9.59 (3.92)</td>
<td>2.89</td>
<td>307</td>
<td>0.004</td>
<td>0.35</td>
</tr>
<tr>
<td>PAM Score(^1)</td>
<td>61.37 (16.03)</td>
<td>0.30</td>
<td>291(^2)</td>
<td>0.76</td>
<td>0.04</td>
</tr>
<tr>
<td>CDSE Mean(^1)</td>
<td>6.96 (2.01)</td>
<td>1.46</td>
<td>290(^2)</td>
<td>0.15</td>
<td>0.18</td>
</tr>
<tr>
<td>SF General Health(^1)</td>
<td>60.21 (19.38)</td>
<td>0.02</td>
<td>288(^2)</td>
<td>0.98</td>
<td>0.003</td>
</tr>
<tr>
<td>Gonzalez Lu Factor Score(^1)</td>
<td>-0.09 (1.07)</td>
<td>1.89</td>
<td>291(^2)</td>
<td>0.06</td>
<td>0.22</td>
</tr>
<tr>
<td>GL percent meds taken in last week (0-100%)(^1)</td>
<td>82.7 (25.9)</td>
<td>1.77</td>
<td>292(^2)</td>
<td>0.08</td>
<td>0.21</td>
</tr>
<tr>
<td>GL ability to take meds in last week (1-5)(^1)</td>
<td>3.90 (1.26)</td>
<td>1.45</td>
<td>291(^2)</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>GL percent meds taken in last month (0-100%)(^1)</td>
<td>84.0 (23.9)</td>
<td>1.96</td>
<td>292(^2)</td>
<td>0.05</td>
<td>0.23</td>
</tr>
<tr>
<td>GL ability to take meds in last month (1-5)<sup>1</sup></td>
<td>3.93 (1.20)</td>
<td>4.18 (1.13)</td>
<td>4.04 (1.18)</td>
<td>1.80</td>
<td>292<sup>2</sup></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

¹ WJ Reading Grade = Woodcock-Johnson Psycho-Educational Battery Passage Comprehension subtest grade equivalent score; FV Health Literacy = FLIGHT-VIDAS Health Literacy Measure; PAM score = Patient Activation Measure; CDSE = Chronic Disease Self-Efficacy Scale; SF General Health = Medical Outcomes Studies, Short Form -36 General Health subscale; Gonzalez-Lu = Self-report of medication adherence factor score (see text); GL = Gonzalez-Lu questions 1-4.

² Degrees of freedom vary due to data loss caused by equipment failure.
Table 2. Model for the Patient Activation Measure

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>Numerator df</th>
<th>Denominator df</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>601.86</td>
<td>601.86</td>
<td>1</td>
<td>281.16</td>
<td>4.90</td>
<td>0.03</td>
</tr>
<tr>
<td>Gender</td>
<td>394.9</td>
<td>394.9</td>
<td>1</td>
<td>274.52</td>
<td>3.21</td>
<td>0.07</td>
</tr>
<tr>
<td>Race</td>
<td>82.26</td>
<td>82.26</td>
<td>1</td>
<td>276.27</td>
<td>0.67</td>
<td>0.41</td>
</tr>
<tr>
<td>Education</td>
<td>143.46</td>
<td>143.46</td>
<td>1</td>
<td>270.92</td>
<td>1.17</td>
<td>0.28</td>
</tr>
<tr>
<td>Health Literacy</td>
<td>309.17</td>
<td>309.17</td>
<td>1</td>
<td>276.78</td>
<td>2.51</td>
<td>0.11</td>
</tr>
<tr>
<td>Health Conditions</td>
<td>189.27</td>
<td>189.27</td>
<td>1</td>
<td>281.6</td>
<td>1.54</td>
<td>0.22</td>
</tr>
<tr>
<td>Site</td>
<td>17.73</td>
<td>17.73</td>
<td>1</td>
<td>271.62</td>
<td>0.14</td>
<td>0.70</td>
</tr>
<tr>
<td>Time</td>
<td>822.22</td>
<td>411.11</td>
<td>2</td>
<td>482.77</td>
<td>3.34</td>
<td>0.04</td>
</tr>
<tr>
<td>Group</td>
<td>159</td>
<td>79.5</td>
<td>2</td>
<td>276.84</td>
<td>0.65</td>
<td>0.52</td>
</tr>
<tr>
<td>Time X Group</td>
<td>92.61</td>
<td>23.15</td>
<td>4</td>
<td>482.3</td>
<td>0.19</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>Sum of Squares</td>
<td>Mean Squares</td>
<td>Numerator df</td>
<td>Denominator df</td>
<td>F</td>
<td>p</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Age</td>
<td>1.20</td>
<td>1.17</td>
<td>1</td>
<td>291</td>
<td>0.90</td>
<td>0.34</td>
</tr>
<tr>
<td>Gender</td>
<td>1.30</td>
<td>1.31</td>
<td>1</td>
<td>285</td>
<td>1.01</td>
<td>0.32</td>
</tr>
<tr>
<td>Race</td>
<td>0.10</td>
<td>0.13</td>
<td>1</td>
<td>297</td>
<td>0.10</td>
<td>0.75</td>
</tr>
<tr>
<td>Education</td>
<td>14.60</td>
<td>14.58</td>
<td>1</td>
<td>279</td>
<td>11.24</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Health Literacy</td>
<td>14.10</td>
<td>14.10</td>
<td>1</td>
<td>285</td>
<td>10.88</td>
<td>0.0011</td>
</tr>
<tr>
<td>Health Conditions</td>
<td>19.30</td>
<td>19.28</td>
<td>1</td>
<td>286</td>
<td>14.87</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Site</td>
<td>0.60</td>
<td>0.62</td>
<td>1</td>
<td>287</td>
<td>0.48</td>
<td>0.49</td>
</tr>
<tr>
<td>Time</td>
<td>32.20</td>
<td>16.08</td>
<td>2</td>
<td>470</td>
<td>12.40</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Group</td>
<td>3.80</td>
<td>1.92</td>
<td>2</td>
<td>287</td>
<td>1.48</td>
<td>0.23</td>
</tr>
<tr>
<td>Time X Group</td>
<td>7.60</td>
<td>1.91</td>
<td>4</td>
<td>470</td>
<td>1.47</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Table 4. Model for MOS SF-36 General Health scale

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>Numerator df</th>
<th>Denominator df</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>46</td>
<td>46</td>
<td>1</td>
<td>287</td>
<td>0.47</td>
<td>0.50</td>
</tr>
<tr>
<td>Gender</td>
<td>250</td>
<td>250</td>
<td>1</td>
<td>276</td>
<td>2.52</td>
<td>0.11</td>
</tr>
<tr>
<td>Race</td>
<td>13</td>
<td>13</td>
<td>1</td>
<td>276</td>
<td>0.13</td>
<td>0.72</td>
</tr>
<tr>
<td>Education</td>
<td>1139</td>
<td>1139</td>
<td>1</td>
<td>274</td>
<td>11.51</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Health Literacy</td>
<td>259</td>
<td>259</td>
<td>1</td>
<td>277</td>
<td>2.62</td>
<td>0.11</td>
</tr>
<tr>
<td>Health Conditions</td>
<td>1739</td>
<td>1739</td>
<td>1</td>
<td>280</td>
<td>17.57</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Site</td>
<td>172</td>
<td>172</td>
<td>1</td>
<td>274</td>
<td>1.74</td>
<td>0.19</td>
</tr>
<tr>
<td>Time</td>
<td>1558</td>
<td>779</td>
<td>2</td>
<td>474</td>
<td>7.87</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Group</td>
<td>272</td>
<td>136</td>
<td>2</td>
<td>277</td>
<td>1.37</td>
<td>0.26</td>
</tr>
<tr>
<td>Time X Group</td>
<td>355</td>
<td>89</td>
<td>4</td>
<td>474</td>
<td>0.9</td>
<td>0.47</td>
</tr>
</tbody>
</table>
Table 5. Model for Gonzalez-Lu adherence score

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>Mean Squares</th>
<th>Numerator df</th>
<th>Denominator df</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>1.12</td>
<td>1.119</td>
<td>1</td>
<td>282</td>
<td>3.19</td>
<td>0.07</td>
</tr>
<tr>
<td>Gender</td>
<td>1.35</td>
<td>1.355</td>
<td>1</td>
<td>274</td>
<td>3.87</td>
<td>0.0503</td>
</tr>
<tr>
<td>Race</td>
<td>0.63</td>
<td>0.633</td>
<td>1</td>
<td>274</td>
<td>1.81</td>
<td>0.18</td>
</tr>
<tr>
<td>Education</td>
<td>0.01</td>
<td>0.008</td>
<td>1</td>
<td>270</td>
<td>0.02</td>
<td>0.88</td>
</tr>
<tr>
<td>Health Literacy</td>
<td>1.61</td>
<td>1.609</td>
<td>1</td>
<td>275</td>
<td>4.59</td>
<td>0.03</td>
</tr>
<tr>
<td>Health Conditions</td>
<td>0.94</td>
<td>0.94</td>
<td>1</td>
<td>280</td>
<td>2.68</td>
<td>0.10</td>
</tr>
<tr>
<td>Site</td>
<td>0.79</td>
<td>0.786</td>
<td>1</td>
<td>272</td>
<td>2.24</td>
<td>0.14</td>
</tr>
<tr>
<td>Time</td>
<td>0.28</td>
<td>0.138</td>
<td>2</td>
<td>476</td>
<td>0.39</td>
<td>0.67</td>
</tr>
<tr>
<td>Group</td>
<td>5.73</td>
<td>2.864</td>
<td>2</td>
<td>276</td>
<td>8.18</td>
<td><0.001</td>
</tr>
<tr>
<td>Time X Group</td>
<td>3.09</td>
<td>0.772</td>
<td>4</td>
<td>476</td>
<td>2.2</td>
<td>0.07</td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1. CONSORT diagram

Figure 2. Patient Activation Measure means by group at each evaluation

Figure 3. Chronic Disease Self Efficacy means by group at each evaluation

Figure 4. MOS SF-36 General Health means by group at each evaluation

Figure 5. Gonzalez-Lu score means by group at each evaluation
The graph shows the Chronic Disease Self-Efficacy Scale over three evaluations. The scale ranges from 6.50 to 7.50.

- The red line represents the 8th evaluation, which shows an initial increase followed by a decrease.
- The blue line represents the 6th evaluation, which shows a steady increase.
- The green line represents the 3rd evaluation, which shows an initial decrease followed by an increase.

Each evaluation point is marked with a dot on the graph.