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Abstract 
Continued methodological advances have enabled numerous statistical approaches for the 

analysis of summary statistics from genome-wide association studies. Genetic correlation 

analysis within specific regions enables a new strategy for identifying pleiotropy. Genomic 

regions with significant ‘local’ genetic correlations can be investigated further using state-of-

the-art methodologies for statistical fine-mapping and variant colocalisation. We explored 

the utility of a genome-wide local genetic correlation analysis approach for identifying 

genetic overlaps between the candidate neuropsychiatric disorders, Alzheimer’s disease, 

amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson’s disease, and 

schizophrenia. The correlation analysis identified several associations between traits, the 

majority of which were loci in the human leukocyte antigen (HLA) region. Colocalisation 

analysis suggested the presence of a shared causal variant between amyotrophic lateral 

sclerosis and Alzheimer’s disease in this region. Our study identified candidate loci that 

might play a role in multiple neuropsychiatric diseases and suggested that disease-

implicated variants in these loci often differ between traits. Accordingly, this suggests the 

role of distinct mechanisms across diseases despite shared loci. The fine-mapping and 

colocalisation analysis protocol designed for this study has been implemented in a flexible 

analysis pipeline that produces HTML reports and is available at: 

https://github.com/ThomasPSpargo/COLOC-reporter. 
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1. Introduction 
The genetic spectrum of neuropsychiatric disease is diverse and various overlaps exist 

between traits. For instance, genetic pleiotropy between amyotrophic lateral sclerosis (ALS) 

and frontotemporal dementia (FTD) is increasingly recognised, and ALS is genetically 

correlated with Alzheimer’s disease (AD), Parkinson’s disease (PD), and schizophrenia
1-3

. 

Improving understanding of the genetic architecture underlying these complex diseases 

could facilitate future treatment discovery. 

 

Advances in genomic research techniques have accelerated discovery of genetic variation 

associated with complex traits. Genome-wide association studies (GWAS), in particular, 

have enabled population-scale investigations of the genetic basis of human diseases and 

anthropometric measures
4
. Summary-level results from GWAS are being shared alongside 

publications with increasing frequency over time
5
, and a breadth of approaches now exist 

for downstream analysis based on summary statistics which can enable their interpretation 

and provide further biological insight. 

 

Genetic correlation analysis allows estimation of genetic overlap between traits
6-9

. A ‘global’ 

genetic correlation approach gives a genome-wide average estimate of this overlap 

However, genetic relationships between traits can be obscured when correlations in 

opposing directions cancel out genome-wide
8
. Recent methods allow for a more nuanced 

analysis, of ‘local’ genetic correlations partitioned across the genome
8,9

. This stratified 

approach to genome-wide analysis could prove effective for identifying pleiotropic regions 

and designing subsequent analyses aiming to identify genetic variation shared between 

traits. 

 

A number of methods aim to disentangle causality within associated regions. This is 

important because the focus on single nucleotide polymorphisms (SNPs), which are markers 

of genetic variation, in GWAS produces results that can be difficult to interpret, and causal 

variants are typically unclear. More so, because of linkage disequilibrium (LD), GWAS 

associations often comprise large sets of highly correlated SNPs spanning large genomic 

regions. Statistical fine-mapping is a common approach for dissecting complex LD structures 

and finding variants with implications for a given trait among the tens or hundreds that 

might be associated in the region
10

. 

 

Interpretation of regions associated with multiple traits can also be challenging, since it is 

often unclear whether these overlaps are driven by the same causal variant. Statistical 

colocalisation analysis can disentangle association signals across traits to suggest whether 

the overlaps result from shared or distinct causal genetic factors
11-13

. Traditionally this 

analysis was restricted by the assumption of at most one causal variant for each trait in the 

region. However, recent extensions to the method now permit analysis based on univariate 

fine-mapping results for the traits compared and, therefore, analysis of regions with 

multiple causal variants. 

 

Accordingly, we conducted genome-wide local genetic correlation analysis across 5 

neuropsychiatric traits with recognised phenotypic and genetic overlap
2,3,14-16

: AD, ALS, FTD, 

PD, and schizophrenia. Loci highly correlated between trait pairs were further investigated 
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with univariate fine-mapping and bivariate colocalisation techniques to examine variants 

driving these associations.  
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2. Methods 
2.1. Sampled GWAS summary statistics 
We leveraged publicly-accessible summary statistics from European ancestry GWAS meta-

analyses of risk for AD
17

, ALS
1
, FTD

18
, PD

19
, and schizophrenia

20
. European ancestry data 

were selected to avoid LD mismatch between the GWAS sample and reference data from an 

external European population. 

 

2.2. Procedure 
Figure 1 summarises the analysis protocol for this study; further details are provided below. 

 

 
Figure 1. Overview of the analysis procedure for this study 

SuSiE (sum of single effects) is a univariate fine-mapping approach implemented within the R package susieR. ‘coloc’ is an R 

package for bivariate colocalisation analysis between pairs of traits. h
2 

= Heritability, rg= bivariate genetic correlation. The 

analysis steps shaded in blue have been implemented within a readily applied analysis pipeline available on GitHub: 

https://github.com/ThomasPSpargo/COLOC-reporter. 

 

2.2.1. Processing of GWAS summary statistics 
A standard data cleaning protocol was applied to each set of summary statistics

21
. We 

retained only single nucleotide polymorphisms (SNPs), excluding any non-SNP or strand-

ambiguous variants. SNPs were filtered to those present within the 1000 Genomes phase 3 

(1KG) European ancestry population reference dataset
22

 (N = 503). They were matched to 

the 1KG reference panel by GRCh37 chromosomal position using bigsnpr (version 1.11.6)
23

, 

harmonising allele order with the reference and assigning SNP IDs. 

 

If not reported, and where possible, effective sample size (Neff) was calculated from per-SNP 

case and control sample sizes. When this could not be determined per-SNP, all variants 

were assigned a single Neff, calculated as a sum of Neff values for each cohort within the 

GWAS meta-analysis
24

. 
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Further processing was performed where possible, excluding SNPs with imputation INFO 

<0.9, p-values ≤0 or >1, and Neff >3 standard deviations from the median Neff. We filtered to 

include only variants with minor allele frequency (MAF) ≥0.005 in both the reference and 

GWAS samples and excluded SNPs with an absolute MAF difference of >0.2 between the 

two. 

 

2.2.2. Genome-wide analyses 
2.2.2.1. Global heritability and genetic correlations 
LDSC (version 1.0.1)

6,7
 was applied to estimate genome-wide univariate heritability (h

2
) for 

each trait on the liability scale. The software was also applied to derive ‘global’ (i.e., 

genome-wide) genetic correlation estimates between trait pairs and estimate sample 

overlap from the bivariate intercept. 

 

These analyses were performed using the HapMap3
25

 SNPs and the LD score files provided 

with the software, calculated in the 1KG European population. No further MAF filter was 

applied (therefore variants with MAF >0.005 were included) and the other settings were left 

to their defaults. 

 

2.2.2.2. Local genetic correlation analysis 
LAVA (version 0.1.0)

8
 was applied to obtain local genetic correlation estimates across 2495 

approximately independent blocks delineating the genome, based on patterns in LD. We 

used the blocks provided alongside the LAVA software which were derived from the 1KG 

European cohort. Bivariate intercepts from LDSC were provided to LAVA to estimate sample 

overlap between trait pairs. 

 

In accordance with prior studies, genetic correlation analysis was performed following an 

initial filtering step. Univariate heritability was estimated for each genomic block across 

SNPs in-common between a pair of traits, and only loci with local h
2 

p-values below a 

threshold of 2.004×10
-5

 (0.05/2495) in both traits continued to the bivariate analysis. This 

step ensures that univariate heritability is sufficient in both traits for a robust correlation 

estimate. 

 

2.2.3. Targeted genetic analyses 
2.2.3.1. Fine-mapping and colocalisation analysis 
Statistical fine-mapping and colocalisation techniques were applied to further analyse 

associations between trait pairs in regions where the false discovery rate (FDR) adjusted p-

value of local genetic correlation analysis was below 0.05 (after adjusting for all bivariate 

comparisons performed). Additional analysis was conducted at loci where significant 

correlations occurred between two trait pairs but not between the final pairwise 

comparison across the three implicated traits. 

 

Fine-mapping was performed with susieR (v0.12.27)
10,26

, which implements the ‘sum of 

single effects’ (SuSiE) model to represent statistical evidence of causal genetic variation 

within ‘credible sets’ and per-SNP posterior inclusion probabilities (PIPs). A 95% credible set 

indicates 95% certainty that at least one SNP included within the set has a causal association 

with the phenotype and higher PIPs indicate a greater posterior probability of being a causal 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2023. ; https://doi.org/10.1101/2023.03.30.23287950doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.30.23287950
http://creativecommons.org/licenses/by/4.0/


variant within a credible set. Multiple credible sets are identified when the data suggest 

more than one independent causal signal. 

 

Colocalisation analysis was implemented with coloc (v5.1.0.1)
11,12,27

, which calculates 

posterior probabilities that a causal variant exists for neither, one, or both of two compared 

traits, testing also whether evidence for a causal variant in both traits suggests a shared 

variant (i.e., hypothesis 4 (H4); colocalisation) or independent signals (Hypothesis 3 (H3)). 

Colocalisation analyses can be performed across all variants sampled in a region, under an 

assumption of at most one variant implicated per trait. It can also be performed using 

variants attributed to pairs of credible sets from SuSiE, relaxing the single variant 

assumption
11

. When evidence of a shared variant is found, the individual SNPs with the 

highest posterior probability of being that variant can be assessed. With a 95% confidence 

threshold, these are termed 95% credible SNPs. 

 

Analysis pipeline 

We conducted colocalisation and fine-mapping analysis within an open-access pipeline 

developed for this study using R (v4.2.2)
28

: https://github.com/ThomasPSpargo/COLOC-

reporter. 

 

Briefly, in this workflow (see Figure 1), GWAS summary statistics are harmonised across 

analysed traits for a specified genomic region, including only variants in common between 

them and available within a reference population. An LD correlation matrix across sampled 

variants is derived from a reference population using PLINK (v1.90)
29,30

. 

 

Quality control is performed per-dataset prior to univariate fine-mapping analysis. 

Diagnostic tools provided with susieR are applied to test for consistency between the LD 

matrix and Z-scores from the GWAS and identify variants with a potential ‘allele flip’ 

(reversed effect estimate encoding) that can impact fine-mapping. 

 

Fine-mapping is performed for each dataset with the coloc package runsusie function, which 

wraps around susie_rss from susieR and is configured to facilitate subsequent colocalisation 

analysis. Sample size (Neff for binary traits) is specified as the median for SNPs analysed. 

Colocalisation analysis can be performed with the coloc functions coloc.abf and coloc.susie 

when fine-mapping yields at least one credible set for both traits and otherwise using 

coloc.abf only. Genes located near credible sets from fine-mapping and credible SNPs from 

colocalisation analyses are identified via Ensembl and biomaRt (v2.54.0)
31-33

. 

 

Analysis parameters can be adjusted by the user in accordance with their needs. Various 

utilities are included to help interpretation of fine-mapping and colocalisation results, 

including identification of genes nearby to putatively causal signals, HTML reports to 

summarise completed analyses, and figures to visualise the results and compare the 

examined traits. 

 

Current implementation 

In this study, LD correlation matrices were derived from the 1KG European cohort. SNPs 

flagged for potential allele flip issues in either of the compared traits were removed from 

the analysis. Fine-mapping was performed with the susie_rss refine=TRUE option to avoid 
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local maxima during convergence of the algorithm, leaving the other settings to the runsusie 

defaults. Colocalisation analysis was performed using the default priors for coloc.susie 

(P1=1x10
-4

, P2=1x10
-4

, P12=5x10
-6

). 

 

Colocalisation and fine-mapping analyses were performed initially using the genomic blocks 

defined by LAVA, since these aim to define relatively independent LD partitions across the 

genome
8
. If a 95% credible set could not be identified in one or both traits, we inspected 

local Manhattan plots for the region to determine whether potentially relevant signals 

occurred around the region boundaries. The analysis was repeated with a ±10Kb window 

around the LAVA-defined genomic region if p-values for SNPs at the edge of the block were 

p<1x10
-4

 for both traits and the Manhattan plots were suggestive of a ‘peak’ not 

represented within the original boundaries. 
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3. Results 
3.1. Genome-wide analyses 
Descriptive information and heritability estimates for the sampled traits and GWAS are 

presented in Table 1. ALS had nominally significant global genetic correlations with 

schizophrenia (p = 0.045), PD (p = 0.013), and AD (p = 0.006); no other bivariate genome-

wide correlations were statistically significant (see Figure S1). 

 
Table 1. Genome-wide association studies (GWAS) sampled 

Each GWAS is a GWAS meta-analysis of disease risk across people of European ancestry. *Proxy cases from the UK Biobank 

cohort. 
†
Estimated from cumulative risk after age 45 after correcting for competing risk of mortality and assuming a 

lifespan of ~85 years. h
2
 = heritability

 

Trait 

Estimated 

lifetime risk in 

population 

GWAS Liability 

scale h
2 

(standard 

error) 

Reference N Cases 
N 

Controls 

Alzheimer’s 

disease 
1/10

34
 
†
 

Kunkle et al., 

2019
17

 
21,982 41,944 

0.093 

(0.0155) 

Amyotrophic 

lateral sclerosis 
1/350

35,36
 

van Rheenen 

et al., 2021
1
 

27,205 110,881 
0.0277 

(0.003) 

Frontotemporal 

dementia 
1/742

37
 

Ferrari et al., 

2014
18

 
2,154 4,308 

0.0329 

(0.0283) 

Parkinson’s 

disease 
1/37

38
 

Nalls et al., 

2019
19

 

15,056 

(+ 18,618 

proxies
*
) 

449,056 
0.0506 

(0.0046) 

Schizophrenia 1/250
39

 
Trubetskoy et 

al., 2022
20

 
53,386 77,258 

0.1761 

(0.0061) 
 

A total of 605 local genetic correlation analyses were performed across all trait pairs in 

genomic regions where both traits passed the univariate heritability filtering step after 

restricting to SNPs sampled in both GWAS (see Table 2; Figure 2; Table S1). The number of 

loci passing to bivariate analysis varied greatly across trait pairs and was congruent with the 

genome-wide heritability estimates (and their uncertainty) for each trait, reflecting 

differences in phenotypic variance explained by measured genetic variants and statistical 

power for each GWAS (see Table 1). 
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Table 2. Comparison of genome-wide SNP significance against local genetic correlation significance thresholds in all trait 

pairs and loci analysed 

All loci analysed showed sufficient local univariate heritability across compared traits to allow bivariate correlation analysis. 

Subsequent fine-mapping and colocalisation analyses were performed in this study for regions with at least a false 

discovery rate (FDR) adjusted significance for the local genetic correlation. SNP = single nucleotide polymorphism. 

Number of traits in pair 

with genome-wide 

significant (p < 5x10
-8

) 

SNP in locus 

Smallest significance threshold for local genetic correlation 

Bonferroni 

(p < 8.26x10
-5

; 

0.05/605) 

FDR 

(pfdr < 0.05) 

Nominal 

(p < 0.05) 

Non-

significant 

(p ≥ 0.05) 

0 1 17 77 394 

1 1 4 18 80 

2 0 3 2 8 

 

 

 
Figure 2. Local genetic correlation analyses between trait pairs 

The lower panel displays a heatmap of genetic correlations (rg) across genomic regions where any bivariate analyses were 

performed; white colouring indicates that the region was not analysed for a given trait pair owing to insufficient univariate 

heritability in one or both traits. The upper panel shows a Manhattan plot of p-values from each correlation analysis, 

denoting trait pairs by colour and comparisons passing defined significance thresholds by shape (square for a strict 

Bonferroni threshold and triangle for a false discovery rate (FDR) adjusted threshold); the hatched line indicates the 

threshold p-value above which Pfdr <0.05. The panels are both ordered by relative genomic position, with bars above and 

below indicating each chromosome. AD = Alzheimer’s disease, ALS = amyotrophic lateral sclerosis, FTD = frontotemporal 

dementia, PD = Parkinson’s disease, SZ = schizophrenia. Table S1 provides a complete summary of local genetic correlation 

analyses performed. 
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Twenty-six bivariate comparisons were significant following FDR adjustment (pfdr <0.05), two 

of which also passed the stringent Bonferroni threshold (p <8.26x10
-5

; 0.05/605). While 

some regions included genome-wide significant SNPs (p <5x10
-8

) for one or both traits, 

others occurred in regions where GWAS associations were weaker (see Table 2). Five of 

these associations occurred at loci within the human leukocyte antigen (HLA) region 

(GRCh37: Chr6:28.48-33.45Mb; 6p22.1-21.3
40

), and all five traits were implicated in at least 

one of these. 

 

3.2. Targeted genetic analyses 
Univariate fine-mapping and bivariate colocalisation analyses were subsequently performed 

to test for variants jointly implicated between trait pairs in regions with local genetic 

correlation Pfdr <0.05. The ALS and schizophrenia trait pair was additionally examined at 

Chr6:32.22-32.45Mb because significant genetic correlations were found between ALS and 

FTD and between schizophrenia and FTD at this locus. The correlation between ALS and 

schizophrenia at this locus had not been analysed owing to insufficient univariate 

heritability for ALS after restricting to SNPs in common with the schizophrenia GWAS. 

 

Fine-mapping identified at least one 95% credible set for each of the compared traits for 7 

of the 27 comparisons performed (see Table 3), and for one trait only in a further 5 (see 

Table S2; Table S3). This analysis suggested two credible sets for schizophrenia in the 

Chr12:56.99-58.75Mb locus, for AD in Chr6:32.45-32.54Mb, and (only when harmonised to 

SNPs in common with the ALS GWAS) for FTD in Chr6:32.22-32.45Mb (see Table S3). 

 

Colocalisation analyses performed across fine-mapping credible sets and across all SNPs in a 

region generally gave support to the equivalent hypothesis (Table 3; Table S2). Moreover, 

comparisons suggesting a signal was present in one trait only were largely concordant with 

the identification of fine-mapping credible sets in only that trait (Table S2). Figure S2 

compares per-SNP p-values across trait pairs for comparisons with evidence of a relevant 

signal in both traits. Figure S3 shows patterns of LD across SNPs assigned to credible sets for 

these analyses. 

 

Strong evidence was found for a shared variant between ALS and AD within the HLA region 

(Posterior probability of shared variant = 0.9; see Figure 3). The 95% credible SNPs for this 

association were distributed around the MTCO3P1 pseudogene and rs9275477, the lead 

genome-wide significant SNP from the ALS GWAS in this region, had the highest posterior 

probability of being implicated in both traits. Figure S4 presents sensitivity analysis showing 

that the result is robust to a range of values for the shared variant hypothesis prior 

probability. 

 

The other comparisons that found fine-mapping credible sets in both traits suggested that 

overlaps from the correlation analysis were driven by distinct causal variants (see Table 

3,Table S2). 

 

Univariate fine-mapping of PD and schizophrenia at Chr17:43.46-44.87Mb found large 

credible sets spanning many genes, including MAPT
41-44

 and CRHR1
45,46

 which have been 

previously implicated in the traits we have analysed. These expansive credible sets reflect 

the strong LD in the region and indicate a signal that is difficult to localise (see Figure S3(F); 
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Table S3). The colocalisation analysis suggested independent variants for each trait despite 

many SNPs overlapping across their respective credible sets (see Figure S3). Sensitivity 

analysis showed robust support for the two independent variants hypothesis across shared-

variant hypothesis priors (Figure S4). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2023. ; https://doi.org/10.1101/2023.03.30.23287950doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.30.23287950
http://creativecommons.org/licenses/by/4.0/


Table 3. Colocalisation analysis conducted across 95% credible sets identified during univariate fine-mapping of trait pairs 

N SNPs refers to the number of SNPs present for both traits and the 1000 genomes reference panel in the region within colocalisation and fine-mapping analysis. *Indicates comparisons with 

genetic correlation analysis p <8.26x10
-5 

(0.05/605). 
∆ 

Denotes locus extended by ±10kb for fine-mapping and colocalisation analysis. 
†
Variant identified in colocalisation as having the highest 

posterior probability of being shared variant assuming hypothesis 4 is true (see Figure 3). 
§
Differences in fine-mapping solutions across trait pairs in the Chr6:32.21-32.45Mb locus reflect 

differences in the SNPs retained after restricting to those in common between the compared GWAS 
ø
 H0 = no causal variant for either trait, H1 = variant causal for trait 1, H2 = variant causal 

for trait 2, H3 = distinct causal variants for each trait, H4 = a shared causal variant between traits. PIP = posterior inclusion probability. AD = Alzheimer’s disease, ALS = amyotrophic lateral 

sclerosis, FTD = frontotemporal dementia, PD = Parkinson’s disease, SZ = schizophrenia. 

Trait Genomic 

position 

(GRCh37) 

Local genetic 

correlation 

estimate (95% 

Confidence 

Interval) 

Fine-mapping 

Credible set 

for trait 
N 

SNPs 

SNP with highest PIP for fine-mapping 

credible set (nearest gene; sense-

strand base pair distance) 

Posterior probability for hypothesis
ø
 

1 2 1 2 Trait 1 Trait 2 H0 H1 H2 H3 H4 

AD PD 
Chr6:3257678

5-32639239 
∆
 

0.406 (0.197, 

0.648) 
1 1 958 

rs9271247 

(HLA-DQA1; 

+15,844) 

rs3129751 

(HLA-DQA1; 

+13,767) 

<0.01 <0.01 <0.01 0.95 0.05 

ALS AD 
Chr6:3262924

0-32682213 
*
 

0.974 (0.717, 

1.000) 
1 1 475 

rs9275477
†
 

(MTCO3P1; 

+1,260) 

rs9275207 

(MTCO3P1; 

+16,191) 

<0.01 <0.01 <0.01 0.10 0.90 

ALS FTD 
Chr6:3220890

2-32454577 
§
 

0.723 (0.370, 

1.000) 
1 

1 

1709 
rs9268833 

(HLA-DRB9; 0) 

rs1980493 

(BTNL2; 0) 
<0.01 <0.01 0.01 0.99 <0.01 

2 
rs9767620 

(HLA-DRB9; +1,498) 
<0.01 <0.01 0.01 0.99 <0.01 

ALS SZ 

Chr6:3220890

2-32454577 
§
 

- 1 1 1711 
rs9268833 

(HLA-DRB9; 0) 

rs9268219 

(C6orf10; 0) 
<0.01 <0.01 <0.01 0.98 <0.01 

Chr12:569871

06-58748139 

0.506 (0.218, 

0.807) 
1 

1 
2260 

rs113247976 

(KIF5A; 0) 

rs12814239 

(LRP1; 0) 
<0.01 <0.01 <0.01 1.00 <0.01 

2 rs324017 (NAB2; 0) <0.01 <0.01 <0.01 1.00 <0.01 

PD SZ 
Chr17:434605

01-44865832 

0.595 (0.266, 

0.950) 
1 1 2453 

rs58879558 

(MAPT; 0) 

rs62062288 

(MAPT; 0) 
<0.01 <0.01 <0.01 0.81 0.19 

SZ FTD 
Chr6:3220890

2-32454577 
§
 

0.669 (0.379, 

0.990) 
1 1 1657 

rs9268219 

(C6orf10; 0) 

rs9268877 

(HLA-DRB9; 0) 
<0.01 <0.01 <0.01 1.00 <0.01 
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Figure 3. Evidence for colocalisation between amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD) in the 

Chr6:32.63-32.68Mb region 

Panel A: SNP-wise p-value distribution between ALS and AD across Chr6:32.63-32.68Mb, in which colocalisation analysis 

found 0.90 posterior probability of the shared variant hypothesis (see Table 3). Panel B: (upper) Per-SNP posterior 

probabilities for being a shared variant between ALS and AD, (lower) positions of HGNC gene symbols nearby to the 95% 

credible SNPs. Posterior probabilities for being a shared variant sum to 1 across all SNPs analysed and are predicated on the 

assumption that a shared variant exists; 95% credible SNPs are those spanned by the top 0.95 of posterior probabilities. The 

x-axis for Panel B is truncated by the base pair range of the credible SNPs and genomic positions are based on GRCh37. 
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4. Discussion 
We examined genetic overlaps between the neuropsychiatric conditions Alzheimer’s 

disease, amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson’s disease, and 

schizophrenia. Associated genomic regions between pairs of traits were identified with local 

genetic correlation analysis and further analysed with statistical fine-mapping and 

colocalisation techniques. 

 

Significant correlations were most frequent across genomic blocks within the HLA region, 

implicating each of the studied traits in at least one comparison. Several associated regions 

contained genes with known relevance for the traits studied, such as KIF5A, MAPT, and 

CRHR1. Colocalisation analysis found strong evidence for a shared genetic variant between 

ALS and AD in the Chr6:32.62-32.68Mb locus within HLA, while the other colocalisation 

analyses suggested causal signals distinct across traits, for one trait only, or for neither trait. 

 

The tendency for association between traits around the HLA region is reasonable, since this 

is a known hotspot for pleiotropy
8,47

. HLA is particularly known for its role in immune 

response and it is implicated in various types of disease
48,49

. Mounting evidence has linked 

HLA and associated genetic variation to the traits we have analysed, and mechanisms 

underlying these associations are beginning to be understood
48-57

. For instance, AD is 

associated with variants around the HLA-DQA1 and HLA-DRB1 genes and several SNPs in the 

non-coding region between them have been shown to modulate their expression
58

. Notably, 

one of the SNPs with a demonstrated regulatory role, rs9271247, had the highest 

probability of being causal for AD across the 95% credible set identified in the fine-mapping 

of the region. 

 

Variants showing evidence for colocalisation between AD and ALS were distributed around 

the MTCO3P1 pseudogene in the HLA class II non-coding region between HLA-DQB1 and 

HLA-DQB2. MTCO3P1 has been previously identified as one of the most pleiotropic genes in 

the GWAS catalog
59,60

. Previous studies have suggested the relevance of this region in both 

traits. HLA-DQB1 and HLA-DQB2 are both upregulated in the spinal cord of people with ALS, 

alongside other genes implicated in various immunological processes for antigen processing 

and inflammatory response
61

. HLA class II complexes, and their subcomponents, have been 

identified as upregulated in multiple brain regions of people with AD, using both gene and 

protein expression techniques
57,62

. 

 

Our analysis of this region gave stronger support for colocalisation between the ALS and AD 

GWAS than a previous study. The previous study defined a 100Kb window around the lead 

genome-wide significant SNP from the ALS GWAS, rs9275477, and found ~0.50 posterior 

probability for each of the shared and two independent variant(s) hypotheses
1
. The 

difference between these studies reflects differences in the processing of GWAS data; in this 

study all summary statistics underwent quality control to ensure only high-quality variants 

were retained.  

 

More broadly, our analyses suggest that regions with a strong genetic correlation between 

the five traits studied often result from adjacent but trait-specific signals, likely reflecting 

overlaps between LD blocks
47

. Correlations also occurred in regions with weaker overall 

GWAS associations (see Table 2), where fine-mapping and colocalisation analyses did not 
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suggest causal associations in one or either trait. Such patterns likely reflect a shared 

polygenic trend across the region, rather than associations attributable to discrete variants. 

Accordingly, other approaches may be better suited for identifying regions containing 

genetic variation jointly causal across diseases, including the traditional approach of testing 

regions around overlapping genome-wide significant variants. 

 

This study has used gold-standard statistical tools to examine genetic relationships between 

traits. The local genetic correlation analysis approach enabled targeted investigation of 

genomic regions which appear to overlap between traits. The application of colocalisation 

analysis alongside a prior univariate fine-mapping step allowed for associations to be tested 

without conflating independent but nearby signals under the single-variant assumption of 

colocalisation analysis across all variants sampled in a region. 

 

The study is not without limitation. We necessarily used the 1KG European reference 

population to estimate LD between SNPs. Fine-mapping is ideally performed with an LD 

matrix from the GWAS sample and is sensitive to misspecification when inconsistencies in 

LD occur between the reference and GWAS cohorts. Use of a reference population is not 

uncommon, and diagnostic tools available within the susieR package allow testing for 

inconsistencies between the reference and GWAS samples
10

. We accordingly implemented 

these tools centrally into our workflow and determined that the LD matrices from the 1KG 

reference were suitable for the data (estimates of Z-score and LD consistency are available 

in Table S3). Nevertheless, repeating this study in under-represented populations would be 

an important future step to validate our findings. 

 

We employed statistical methods to identify and analyse genomic regions containing 

variants which might be jointly implicated across traits. These approaches provide useful 

associations between traits identified from large-scale genomic datasets. However, they 

alone are not sufficient for translation into clinical practice. Future studies should aim to 

extend any associations found by integrating functional and multi-omics datasets to gain 

mechanistic insights into observed trends and facilitate treatment discovery
58,63

. 

 

The fine-mapping and colocalisation analysis pipeline we have used is available as an open-

access resource on GitHub to facilitate the application of these methods in future studies: 

https://github.com/ThomasPSpargo/COLOC-reporter. Specified genomic regions can be 

readily analysed by providing GWAS summary statistics for binary or quantitative traits of 

interest and a population-appropriate reference dataset for estimation of LD. The pipeline 

returns resources including detailed reports that overview the analyses performed. 
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