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ABSTRACT  31 

Organ availability limits kidney transplantation, the best treatment for end-stage kidney disease. 32 

Deceased donor acceptance criteria have been relaxed to include older donors with higher risk of 33 

inferior posttransplant outcomes. More granular prediction models, based on deeper resolution 34 

organ assessment and understanding of damage processes, could substantially improve donor 35 

organ allocation and reduce graft dysfunction risk. Here, we profiled pre-implantation kidney 36 

biopsy proteomes from 185 deceased donors by high-resolution mass spectrometry and used 37 

machine learning to integrate and model these data, and donor and recipient clinical metadata to 38 

predict outcome. Our analysis and orthogonal validation on an independent cohort revealed 136 39 
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proteins predictive of outcome, 124 proteins of which showed donor-age modulated predictive 40 

effects. Observed associations with inflammatory, catabolic, lipid metabolism and apoptotic 41 

pathways may predispose donor kidneys to suboptimal posttransplant outcomes. Our work shows 42 

that integrating kidney proteome information with clinical metadata enhances the resolution of 43 

donor kidney quality stratification, and the highlighted biological mechanisms open new research 44 

directions in developing interventions during donor management or preservation to improve 45 

kidney transplantation outcome. 46 

 47 

TRANSLATIONAL STATEMENT 48 

We profiled the proteome of pre-implantation biopsies selected from donor kidneys on 49 

the basis of paired 12-month graft function. Our data reveal a signature of proteins which 50 

contribute to transplant outcomes, many of these show different strengths of association 51 

dependent on donor age. The biological themes of the identified candidates reinforce immuno-52 

metabolic and catabolic mechanisms as potential contributors to donor kidney susceptibility that 53 

may reduce graft recovery after transplantation. 54 

 55 

INTRODUCTION 56 

Kidney transplantation is the optimal treatment for end-stage kidney disease. When 57 

compared to dialysis, transplantation profoundly increases life-expectancy, improves quality of 58 

life and is cost-effective. However, the lack of suitable donor organs for kidney transplantation 59 

limits the health benefits to patients with chronic kidney disease, and often prolongs dialysis 60 

treatment, with increased morbidity and mortality. 61 
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The shortage of organs, a decline in living donation in some countries and emerging 62 

ageing populations have driven an increased utilization of older donor kidneys 1. More than half 63 

of all deceased donor kidneys now offered are from older donors 2. 64 

Ageing is associated with a time-dependent decline of organ function, which is especially 65 

evident in the kidney with the appearance of histologic lesions, such as tubular atrophy, 66 

interstitial fibrosis, glomerulosclerosis, and arteriosclerosis. Kidney function progressively 67 

declines with age, due to structural changes that cause a reduction of functioning glomeruli and 68 

renal mass, podocyte dysfunction, and malfunction of mechanisms important in cellular repair 3. 69 

Glomerular diseases are in turn more common and associated with worse outcomes in older 70 

patients 4. Age accelerates the transition from Acute Kidney Injury (AKI) to chronic injury 5 and 71 

is an independent risk factor of graft dysfunction and graft loss for deceased donor kidneys 6, 72 

furthermore, older donors are more likely to suffer from additional co-morbidity risk factors such 73 

as diabetes, hypertension or cardiovascular disease. 74 

Donor age has been incorporated in all clinical scoring algorithms to inform clinical 75 

decision of donor kidney allocation 7,8. However, donor age alone is insufficient to consistently 76 

predict transplant outcomes. Current front-line models also include further clinical factors such 77 

as terminal serum creatinine, history of hypertension and diabetes 8,9 and show consistent 78 

performance across demographic cohorts but still only have a predictive accuracy of around 65% 79 

10. Factors commonly included in these models may not reflect the nuances of biological 80 

susceptibility to injury, subclinical trajectories of progression to dysfunction or capacity for renal 81 

recovery. 82 

The use of pre-implantation biopsies to supplement standard clinical scoring algorithms 83 

has hitherto focused on histological scoring systems that assess evidence of chronic donor-84 
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related damage, such as glomerulosclerosis or arteriolar changes 11. Histology-based assessments 85 

are particularly vulnerable to biopsy reproducibility issues, even under codified protocols. 86 

Although small studies have suggested correlation with graft outcomes, there is only poor 87 

correlation with kidney function in the recipient 12,13. 88 

It is likely that molecular analyses could offer a clearer, higher resolution assessment of 89 

organ state; but this requires deeper understanding of molecular phenotypes specifically 90 

associated with poor outcomes rather than the immediate but potentially recoverable acute injury 91 

sustained during the donor management process and organ retrieval. For example, deceased 92 

donors are often assessed as having AKI based on serum creatinine levels 14, which implies an 93 

inflammatory response, however AKI does not itself associate with longer term poor outcomes 94 

13–16, so we should not expect all inflammatory associated molecular signatures to be outcome-95 

associated. A broad picture analysis at relevant molecular phenotype levels is necessary; an 96 

obvious first candidate is the proteome as this represents the end-state response associated with 97 

both changes in expression and post-translational regulation. 98 

Proteomic studies in donor kidneys have heretofore lacked the sample size to be 99 

representative across donor age and demographic ranges 17, but advances in proteomic 100 

technology such as data independent acquisition (DIA) mass spectrometry 18 now allow the 101 

sensitivity and depth required for analysis of hundreds of samples to be practical. Larger 102 

analyses are central towards taking the next steps toward precision medicine, and permit higher-103 

dimensional analysis (through the integration of proteomic profiles with clinical and 104 

demographic phenotypes) to address the heterogenous demographic factors affecting patient 105 

outcomes 19. Machine learning approaches in particular offer powerful tools to extract the 106 

maximum amount of knowledge from experimental cohorts given practical and cost limitations 107 
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of sample acquisition and analysis, and have been applied to disease staging, prediction of 108 

disease recurrence, monitoring treatment response, and the identification of diagnostic, 109 

prognostic, and predictive biomarkers 20,21.  110 

Here, we benefit from the granularity provided by our MS-based proteomics profiling to 111 

report age- and immunometabolism-related proteomic signatures in pre-implantation kidney 112 

biopsies that are associated with suboptimal transplant outcomes against a clinical and 113 

demographic variability background. 114 

 115 

METHODS 116 

Study Design 117 

Deceased donor pre-transplantation kidney biopsies (n=186; 1 sample was later removed 118 

during data QC) were obtained from the Quality in Organ Donor (QUOD) biobank, a national 119 

multi-center UK wide bioresource of deceased donor clinical samples procured during donor 120 

management and organ procurement. 121 

Selection of biopsies of donor kidneys was based on paired 12-month post-transplant outcomes. 122 

To minimize the impact of recipient factors on outcomes we only included kidneys for which the 123 

contralateral kidney was transplanted and had similar 12-month post-transplant outcome. Donor 124 

kidneys were selected to include the continuum of transplant outcomes i.e. the full range of 125 

estimated Glomerular Filtration Rate (eGFR; specified throughout in units of ml/min/1.73 m2) 126 

from primary non-function to eGFR > 80) and, where possible, to exclude extreme demographic 127 

or clinical factors. All clinical samples were linked to corresponding donor and recipient 128 
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demographic and clinical metadata, provided by NHS Blood and Transplant National Registry. 129 

Detailed clinical and demographic data are summarized in Table 1. 130 

Study Approval and Ethics statement 131 

Informed consent from donor families was obtained prior to sample procurement. 132 

Collection of QUOD samples and the research ethics approval was provided by QUOD 133 

(NW/18/0187).  134 

Experimental Protocols and Statistical Analysis 135 

 Please see Supplementary Methods. 136 

 137 

RESULTS  138 

Donor clinical and demographic variable relevance for eGFR at 12-month posttransplant 139 

Kidney biopsies were obtained from Donation after Brain Death (DBD) donors and 140 

Donation after Circulatory Death (DCD donors) at the back table immediately after kidney 141 

procurement. To minimize the impact of factors related to post-procurement and recipient 142 

characteristics, donors were selected on the basis of paired 12-month posttransplant outcomes. 143 

For the purposes of exploratory analysis, we considered eGFR values in two ways. 144 

Firstly, for comparison of clinical factors, we grouped 12 months posttransplant outcomes into 145 

tertiles; Suboptimal Outcome (SO; eGFR ≤ 39), Intermediate Outcome (IO; 40 < eGFR ≤ 59), 146 

and Good Outcome (GO; eGFR ≥ 60) (Figure 1). We refer to this henceforth as ‘stratified 147 

eGFR’. Secondly, all eGFR values (both recipient and donor) were rank-transformed so that, 148 

where possible, we could test/model against a continuum of outcomes while mitigating against 149 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2023. ; https://doi.org/10.1101/2023.03.31.23288011doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.31.23288011
http://creativecommons.org/licenses/by-nc/4.0/


factors introducing extreme values or values recorded as 0 due to graft failure. We refer to 150 

‘ranked eGFR’ henceforth to indicate ranked recipient eGFR at 12 months posttransplant. 151 

Clinical metadata confirmed that the selected donor groups were representative of the 152 

donor population in the UK (UK Renal Registry, 202222) (Table 1). Further, we found no 153 

significant association between donor type and ranked eGFR (t-test; p = 0.2028). We then 154 

investigated associations between clinical variables and stratified eGFR subgroups within DBD 155 

and DCD, and between DBD and DCD within stratified eGFR subgroups (Supplementary Table 156 

1). In DBD as in DCD, donor age was significantly different between the subgroups with SO 157 

being older (Fisher’s exact test; DBD: p = 4.285e-7; DCD: p = 2.080e-8). Among both DBD and 158 

DCD donors there was a significant difference in UKKDRI between outcome groups (ANOVA 159 

F-test; DBD: p = 1.515e-5; DCD: p = 7.006e-7). Histories of hypertension were different 160 

between outcome subgroups (ANOVA F-test; DBD: p = 0.0010; DCD: p = 0.0336), but histories 161 

of diabetes were not significantly different (ANOVA F-test; p = 0.1408; DCD: p = 0.2083). 162 

Terminal serum creatinine levels were similar across outcome subgroups (ANOVA F-163 

test; DBD: p = 0.8601; DCD: p = 0.1755), although within the GO group it was higher in DBD 164 

than in DCD (t-test; p = 0.0149).  165 

After imputation of missing values, we examined the associations between clinical 166 

variables common to both DBD and DCD donors, calculating a composite association score (see 167 

methods) and then clustering by single linkage on association subtracted from 1 as a distance 168 

measure (Figure 2). The strongest associations with ranked eGFR were donor age (Pearson’s r = 169 

0.52), and recipient age (r = 0.28). Donor history of hypertension and cardiological disease also 170 

clustered closely using a single-linkage approach due to correlation with donor age (r = 0.35 and 171 
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r = 0.33 respectively) but had a weaker direct correlation with outcome (r = 0.30 and r = 0.23 172 

respectively). 173 

Unsupervised analysis of pretransplant kidney proteomes 174 

The proteomic analysis quantified 2984 protein groups with 50% or less missing values 175 

(out of 7790 identified protein groups in total) over 185 samples and the 20 pool sample runs 176 

(Supplementary Figure 1A). Analysis of the pool runs showed minimal technical variance over 177 

the course of sample acquisition with a squared mean pairwise Z-corrected Pearson correlation 178 

coefficient (a multi-way R-squared) of 0.94. Furthermore, six samples were paired biopsies from 179 

the left and right kidneys of three donors. These samples showed high concordance in quantified 180 

protein intensity values between pairs, with R-squared values of 0.71, 0.92 and 0.91 for each of 181 

the three pair donors (Supplementary Figure 1B). 182 

We performed an exploratory analysis of the proteomics data by Principal Component 183 

Analysis (PCA) to look for underlying data trends.  Most of the variance observed in the samples 184 

was concentrated in the first two principal components (PC1: 20.01%; PC2: 13.38%; Figure 3A) 185 

and K-means clustering identified 4 distinct clusters (Figure 3A). 186 

Cluster membership associated with donor type, with a preponderance of DBD samples 187 

towards Cluster 2 and a preponderance of DCD samples towards Cluster 4 (Figure 3B, upper left 188 

panel; p = 0.0235). Sample clustering did not associate strongly with recipient eGFR at 12 189 

months post transplantation (p = 0.4134), nor with donor eGFR (p = 0.1684), or donor age (p = 190 

0.7907) (Figure 3B, upper middle and right and lower left panels). There was a weakly 191 

significant association between cluster membership and donor BMI (p = 0.0350) and similarly 192 

with serum creatinine (p = 0.0326) (Figure 3B, lower middle and right panels). 193 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2023. ; https://doi.org/10.1101/2023.03.31.23288011doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.31.23288011
http://creativecommons.org/licenses/by-nc/4.0/


Integration of kidney proteomes with clinical metadata enhances the resolution of donor 194 

kidney quality stratification 195 

To identify possible clinical variable-protein interaction effect relationships with stratified 196 

outcomes, we used a machine learning approach (Prediction Rule Ensembles 23; PRE) to analyze 197 

the set of all donor type-independent clinical variables and all quantified proteins, followed by 198 

multivariate adaptive regression spline modelling24 to assess individual protein relationships. 199 

We first split our data into a training and test sets, excluding the six paired kidneys, and 200 

sampling equally across stratified eGFR using a 2/3:1/3 train:test split. Feature selection and 201 

predictive model training was performed on the training set only. The six paired kidneys were 202 

reserved as a second ‘biological duplicates’ test set. 203 

PRE modelling finds a minimal (but not necessarily the only minimal) set of predictors 204 

for outcome in the form of decision tree, linear regression and multivariate adaptive regression 205 

spline25 rules. A single application of PRE does not yield an exhaustive list of predictive 206 

candidates. We performed PRE in an iterative manner to ‘mine’ for candidate proteins, whereby 207 

proteins, but not clinical variables, identified in the final ensemble of any previous model were 208 

excluded from the dataset for future models. We performed 2000 iterations of PRE, generating 209 

3282 rules across all ensembles. An immediate observation was that the primary contributor to 210 

the rule cohort was donor age, featuring as a term in 3154 (~96.1%) rules; in comparison, protein 211 

terms (collectively) featured in 198 (~6.0%) rules, while no other non-protein term yielded a 212 

meaningful contribution – the next largest non-protein term was donor group, featuring in 5 213 

(~0.1%) rules (Figure 4A). This process generated 195 selected proteins. As iterations passed 214 

1000, the selection process became increasingly inefficient, in terms of iterations required to 215 

identify another candidate protein. However new hits were still generated up to termination at 216 
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iteration 2000, suggesting there was more to find. Rather than continue with further iterations, 217 

we supplemented the list of selected proteins with all other proteins that had high correlation 218 

(Pearson’s r > 0.65) with any of the 195 already selected proteins; this brought the list up to 255 219 

selected protein features. 220 

Regression spline modelling reveals protein associations with posttransplant outcome are 221 

modulated by donor age 222 

Next, we tested each of the 255 protein features for individual association with outcome, 223 

beyond the effect of donor age alone. Since rank transformation is cohort specific, in order to 224 

generate results which could be generalized to other cohorts we modelled against a specific 225 

outcome binary, calibrated against a population-level threshold. Based on UK Renal Registry 226 

Reports, UK median eGFR at 12 months posttransplant was approximately ~50.25 ml/min 227 

(±0.24 standard error) across the weighted average for median DBD and DCD eGFR at 12 228 

months posttransplant since 201322; for simplicity we used a threshold of 50 (eGFR units 229 

ml/min/1.73 m2). We refer to ‘sub-median outcome’ henceforth to refer to recipient eGFR at 12 230 

months posttransplant less than 50. Using multivariate adaptive regression spline modelling, we 231 

generated predictive models for sub-median outcome using each protein, donor age, and any 232 

potential age:protein interactions. This was performed in a regularized framework such that only 233 

a minimal set of terms predictive of outcome were retained in each model. We then discarded 234 

any protein that either did not feature in any term in its corresponding model, or whose model 235 

gave a worse overall prediction error (Brier score26) than donor age alone.  236 

After filtering we had identified 136 proteins which predicted sub-median outcome. We 237 

performed a network analysis of shared Reactome pathways (Figure 4) and, using walktrap 238 

clustering, found that these relationships were characterized by 4 major clusters; Immune 239 
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Regulation and Complement Activation (top 3 pathways ‘Immune System’, ‘Innate Immune 240 

System’, ‘Regulation Of Complement Cascade ’), Protein Metabolism and Regulation (top 3 241 

pathways: ‘Metabolism Of Proteins’, ‘Post-translational Protein Modification’ , ‘Mitochondrial 242 

Translation Elongation’), Metabolism (top 3 pathways: ‘Metabolism’, ‘Metabolism Of Amino 243 

Acids And Derivatives’, ‘Pyruvate Metabolism And Citric Acid (TCA) Cycle’) and Apoptosis 244 

(top 3 pathways: ‘Developmental Biology’, ‘Role Of GTSE1 In G2/M Progression After G2 245 

Checkpoint’, ‘Apoptosis’). 246 

For 124 proteins, the prediction included an age:protein interaction term where the 247 

predictive effect of protein abundance was modulated by age, independent of the effect of age 248 

alone or protein abundance alone (Figure 5). To visualize these effects, we used each model to 249 

simulate the effect of increasing donor age with a high (90th percentile), median and low (10th 250 

percentile) abundance value for the protein (Figure 5A and Supplementary Figure 2). In all cases, 251 

the chance of sub-median outcome was (unsurprisingly) driven primarily by donor age, with a 252 

plateau at high donor age as a result of the low frequency of high-donor age, above-median 253 

outcomes in both our data (<5% above age 60 in our training set) but also in the general 254 

population. The difference in the modelled effect of changing protein abundance was striking; 255 

the majority of proteins were positively associated with the chance of sub-median outcome 256 

(simplistically, more protein = worse outcome), with the effect appearing to increase up to 257 

around donor age 45-55. These included representative proteins for all four major clusters 258 

including the known markers Cystatin-C (CST3; nephron function) and Vitronectin (VTN; 259 

fibrosis) as well as a protein notorious for age-modulated associations with other diseases, 260 

Apolipoprotein E (APOE). In contrast, several proteins were negatively associated with the 261 

chance of sub-median outcome (simplistically more protein = better outcome), with the largest 262 
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effects shown by MAP2K1 and SLC27A2, with the latter in particular being modelled as having 263 

minimal effect in donors younger than 40. 264 

The full list of all 136 proteins, including a summary of age modulation effect, is given in 265 

Supplementary Table 2. The selection and filtering steps are summarized in Figure 5B. 266 

Orthogonal validation confirms model performance, including age-modulated immuno-267 

metabolic impact on transplant outcomes 268 

We adopted two orthogonal approaches to validate our results. Firstly, we assessed the 269 

performance of each model on test data. Going from train to test data, the models showed a small 270 

increase in accuracy (Brier score; mean square error) and a small decrease in overall predictive 271 

performance as measured by the area under the curve (AUC) (Figure 6A), indicating that the 272 

models are generalizable. Most of the models (~110/136) showed high levels of accuracy with 273 

negligible differences between test and train model performance.  274 

Secondly, we selected several cluster-representative proteins (VTN, APOE, CST3 and 275 

Prolactin Regulatory Element Binding; PREB) with well characterized available antibodies that 276 

had good (AUC > 0.75) predicted outcome performance on our test data set (Figure 6B). We 277 

investigated the predicted pattern of associations between protein abundance and outcome 278 

(Figure 6C), by performing western blot validation of our results (Figure 6D). We selected 279 

samples with remaining material from our cohort from the Good and Suboptimal Outcome 280 

tertiles of our sample set, to compare protein abundance between younger (oldest sample 49) and 281 

older (youngest sample 58) donors. Our western blot results were broadly consistent with the 282 

associations anticipated by our modelling. For VTN, our model suggests a strong (and 283 

strengthening with age) association between protein abundance and outcome in younger donors, 284 

and we observed a significant difference in abundance between GO and SO outcome strata (t-285 
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test; p=2.107e-9). In older donors, the model suggests a weaker (and weakening with age) 286 

association, and we observed a mildly significant difference between abundance and outcome (t-287 

test; p=0.2450). For PREB, the model suggests a weaker association in younger donors than in 288 

VTN since the age of maximum difference is shifted towards older donors. We did not observe 289 

any significant difference by western (t-test; p=0.4530) in young donors. At older ages, the 290 

model suggests a larger association in the older age range, weakening at an older age than VTN; 291 

we observe a corresponding significant difference in PREB abundance by western blot (t-test, 292 

p=8.800e-5). For APOE, the model suggests that the strongest association is over the middle of 293 

the age range, where outcome changes rapidly with donor age. Younger donor samples did not 294 

provide good coverage of the age range region of expected difference, and none was observed (t-295 

test, p=0.3719). In older donors, the effect of APOE difference weakens but remains present, and 296 

consistent with that we saw a mildly significant difference in APOE abundance between 297 

outcomes (t-test, p=0.0323). For CST3, the model again predicted a strong association in young 298 

donors, which was consistent with the significant difference observed by western blot  (t-test, 299 

p=0.0084). In older donors the model actually predicts the association to weaken and even 300 

reverse, such that GO samples would tend to have higher CST3 than SO samples; by western 301 

blot, we saw a nonsignificant difference, but (in contrast to the prediction) still with a positive 302 

median protein abundance difference from GO to SO. As a final check, we compared the 303 

predicted outcome for each of the six paired kidneys from the second ‘biological duplicates’ test 304 

set against their actual recipient eGFR at 12 months posttransplant (Figure 6E). All three kidney 305 

pairs in this dataset had very consistent outcomes across pairs; two pairs with sub -median 306 

outcome (15 and 36 ml/min; 23 and 27 ml/min) and one pair with much better outcome (72 and 307 

81 ml/min).  All four models assigned the four kidneys from two of the donors that went on to 308 
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have a sub-median outcome a probability of sub-median outcome greater than 0.5 (save in one 309 

case for PREB, where the probability was ~0.48), and likewise assigned both kidneys from the 310 

pair which both went on to have a good outcome a low probability of sub-median outcome. 311 

DISCUSSION  312 

Increasingly, kidneys from older donors are utilized for transplantation to expand the 313 

deceased donor organ supply. The shortage of optimal organs, combined with increased 314 

utilization of organs from older donors, increases risks of graft failure or functional decline. For 315 

any individual donor organ, post-transplant outcomes remain hard to predict at the point of organ 316 

acceptance. Here, we show that age-modulated kidney proteomic profiles improve risk 317 

stratification of donor kidney quality, revealing clinically relevant age-protein interaction effects. 318 

Donor age remains a key contributor in these clinical decisions and is rightfully one of 319 

the most strongly weighted terms in extant scoring systems to determine kidney allocation 8,27. In 320 

our analysis, we found no obvious difference according to age when comparing donor kidney 321 

proteomes by unbiased PCA. However, looking specifically at outcomes, it was the single most 322 

important factor. PCA considers only a linear combination of variables and is ill-suited to 323 

exploring nonlinear effects or interaction between variables. When we explored our data with our 324 

iterative PRE feature selection approach, a substantial number of proteins were revealed to be 325 

relevant. 326 

The effect of donor age is not a novel finding, but it is particularly interesting to note that 327 

pretransplant kidney proteomes were the second most powerful contributor to outcomes; and that 328 

integration of the age and proteomic information resulted in enhanced prediction of 12 month 329 

sub-median function. One factor often described as relevant to transplant outcome is donor type 330 

28. This is certainly true at a clinical level in terms of donor management, and donation after 331 
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circulatory death is considered an adverse factor for transplant outcome in the US 7 (although not 332 

in the UK 8,29). Our initial PCA analysis found that non-supervised clustering of the sample 333 

proteomes did partially separate samples by type. However, these differences did not extend to 334 

association with outcome in our cohort. Not only did we fail to observe any direct association 335 

between donor type and outcome, but donor type did not feature as an interaction term with any 336 

protein identified by our iterative modelling. It is possible that such association may be obscured 337 

by other sample characteristics associated with the overwhelming effect of donor age, especially 338 

if the effect is relatively small. However, without disputing different donor type-specific 339 

mechanisms for how kidney injury may be sustained 30, our data are consistent with previous 340 

reports that the level of injury (rather than the cause) is the primary contributor towards the 341 

potential for recovery 31. 342 

Within our final list of 136 proteins associated with outcome there is a common theme of 343 

implication in immune response to kidney injury (including both chronic injury, and acute 344 

injury) particularly as a result of ischemic metabolic disruption. Our analysis of proteins 345 

associated with outcome revealed that most (124/136 candidates) showed evidence of age-346 

moderated differences in their effect; in most cases, that as donor age increases, higher levels of 347 

the protein become more negatively associated with outcome. The effect of second-order age 348 

interactions, where the weightings of other terms are themselves age dependent, has not (to our 349 

knowledge) been explored in terms of transplant outcome. Many of the proteins we find to be 350 

age-moderated have known relevance, which is reassuring, however several have not previously 351 

been reported in the context of transplant outcome or kidney dysfunction; it is possible the effect 352 

of age modulation is key to fully understanding the links between molecular predictors and 353 

transplant outcomes. 354 
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A prominent age-modulated example of a chronic injury associated marker in our 355 

candidate list is VTN, a primary component of the extracellular matrix involved in in cell 356 

adhesion, enhancing the activity of plasminogen activator inhibitor-1 (PAI-1), and inhibition of 357 

the terminal complement pathway 32. Vitronectin has been suggested as a biomarker of kidney 358 

fibrosis although the mode of its multifaced action needs further investigation 33. In addition, 359 

examples for known acute injury associated markers include several complement components, 360 

including two components of the membrane attack complex, C5 (in the form of C5b cleavage 361 

product) and C8A, which has been associated with tissue injury resulting from 362 

ischemia/reperfusion 34,35, Complement Component 1r (C1R), part of the activation complex for 363 

the classical complement pathway36, and Complement Factor B (CFB), a component of the 364 

alternative pathway. Another candidate associated with immune regulation is  Maltase 365 

Glucoamylase (MGAM), characterized as an intestinal enterocyte but with expression in several 366 

tissues including kidney, and whose presence in urinary exosomes been cited as a marker of AKI 367 

in cirrhosis patients 37. Finally, Mitogen-activated protein kinase 1 (MAP2K1, aka MEK1), as a 368 

key component of the MAP kinase signal transduction pathway and therefore closely involved in 369 

both cellular control and immune regulation (as part of TNF⍺ signaling response38), is notable as 370 

one of the few proteins for which higher abundance was associated with a reduced probability of 371 

sub-median outcome, indicating resilience to injury. Increased TNF⍺ is more usually associated 372 

with renal injury39, so this result is counterintuitive. The MAPK/ERK cascade impacts many 373 

regulatory pathways so it is reasonable to assume such intuition may oversimplify the effect of 374 

increased MEK1 abundance. 375 

Several proteins in the age-moderated group are characterized as markers of protein 376 

regulation and proteasomal activity. These may indicate alterations within the proteostasis 377 
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network that increase susceptibility of donor grafts to subsequent injury and reduce capacity for 378 

recovery. CST3 is particularly noteworthy as, measured in serum, it is a known and effective 379 

general biomarker for kidney function and has previously been reported as having predictive 380 

power for outcomes in transplant recipients 40–42. Our evidence indicates a further association 381 

between CST3 levels in the donor kidney tissue and outcome; moreover, that this effect is age 382 

dependent, starting around age 40. Interestingly, serum CST3 is relatively independent of age in 383 

children and young adults 43, but numerous studies have demonstrated an increase in later years, 384 

as summarized by Edinga-Melenge et al. 44. These two age related effects may be 385 

interconnected. 386 

We found the age-modulated candidate PREB (Prolactin Regulatory Element Binding 387 

protein) biologically interesting for three reasons. Firstly, there is a well characterized 388 

relationships between kidney dysfunction (in the form of CKD), cardiovascular disease and 389 

prolactinemia45, with CKD patients being associated with elevated prolactinemia. Secondly, it is 390 

a regulator of glucose homeostasis in the liver and therefore a plausible key node for metabolic 391 

regulation in kidneys as well46, acknowledging the large emphasis in our pathway analysis on 392 

metabolic functions. Thirdly, it has a predicted47 role in exit from the endoplasmic reticulum and 393 

the unfolded protein response, which has an association with CKD via NFκB -mediated 394 

inflammation48. 395 

Another age-moderated protein, APOE stands out as having previously reported age-396 

related associations with disease and organ dysfunction, in both cases including Alzheimer’s 397 

Disease (AD). APOE plays an important role in lipid metabolism to regulate the growth and 398 

survival of mesangial cells and preserve kidney function 49; not only is APOE protein a marker 399 

for outcome in transplant recipients 50–52, there is also evidence for particular APOE genetic 400 
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alleles being associated with dysfunction risk 53–55, possibly manifested directly by lipidomic 401 

differences between allelic profiles 56. APOE alleles are further implicated in a host of disorders 402 

including age-moderated association with AD risk 57 (with the strongest effect manifesting 403 

around age 65 58), macular dysfunction, atherosclerosis and pulmonary scarring 59,60. There is 404 

also evidence of allele risk association between disparate pathologies 61. Interestingly, we have 405 

previously observed small (not statistically significant) increases in APOE due to ischemic 406 

reperfusion injuries 62 which may be explained by a recently description of the role of APOE in 407 

mediating senescence63. Such evidence suggests cause for further investigation of the APOE 408 

genotype with respect to donor kidneys of varying age. Indeed, the lipoprotein genetic 409 

background in general, with the close links between lipidome status and kidney function, may be 410 

associated with outcome. There is evidence of at least one similar allele dependent effects in 411 

another apolipoprotein (APOL1) associated with transplant outcome 64. 412 

Organ allocation algorithms impose a close link between donor and recipient age in the 413 

sample cohort, so these two variables cannot be conclusively separated. It is difficult to assess 414 

whether the age-moderated effects we observe represent a tendency for greater damage in older 415 

donors, or alternatively a greater ability to repair a given level of damage in younger recipients. 416 

Our analysis considers only chronological donor age, rather than a more nuanced representation 417 

of the epigenomic biological clock 65, which is likely to account for some variation observed 418 

with respect to both donors and recipients. 419 

Our list of outcome-associated candidates, controlling for the effect of donor age, 420 

including those for which we further report an additional age-moderated effect, is almost 421 

certainly not exhaustive. Practicalities of sample acquisition limited sampling of a range of 422 

outcomes for donors outside the 30-60 age range. In our dataset, as in the general population, 423 
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there is a trend towards lower eGFR (fewer good outcome events) at high donor age (Table 1). In 424 

the vast majority of proteins, the modelling suggests a plateauing effect at high donor age where 425 

the differences in outcome due to both protein and age are smaller. This effect may be an artifact 426 

of the distribution of sub-median outcomes. It is also immediately clear from our results that the 427 

strength of the donor age factor is enormous relative to any one protein effect; this must be borne 428 

in mind when interpreting model fits; at high donor age, the age effect is liable to dominate any 429 

prediction weighting and reduce the accuracy of estimated protein contribution. Both of these 430 

considerations should ideally be explored in a much larger cohort. High-throughput proteomics 431 

techniques continue to advance rapidly and larger cohort sizes are ever more feasible 66 but 432 

fundamental limitations on organ acquisition remain. Archiving at scale of clinical samples in 433 

bioresources such as the Quality in Organ Donation (QUOD) biobank to parallel advancements 434 

in big data analysis and interpretation platforms will improve the granularity in evidence-based 435 

decision making and accelerate the translation and application to clinical practice. 436 

In our orthogonal validation of selected proteins, the expected protein abundance 437 

difference between extremes of the eGFR continuum across donor age distribution tails, and the 438 

plateauing/narrowing of outcome differences at high donor age were broadly consistent with the 439 

western blot results. In younger donors the predicted strengths of association were very 440 

consistent with the observed differences in protein abundance in selected samples by western 441 

blot. In older donors, the western blot results were still broadly consistent (relative to the effect at 442 

in younger donors) in terms of a much weaker association, but the differences in both VTN and 443 

PREB were larger than might be expected by examination of the prediction curves (Figure 6B, 444 

upper panel) and the prediction for CST3 of a small reversal of the effect is both unexpected and 445 

biologically counterintuitive. A better explanation is that the model fit is impacted by the 446 
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(unavoidable) lack of outcome diversity at high age ranges, with the CST3 ‘flip’ in terms of 447 

protein effect likely being artefactual. 448 

In this work, we profiled the proteome of pre-implantation biopsies selected from donor 449 

kidneys on the basis of paired 12-month graft function, limiting potential surgical and post-450 

transplant biases on transplant outcomes. Using machine learning and multivariate adaptive 451 

spline regression models, we identified 136 candidate proteins associated with sub-median 452 

outcomes, suggesting molecular signatures which may refine models of graft dysfunction based 453 

on clinical and demographic factors alone. We also found that most (124) of these candidates 454 

furthermore show different strengths of association dependent on the age of the donor. The 455 

biological themes of the identified candidates reinforce known immuno-metabolic mechanisms 456 

of kidney injury but raise interesting possibilities for further work, especially with regard to 457 

donor genetic background. Furthermore, our results strongly suggest that for any studies of 458 

subclinical molecular indicators with regard to kidney transplant outcomes, the possibility of 459 

donor age-moderated weighting should be considered as a matter of course. 460 

 461 

SUPPLEMENTARY MATERIALS 462 

Supplementary Methods  463 

Supplementary Table 1: Clinical variable p-values for association with donor type and outcome 464 

Supplementary Table 2: Summary of results for all candidate proteins 465 

Supplementary Figure 1: Protein Quantification Missingness 466 

A: Missingness comparison: Proteins are shown ranked by the number of missing values 467 

across all samples and the twenty standard pools, excluding one run which was removed 468 

due to low signal. 2984 proteins had missing values in 50% or less runs. 469 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2023. ; https://doi.org/10.1101/2023.03.31.23288011doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.31.23288011
http://creativecommons.org/licenses/by-nc/4.0/


B: Paired Kidney Comparison: Protein abundance values from paired kidneys (left/right) 470 

from 3 individual donors were compared, as these are effectively biological replicates. x 471 

axes: value in left kidney. y axes: value in right kidney. Inset: R-squared value 472 

Supplementary Figure 2: Prediction of sub-median outcome differences between high and low 473 

protein across donor age, for all shortlisted proteins with a predicted age modulation effect 474 

Black traces: prediction at median protein abundance. Purple trace: prediction at 90th 475 

percentile of protein abundance. Orange traces: prediction at 10th percentile of protein 476 

abundance. The corresponding point on the main figure thus indicates the age at which 477 

the difference between orange and purple lines is greatest. 478 

 479 
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FIGURES AND TABLES 699 

Figure 1: Experimental design to discover donor kidney proteome associations with transplant outcome 700 
One kidney from each donor pair was biopsied at the back table. Donor kidney samples were selected randomly 701 
from pairs where both recipients had similar outcomes. The biopsy samples were subjected to proteomic analysis to 702 
yield a snapshot of the organ proteome before transplantation. We analyzed donor characteristics and clinical 703 
variables, recipient characteristics and protein abundances in a combined model against outcome.  704 
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Donor Type   DBD   DCD  

Outcome 
Tertile 

1st: 
Suboptimal 
(eGFR≤39) 

2nd: 
Intermediate 
(40≤eGFR≤59) 

3rd: 
Good 

(eGFR≥60) 

1st: 
Suboptimal 
(eGFR≤39) 

2nd: 
Intermediate 
(40≤eGFR≤59) 

3rd: 
Good 

(eGFR≥60) 
n 31 31 38 31 28 26 

Donor Age, y 56.84 
± 12.29 

51.32 
± 12.24 

39.05 
± 14.12 

55.48 
± 9.34 

53.57 
± 9.75 

38.31 
± 12.28 

Donor Sex         

    Male 15 
(48.4%) 

16 
(51.6%) 

19 
(50.0%) 

22 
(71.0%) 

16 
(57.1%) 

16 
(61.5%) 

    Female 16 
(51.6%) 

15 
(48.4%) 

19 
(50.0%) 

9 
(29.0%) 

12 
(42.9%) 

10 
(38.5%) 

Donor 
Ethnicity         

    White 30 
(96.8%) 

30 
(96.8%) 

36 
(94.7%) 

30 
(96.8%) 

28 
(100.0%) 

25 
(96.2%) 

    Other 1 
(3.2%) 

1 
(3.2%) 

2 
(5.3%) 

1 
(3.2%) 

0 
(0.0%) 

1 
(3.8%) 

Donor 
Weight, kg 

82.53 
± 18.20 

76.61 
± 18.07 

81.38 
± 17.72 

80.58 
± 14.95 

82.43 
± 17.20 

78.67 
± 13.96 

Donor 
Height, cm 

168.42 
± 9.37 

169.52 
± 7.67 

174.82 
± 11.16 

169.97 
± 7.98 

171.64 
± 9.73 

174.65 
± 8.98 

Donor S-Cr 
terminal, 
µmol/l 

86.54 
± 40.81 

82.57 
± 49.65 

90.19 
± 67.36 

73.37 
± 19.03 

70.31 
± 39.02 

59.60 
± 22.39 

Donor CIT, h 15.80 
± 3.88 

14.20 
± 4.60 

13.42 
± 4.67 

13.65 
± 5.20 

11.72 
± 3.55 

12.80 
± 4.49 

Donor COD         

    Trauma 1 
(3.2%) 

3 
(9.7%) 

3 
(7.9%) 

4 
(12.9%) 

3 
(10.7%) 

4 
(15.4%) 

    Other 30 
(96.8%) 

28 
(90.3%) 

35 
(92.1%) 

27 
(87.1%) 

25 
(89.3%) 

22 
(84.6%) 

Donor 
UKKDRI 

1.41 
± 0.52 

1.10 
± 0.36 

0.85 
± 0.36 

1.31 
± 0.37 

1.21 
± 0.40 

0.73 
± 0.35 

Recipient 
Age, y 

53.03 
± 12.21 

52.10 
± 14.61 

39.71 
± 16.03 

51.90 
± 9.85 

50.93 
± 11.04 

44.92 
± 12.87 

Recipient Sex         

    Female 15 
(48.4%) 

8 
(25.8%) 

12 
(31.6%) 

11 
(35.5%) 

9 
(32.1%) 

5 
(19.2%) 

    Male 16 
(51.6%) 

23 
(74.2%) 

26 
(68.4%) 

20 
(64.5%) 

19 
(67.9%) 

21 
(80.8%) 

Recipient 
Ethnicity         

    White 24 
(77.4%) 

21 
(67.7%) 

29 
(76.3%) 

22 
(71.0%) 

23 
(82.1%) 

20 
(76.9%) 

    Other 7 
(22.6%) 

10 
(32.3%) 

9 
(23.7%) 

9 
(29.0%) 

5 
(17.9%) 

6 
(23.1%) 

Recipient Posttransplant Kidney Function (mean eGFR, mL/min per 1.73 m2)  

    3 months 29.71 
± 12.06 

50.32 
± 17.28 

78.54 
± 25.97 

31.72 
± 12.24 

46.50 
± 10.34 

77.88 
± 18.57 

    12 months 26.58 
± 11.98 

49.58 
± 6.10 

85.58 
± 35.84 

25.10 
± 12.01 

48.24 
± 6.29 

80.26 
± 15.91 

Table 1: Donor and recipient clinical and demographic variables 705 
Donor kidney associated metadata. Samples are subdivided by donor type and by final assigned outcome tertile. 706 
Numerical variables are given ± standard deviation. Categorial variables are given alongside percentage of total 707 
cohort  708 
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Figure 2: Donor and recipient clinical and demographic data association with recipient 12 month eGFR rank 709 
Single-linkage hierarchical clustering of curated, imputed clinical variables by relative association strength (taking 710 
distance as 1-association). The outcome variable (ranked recipient eGFR at 12 months post-transplantation) is 711 
highlighted in red.  712 
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Figure 3: Unbiased analysis of pretransplant kidney proteomes and cluster associations  713 
A: Unbiased analysis of proteomic data by k-means clustering. Sample separation by Principal Component Analysis. 714 
Top Left: Samples were assigned to four clusters by k-means. Bottom & Right: There was a difference in the 715 
distribution of DBD and DCD donors across clusters, with the DBD donors being more heavily concentrated in 716 
Cluster 2 (‘+’ symbol; orange shading), and DCD in Cluster 4 (‘x’ symbol; pink shading) 717 
B: There were no associations between proteome clusters and most donor and recipient factors, except for mildly 718 
significant differences in donor BMI and creatinine (selected comparisons shown; left-right, top-bottom: donor type, 719 
recipient 12-month posttransplant eGFR (outcome), donor eGFR, donor age, donor BMI, donor creatinine at 720 
retrieval).  721 
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Figure 4: Age and combined age:protein related associations link to construction of age-modulated immune 722 
metabolic biological networks  723 
A: Prediction Rule Ensemble (PRE) modelling was performed in an iterative manner to select protein and clinical 724 
variable associations with ranked eGFR. At each iteration, only proteins not previously featured in a model were 725 
considered. The rules found across all iterations were dominated by donor age terms. 726 
B: Cumulative protein features identified at each iteration. Black line: all features identified by feature selection 727 
approach. Blue line: features passing the secondary filter for predictive power and accuracy. 728 
C: Shared Reactome pathway membership network analysis of filtered features. Nodes are colored by assigned 729 
cluster, and the clusters are annotated according to the top three most enriched pathways within each cluster. 730 

731 
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Figure 5: Modelled associations between proteins and kidney transplant outcome change with donor age 732 
A: Ages at which the predicted probability of sub-median outcome is most different between the 10th percentile and 733 
90th percentile of protein abundance.  x axis: age at which difference is greatest (i.e. when protein has greatest 734 
effect). y axis: greatest difference. 735 
Proteins above x=0 are modelled as having a more negative association with outcome when the protein abundance is 736 
high, at that donor age. Proteins below x=0 are modelled to have a more positive association with outcome when 737 
protein abundance is high, at that donor age. 738 
Proteins with absolute net difference > 0.5 are labelled, as well as the selected proteins VTN, PREB, APOE and 739 
CST3. 740 
The inset graphs indicate how the prediction of sub-median outcome (“P(S-M outcome)”; y axes) changes with 741 
donor age (x axes) for labelled proteins. Black trace: prediction at median protein abundance. Purple trace: 742 
prediction at 90th percentile of protein abundance. Orange trace: prediction at 10th percentile of protein abundance. 743 
The corresponding point on the main figure thus indicates the age at which the difference between orange and purple 744 
lines is greatest. 745 
B: Summary of feature selection and modelling analysis  746 
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Figure 6: Orthogonal validation confirms age-modulated immuno-metabolic proteins predict 12-month 748 
transplant outcomes 749 
A: Validation of models in test dataset. Models are plotted in order of decreasing Brier score (mean squared 750 
prediction error) difference between test and train data along the x axis. The lower two traces indicate the Brier score 751 
in train (purple) and test (green) data. The upper two traces indicate the AUC from the corresponding ROC analyses 752 
in train (orange) and test (blue) data.  753 
B-E: Validation of four selected proteins. Left-Right: VTN, PREB, APOE, CST3. 754 
B: Final ROC curves and AUC values for models trained on each protein (and donor age) against test data. The 755 
dotted line indicates the original performance against training data. 756 
C: Change in the prediction of sub-median outcome (“P(S-M Outcome)”; y axes) with donor age (x axes) for each 757 
protein. Black trace: prediction at median protein abundance. Purple trace: prediction at 90th percentile of protein 758 
abundance. Orange trace: prediction at 10th percentile of protein abundance. (These are the same as the inset graphs 759 
in Figure 5). The light grey and dark grey lines, respectively, indicate the corresponding sampled ages for the 760 
western blots below. 761 
D: Western blots comparing younger (age ≤  49) and older (age ≥ 58) donors between Good Outcome (GO; 762 
eGFR ≥ 60) and Suboptimal Outcome (SO; eGFR ≤ 40) outcome tertiles. Top row: representative western blots 763 
(n=5 per group) from comparison of younger donors. Middle row: representative western blots (n=5 per group) from 764 
comparison of older donors. Bottom row: result values for all quantified samples relative to the GO mean. Error bars 765 
indicate ±1 standard deviation; the central wider bar indicates mean. Significance stars indicate t-test comparison p-766 
values (***: < 0.001, *: < 0.05). 767 
E: Predicted outcome for six paired Left (L) and Right (R) kidneys from three donors. x axes: recipient eGFR at 12 768 
months (i.e. actual outcome). y axes: predicted probability of sub-median outcome (“P(S-M Outcome)”) using 769 
models trained on each protein with donor age. Vertical dotted line indicated median outcome (eGFR = 50). 770 
Horizontal dotted line indicates P(Sub-Median Outcome) = 0.5 771 
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