TITLE: Post-operative morbidity and mortality in Indigenous Peoples: A scoping review and meta-analysis AUTHORS: Rachel J Livergant, MBT¹; Kelsey Stefanyk BSc;² Catherine Binda, BScH³; Georgia Fraulin, BScH¹; Sasha Maleki, RPh;⁴Sarah Sibbeston, BSc^{1,6}; Shahrzad Joharifard, MPH, FRCSC, FACS⁶, Tracey Hillier, FRCPC⁷; Emilie Joos, FRCSC, FACS^{8*}. 1. Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada. Faculty of Medicine, University of British Columbia, Prince George, British Columbia, Canada. Faculty of Medicine, University of British Columbia, Terrace, British Columbia, Canada. 4. Lower Mainland Pharmacy Services, Vancouver General Hospital, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada. 5. Northwest Territory Métis Nation, Yellowknife, Northwest Territories, Canada. 6. Department of Pediatric and Thoracic Surgery, British Columbia Children's Hospital, University of British Columbia, Vancouver, Canada. 7. Mi'kmag Qalipu First Nation, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada. 8. Branch for Global Surgical Care, Division of General Surgery, Trauma and Acute Care Surgery, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada. *Corresponding author: Dr. Emilie Joos; Branch for Global Surgical Care, Division of General Surgery, Trauma and Acute Care Surgery, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, 767 West 12th Avenue, Vancouver, British Columbia, V5Z 1M9, Canada; Tel: 604-875-4559; Fax: 604-875-5348; Email: emilie.joos@vch.ca **Competing interests:** The authors have no conflicts to declare. Funding: The authors received no specific funding for this work.

42 ABSTRACT

Indigenous Peoples across North America and Oceania experience worse health outcomes compared to non-Indigenous people, including increased post-operative morbidity and mortality. No data is available on global differences in surgical morbidity and mortality between geographic locations and across surgical specialties. The aim of this study is to evaluate disparities in post-operative morbidity and mortality between Indigenous and non-Indigenous populations. This scoping review and meta-analysis was conducted in accordance with PRISMA-ScR and MOOSE guidelines. Eight electronic databases were searched with no language restriction. Studies reporting on Indigenous populations outside of Canada. the USA, New Zealand, or Australia, or on interventional procedures were excluded. Primary outcomes were post-operative morbidity and mortality. Secondary outcomes included reoperations, readmission rates, and length of hospital stay. The Newcastle Ottawa Scale was used for quality assessment. Eighty-four unique observational studies were included in this review. Of these, 67 studies were included in the meta-analysis (Oceania n=31, North America n=36). Extensive heterogeneity existed among studies and 50% were of poor quality. Indigenous patients worldwide had 1.26 times higher odds of post-operative morbidity (OR=1.26, 95% CI: 1.10-1.44, p<0.01) and 1.34 times higher odds of post-operative infection (OR=1.34, 95% CI: 1.12-1.59, p<0.01) than non-Indigenous patients. Indigenous patients also had 1.33 times higher odds of reoperation (OR=1.33, 95% CI: 1.02-1.74, p=0.04) and longer hospital stays (SMD=0.09; 95% CI: 0.02-1.08; p=0.05). In conclusion, we found that Indigenous patients experience significantly poorer surgical outcomes than their non-Indigenous counterparts. Additionally, there remains a paucity of high-quality research focusing on assessing and improving surgical equity for Indigenous patients worldwide, despite multiple international and national calls to action for reconciliation and decolonization to improve access to guality surgical care for Indigenous populations.

91 INTRODUCTION

92 Safe and appropriate surgical care is an integral component of an effective and resilient healthcare 93 system [1]. Surgical conditions account for over 33% of the global disease burden [2]. Unfortunately, 94 access to surgical care is not equitable, with populations in low-income countries, rural environments, and 95 certain underserved populations receiving a lower quality of surgical care or no surgical care at all [1]. 96 Indigenous Peoples are a grossly underserved population worldwide [3-5]. Although definitions of the 97 term "Indigenous" are varied and nuanced, including populations across all continents, throughout this 98 review we use the term Indigenous to refer to the original peoples, communities, and nations of the 99 regions now called Canada, Australia, New Zealand, and the United States of America (USA). These 100 populations hold and practice cultural, economic, political, and social traditions that are distinct from the 101 broader settler population in which they live and seek recognition and sovereignty to practice these ways 102 and identities [6]. Indigenous Peoples have not shared in the gains that development has provided these 103 countries thus far, resulting in profound health and social inequities between Indigenous and non-104 Indigenous populations that continue to persist due to the ongoing effects of colonization and systemic 105 racism [7-11].

An estimated 7 million of the 370 million Indigenous people worldwide live in Canada, Australia, New Zealand, and the USA [7]. The shared history of the British settler colonial project in these nations can be used as a framework to highlight commonalities in the contemporary situation of Indigenous Peoples in these areas [12]. For instance, Canada, Australia, New Zealand, and the USA were the only United Nations member countries to vote against The United Nations Declaration on the Rights of Indigenous Peoples (UNDRIP) upon its introduction in 2007 [13].

However, current literature on post-operative outcomes in Indigenous patients in Canada, Australia, New Zealand, and the USA, among other countries, remains limited and of poor quality [14]. Higher rates of death and adverse events post-operatively have been demonstrated for Indigenous Peoples, including increased surgical infections, need for re-operation, and longer length of hospital stay (LOS) compared to non-Indigenous patients [14-17].

To date, there is no known study that combines data on both post-operative morbidity and mortality from the continents where minority Indigenous populations experience similar disparities in healthcare provision. Additionally, no study compares and assesses morbidity and mortality for Indigenous patients across multiple surgical disciplines and procedures. This scoping review aims to assess if surgical morbidity and mortality disparities exist between Indigenous and non-Indigenous peoples in Canada, Australia, New Zealand, and the USA to better understand the extent of existing surgical and health disparities worldwide.

124

125 METHODS

126 This scoping review and meta-analysis was registered in Open Science Framework (osf.io/qs3vz) and

127 reported in accordance with Preferred Reporting Items for Systematic Review and Meta-Analysis-

128 Extension for Scoping Reviews (PRISMA-ScR) and Meta-Analysis of Observational Studies in

129 Epidemiology guidelines (S1 Appendix) [18,19].

130 Data Sources and Searches

A search strategy was developed in consultation with a professional research librarian. Comprehensive electronic database searches were undertaken in MEDLINE, Embase, Global Health, Cochrane Library, PsycInfo, SOCIndex, Web of Science, and ProQuest Dissertations & Theses Global from inception to December 25, 2022, using key MeSH terms (S2 Appendix). All languages were included. Reference lists of reviews and retrieved articles and consultations with experts were conducted to identify additional relevant studies.

137 Study Selection and Criteria

138 Two reviewers independently screened titles, abstracts, and full texts using Covidence. Discrepancies

139 were resolved via consensus. We included clinical studies on surgical outcomes in Indigenous

140 populations. Studies were excluded if they were book chapters, conference abstracts, or non-peer

141 reviewed articles. Studies were excluded if they focused on Indigenous populations outside of Canada,

142 Australia, New Zealand, or the USA, if they lacked a non-Indigenous comparator group, or if they included

only pediatric patients, as defined in study methods. Studies describing minor interventions and
procedures, such as colonoscopy or angiography, were excluded.

While we recognize the importance of accounting for the numerous and varied Indigenous populations across the world, we restricted this study's geography to limit the already heterogeneous nature of our data. Furthermore, we hope to avoid over-homogenizing the distinct lived experiences of Indigenous Peoples in regions such as Africa, Northern Europe, and Central/South America. Canada, Australia, New Zealand and the USA share similar British colonial settler histories and consequent displacement and oppression of native people [7, 20-22].

151 Data Extraction and Quality Assessment

152 One reviewer completed data extraction and quality assessment (QA), while another verified the 153 extracted data and QA findings. Discrepancies were resolved through consensus. The following data 154 were extracted from included studies using Microsoft Excel (Microsoft Corporation, Version 16.60): 155 authors' name, journal, year of publication, age category, population size, sex, type of study, database, 156 surgical specialty, operations, outcomes of interest, and study conclusions. "Outcomes of interest" 157 included mortality, any morbidity, length of hospital stay, and readmission and reoperation rates. Studies 158 were included in data extraction if they reported surgical procedures and at least one outcome of interest 159 resulting from the procedure. Studies reporting on two separate Indigenous groups had data extracted 160 independently for each unique group. QA was conducted using the Newcastle-Ottawa Scale (NOS). 161 adapted for observational studies [23]. To assess the risk of publication bias, the effect odds ratio (OR) 162 for each of the included studies was plotted against their standard error on a logarithmic scale to produce 163 a funnel plot, which were assessed for asymmetry.

164 Data Analysis

A random-effects model was used to define all pooled outcome measures and the OR was estimated with its variance and 95% confidence interval (CI). The prevailing heterogeneity between ORs for comparable outcomes between different studies was calculated using the I-squared inconsistency test. The absence of statistical heterogeneity is indicated by a value of 0%, whereas larger values indicate increasing

heterogeneity. Studies were only eligible for inclusion in meta-analysis if data were reported from which
summary associations and their 95% CIs could be calculated. All meta-analyses were carried out using
Review Manager Version 5.4 (Cochrane Collaboration, 2020).

172 Outcomes from studies were separated into three categories: 1) post-operative morbidity, 2) post-173 operative mortality, and 3) hospital stay. Morbidity included surgical and systemic infections, 174 hematologic/thromboembolic, cardiovascular, pulmonary, genitourinary, immunologic, and procedure-175 specific post-operative complications (ileus, nerve injury, anesthetic complication, prosthesis-related 176 complications, etc). Overall morbidity included all morbidities listed above pooled together, including 177 those defined as "operative complications". Mortality was divided into two categories: 1) in-hospital and 178 30-day mortality (<30-day mortality) and 2) greater than 30-day mortality (>30-day mortality), which 179 included mortality and survival. Overall mortality refers to both <30-day and >30-day mortality pooled 180 together. Hospital outcomes included readmission, reoperation, and length of hospital stay (LOS). 181 Subgroup analyses were conducted based on surgical speciality, type of operation, geography, and 182 quality of study. We also conducted a sub-group analysis by date of publication (before January 1st 2017 183 versus after January 1st 2017). This publication period sub-group analysis was done to compare studies 184 before and after both declarations for Indigenous rights were published in North America (Truth and 185 Reconciliation Commission (TRC), Canada, 2015; American Declaration of the Rights of Indigenous 186 Peoples (ADRIP), USA, 2016) to see if we could detect a difference in surgical outcomes over time, 187 specifically after increased advocacy for Indigenous people on this continent [24,25]. Sensitivity analysis 188 compared fixed effects to random effects models to test the assumption that the random effects method 189 was the most appropriate choice. A study could contribute to more than one analysis if it reported on 190 multiple outcomes (i.e., overall morbidity AND surgical site infections AND mortality analyses).

191 **RESULTS**

194

192193 Study Selection and Characteristics

A PRISMA-ScR flow diagram outlining the scoping review process is presented in Figure 1. The initial
search resulted in a total of 11423 non-duplicate studies, of which 697 were included in full-text review
after title and abstract review. Following full-text review, expert consultations, and relevant review

appraisal for additional relevant articles, 105 unique studies met inclusion criteria. Twenty-one studies were multiple publications, meaning they reported findings on the same cohort as another study included in this review. We chose to report data only from the original study, or from the study that covered the most extensive cohort, to prevent repetition of data points, and multiple publications were not included in the meta-analysis or narrative review.

203 204 205

204 Fig 1. PRISMA-ScR flow diagram of study selection process, inclusions, and exclusions.

206 Of the 84 studies included in the narrative synthesis, 36 were retrospective cohort studies, 7 were

207 prospective cohort, 4 were case-control, and 36 were cross-sectional. A comprehensive summary of

findings and characteristics of all included studies are presented in Table 1 and S1 Table. For a complete

209 list of references, see S3 Appendix.

210 Studies were published between 1989 and 2021, with research conducted from 1971 to 2019. A total of

211 37 studies were published over the first 28 years (1989-2016), while 45 were published in the last 5 years

212 (2017-2021). 36/84 (42.9%) studies were based in Oceania (22/36 (61.1%) in Australia and 14/36

213 (38.9%) in New Zealand) while 48/84 (57.1%) studies were based in North America (38/48 (79.2%) in

USA and 10/48 (20.8%) in Canada). Surgical outcomes were reported for 9,758,892 patients across 9

215 surgical specialties, including General Surgery (n=22 studies), Orthopedic Surgery (n=15 studies),

216 Cardiac Surgery (n=15 studies), Urology (n=1 studies), Obstetrics and Gynecology (n=5 studies),

217 Neurosurgery (NS) (n=5 studies), Vascular Surgery (n=4 studies), Ears, Nose, and Throat (ENT) (n=1

studies), and Ophthalmology (n=2 studies). Fourteen studies reported surgical outcomes from multiple

surgical specialties. A breakdown of procedures can be found in S2 Table.

A total of 9,758,892 patients across 67 studies were included in the meta-analysis, of which 69,080

221 (0.7%) were Indigenous and 7,111,3091 (99.3%) were non-Indigenous. Indigenous populations consisted

of Native American (n=53,205, 77.0%), Māori (n=8,194, 11.9%), Aboriginal Australians and Torres Strait

lslanders (n=4,590, 6.6%), and Indigenous Canadians (n=2,311, 3.3%). Some studies grouped

224 Indigenous populations together, reporting on Māori and Pacific Islanders (n=159, 0.2%), or Native

Hawaiian and Native American groups (n=666, 1.0%).

226 **Table 1.** Study and patient characteristics.

Study Characteristics	No. of Studies	No. of Indigenous patients/Total *	Patient Characteristics	No. of patients in MA/Total*
Publication Year	Studies	patients/Total	Sex	WA/TOTAL
	4	1 207/27 202		4 260 210/0 759 902
1991 and earlier	1	1,327/37,383	Male	4,260,219/9,758,892
1992-1996	0	0/0	Female	3,457,124/9,758,892
1997-2001	2	91/1,423	Other or Not Defined	2,041,549/9,758,892
2002-2006	4	757/2,100**		No. patients in MA/
2007-2011	8	3,085/8,932	Ethnicity	Total*
2012-2016	22	22,364/2,597,604		
2017-2021	45	168,031/20,459,986	Indigenous	69,080/9,758,892
Study Design			Indigenous Canadians**	2,311/55,528
RCS	36	33,490/2,588,888	Native	53,205/9,386,794
			American	
PCS	7	943/12,545	Native	666/153,687
			American &	
CC	4	1,069/2,169	Native	
			Hawaiian	
CS**	36	54,672/17,733,558	Māori	8,149/80,195
Mixed	1	84/217	Māori/PI	159/429
Study Location			Aboriginal	4,590/82,259
			Australian &	, ,
North America	48	77,102/2,016,427	Torres Strait	
		,	Islander	
Canada	10	22,134/1,056,810	Non-Indigenous	7,111,309/9,758,892
USA	38	54,968/19,106,617		.,,
Oceania	36	6,580/102,295		
Australia	22	4,762/84,439		
New Zealand	14	1,818/17,856		
Primary Studies in	••	1,010,11,000		
MA by Location				
Canada	8	2,311/55,528		
USA	28	53,871/9,540,481		
Australia	20	4,628/82,349		
New Zealand	11	1,694/8,879		
Surgical	••	1,00 1,0,010		
Specialities				
Cardiac Surgery	15	23,239/3,567,387		
ENT	1	37/93		
General Surgery	22	15,866/3,232,446		
Neurosurgery	5	306/15,373		
OBGYN	5	1,916/261,992		
Ophthalmology	2	115/8,645,453		
Orthopedic Surgery	2 15	41,480/4,096,667		
Urology	1	1,157/284,050		
Vascular Surgery	4	497/8,027		
Multiple	4 14	497/8,027 5,645/225,889		
Multiple	14	5,045/225,009		

227

228 *Total represents Indigenous + non-Indigenous patients (comparator group) in studies **A study by Hong

et al. (2006) [26] did not distinguish between Indigenous and non-Indigenous population numbers (total n

230 = 1,122) CC: Case-Control; CS: Cross-Sectional; ENT: Ears, Nose, Throat; NH: Native Hawaiian;

OBGYN: Obstetrics & Gynecology; PI: Pacific Islander; PCS = Prospective Cohort Study; RCS =
 Retrospective Cohort Study.

233

234

235 Risk of Bias Assessment and Sensitivity Analyses

Half of included studies (42/84, 50%) were low quality and the other half (42/84, 50%) were good quality
(S4 Appendix)). The low quality of studies was mainly attributed to failure of studies to control for
confounders such as age, pre-existing comorbidities, and/or sex (40/42; 95.2%). Funnel plots for each
outcome were generated, however due to the inherent heterogeneity of the studies included in each
outcome category, asymmetry could not be reliably assessed (S5 Appendix). No noticeable change in the
direction of the effect with a fixed effects method was appreciated, therefore a random effects model was
used.

243 Post-Operative Morbidity

244 Fifty-four studies provided data on post-operative morbidity. Of these, 48 were included in the meta-

analysis and 6 were included in the narrative synthesis. Overall, there was a significantly increased

246 morbidity for the Indigenous cohort (OR=1.26, 95% CI: 1.10-1.44, p=0.001). When low quality studies

247 were excluded, there was 1.30 increased odds of post-operative morbidity among Indigenous compared

248 to non-Indigenous patients (OR=1.30, 95% CI:1.12-1.51, p<0.001) (Fig 2). [29-50] When stratified by

249 country, overall post-operative morbidity remained significantly higher in Indigenous groups from Australia

250 (OR=1.42, 95% CI: 1.07-1.90, p=0.02) and New Zealand (OR=1.63, 95% CI: 1.09-2.43, p=0.02)

compared to non-Indigenous, but there was no significant difference in overall morbidity between

Indigenous and non-Indigenous patients from Canada (OR=1.71, 95% CI: 0.90-3.24, p=0.10) nor the

253 USA (OR=1.07, 95% CI: 0.87-1.32, p=0.53).

254

When separated by surgical specialty, urology (OR=1.79, 95% CI:1.32-2.41, p<0.001) and cardiovascular
surgery (OR=1.42, 95% CI: 1.11-1.82, p=0.005) had increased overall morbidity in Indigenous patients.
Specifically, renal transplants (OR=1.97, 95% CI:1.34-2.89, p<0.001) and coronary artery bypass grafts
(OR=1.50, 95% CI: 1.27-1.76, p<0.001) both resulted in significantly higher post-operative complications

- 259 for Indigenous patients. No significant differences in overall morbidity were found in other surgical
- 260 specialties or procedures. All results for overall morbidity and mortality meta-analyses can be found in
- 261 Table 2.
- 262
- 263 Twenty studies reported morbidity outcomes prior to 2017 and 28 reported morbidity outcomes between
- January 2017 and December 2021. Before 2017, there was significantly more overall morbidity among
- Indigenous patients (OR=1.42, 95% CI: 1.14-1.76, p=0.002); after 2017, on the other hand, there was no
- significant difference in overall morbidity (OR=1.17, 95% CI: 0.98-1.40, p=0.09). All other meta-analyses
- results are in S3 Table.
- 268
- 269 Of the six studies reporting morbidity outcomes from narrative analysis, four studies reported no
- significant differences between Indigenous and non-Indigenous patients [51-54]. The other two found
- significantly increased functional deficits and infection rates for the Indigenous populations [55, 56].
- 272

273 Fig 2. Meta-analysis of overall morbidity with good quality studies

Results are depicted for meta-analysis using a random-effects model for odds of overall morbidity post-operatively between
 Indigenous and non-Indigenous surgical patients. Overall morbidity included any post-operative complication including surgical
 infection, systemic infection, cardiovascular complication, pulmonary complication, hematologic/thromboembolic complication,
 genitourinary complication, immunologic complication, and/or procedural complication. This analysis was conducted using good
 guality observational studies, as determined by Newcastle Ottawa Scale ratings.

- 280 Surgical and Systemic Infections
- 281

279

282 Surgical site and systemic infection data were included in 29 unique studies. Indigenous patients had

283 1.34 times increased odds of post-surgical infections compared to non-Indigenous patients (OR=1.34,

284 95% CI: 1.12-2.59, p=0.001). When stratified by continent, North American Indigenous Peoples had 1.33

times increased odds of post-surgical infections compared to non-Indigenous North Americans (OR=1.33,

286 95% CI: 1.10-1.60, p=0.003) (Figure 3a) [30,31,36,39,40,42-44,47,48,57]. When stratified by country, only

287 Indigenous Peoples from the USA experienced significant disparities in surgical infection rates (OR=1.36,

- 288 95% CI: 1.06-1.74, p=0.01). There were no differences in post-operative systemic infections detected in
- the analyses. There were no significant differences in post-operative surgical site infections (OR=1.16,
- 290 95% CI: 0.90-1.49, p=0.24) or systemic infections (OR=1.01, 95% CI: 0.58-1.75, p=0.98) in studies
- 291 published before 2017. In studies published after 2017, there was a significant increase in surgical site

infections for Indigenous patients (OR=1.5, 95% CI: 1.16-1.95, p=0.002), but not in systemic infections
 (OR=1.01, 95% CI:0.92-1.10, p=0.88).

294

295 Other Post-Operative Complications

296 297 Indigenous Peoples had higher odds of pulmonary complications if all studies were included (OR=1.42, 298 95% CI: 1.03-1.94; p=0.03, Fig 3b). If only good quality studies were included, however, this difference 299 was not significant (OR=1.32, 95% CI: 0.92-1.90, p=0.13). Patients undergoing cardiovascular surgery 300 (OR=1.85, 95% CI:1.50-2.29, p<0.001) and Oceanic Indigenous patients undergoing any surgery 301 (OR=1.64, 95% CI:1.25-2.17, p<0.001) had higher odds of pulmonary complications compared to non-302 Indigenous peoples. Furthermore, there was a significant increase in pulmonary complications in 303 Indigenous patients in studies published prior to 2017 (OR=1.64, 95% CI:1.06-2.54, p=0.02), while this 304 was not significant in studies published in the last five years (OR=1.22, 95% CI:0.81-1.83, p=0.34). There 305 were no geographic or surgical specialty differences between populations with respect to cardiovascular 306 complications. 307 308 Indigenous patients were significantly more likely to experience immunologic complications post-309 operatively (OR=1.53, 95% CI:1.08-2.17, p=0.02) (Fig 3c) [35,36,40,42,46]. Oceanic Indigenous Peoples 310 (OR=2.35, 95% CI: 1.36-4.04, p=0.002) and those undergoing renal transplantation (OR=1.55, 95% CI: 311 1.44-1.67, p<0.001) had higher odds of these complications. Furthermore, studies published in the last 312 five years demonstrated a higher rate of immunologic complications for Indigenous patients (OR=1.48, 313 95% CI:1.00-2.20), p=0.05) while this was not significant in studies published before 2017 (OR=1.96, 314 95% CI:0.64-6.00, p=0.24). There were no significant differences in genitourinary (OR=1.21, 95% CI: 315 0.92-1.60, p=0.18), hematologic (OR=1.28, 95% CI:0.97-1.70, p=0.08), or procedural complications 316 (OR=0.96, 95% CI: 0.32-2.92, p=0.94) between Indigenous and non-Indigenous patients. Further 317 subgroup analyses by geographic region, surgical specialty, quality of study, and publication period 318 likewise did not demonstrate significant difference in these outcomes (S3 Table).

319

Fig 3. Meta-analyses with studies for post-operative (A) Surgical infections; (B) Pulmonary complications; and (C) Immunologic complications.

Results are depicted for meta-analysis using a random-effects model for observational studies. A. post-operative surgical infections including superficial, organ space, and deep wound infections, wound dehiscence, abscess formation; B. pulmonary complications

324 including pneumonia, respiratory failure, and prolonged ventilation and C. immunologic complications including graft failure, delayed graft function, and graft rejection (acute, chronic).

326 **Post-Operative Mortality and Survival**

- 327 328 Fifty studies provided information on post-operative mortality and/or survival. Of these studies, 40 were 329 included in the meta-analysis, totalling 52,698 Indigenous and 5,057,266 non-Indigenous post-operative 330 deaths. Overall mortality was similar for both Indigenous and non-Indigenous patients (OR=1.16, 95% CI: 331 0.90-1.50, p=0.26), and there were no significant differences between the groups based on geography. 332 surgical specialty, or quality of study (Table 2). Results of analysis on <30-day mortality (OR=1.20, 95% 333 Cl: 0.81-1.78, p=0.37) and >30-day mortality (OR=1.16, 95% Cl: 0.95-1.41, p=0.15) demonstrated similar 334 mortality rates for Indigenous and non-Indigenous patients. However, Oceanic patients (OR=1.29, 95% 335 CI: 1.06-1.57, p=0.01), and more specifically, Maori and PI patients from New Zealand (OR=1.39, 95% 336 CI: 1.01-1.92, p=0.04) had higher odds of >30-day mortality than non-Indigenous patients. Indigenous 337 patients undergoing orthopedic surgeries and, more specifically, amputations, had increased odds of <30-338 day mortality versus non-Indigenous patients (OR=1.32, 95% CI: 1.08-1.61, p=0.006 and OR=1.40, 95% 339 CI: 1.10-1.77, p=0.006). Of the 10 studies included in narrative analysis, only one found increased 340 mortality rates for Indigenous patients (HR=1.15, 95% CI: 1.05-1.26, p= NR) [58]. There were no 341 significant differences in overall mortality in studies published before (OR=1.28, 95% CI: 0.74-2.23, 342 p=0.38) or after 2017 (OR=1.10, 95% CI: 0.86-1.40, p=0.46).
- 343 344

344 Table 2. Meta-Analysis for overall morbidity and mortality outcomes

345

			Numbe r of Studies (n)	Indigenous Patients # Events/Total Population	Non-Indigenous Patients # Events/Total Comparator	Odds Ratio (95%Cl) , p-value
Mortality						
	Overall Mo	rtality	40	1819/52693	97326/7522611	1.16 (0.90- 1.50), p=0.26

Good Qualit	y Studies	20	1214/38854	53452/5998046	0.88 (0.67- 1.14), p=0.33
Geographic	Location				
	Oceania	20	1144/11956	8363/135141	1.10 (0.90- 1.34), p=0.35
	Australia	13	493/3733	5883/73437	0.97 (0.72- 1.29), 0.83
	New Zealand	7	651/8223	2480/61704	1.31 (0.96- 1.78), p=0.09
	North America	20	675/40742	88963/7387470	1.19 (0.72- 1.97), p=0.49
	Canada	3	29/702	585/12445	0.68 (0.45- 1.02), 0.07
	USA	17	646/40040	88378/7375025	1.33 (0.76- 2.31), p=0.32
Surgical Specialty		39			
	Cardiovascular Surgery	20	973/25933	33970/2517269	1.19 (0.98- 1.44), p=0.09
	General Surgery	11	425/12929	30593/3922657	0.90 (0.49- 1.66), p=0.74
	Orthopedic Surgery	4	210/11768	2060/792342	2.47 (0.46- 13.40), p=0.29

	Before 2017	20	1286/8742	22538/234689	1.42 (1.14- 1.76), p=0.002
	2017 and later	28	4465/45845	392634/541592 7	1.17 (0.98- 1.40), p=0.09
Publicatio n Period					
	Valve Repair	3	71/539	477/3716	1.12 (0.85- 1.47) p=0.42
	Transplants	6	114/380	821/1916	0.91 (0.57- 1.45), p=0.69
	Malignant Tumor Resection	5	430/4818	44146/865688	0.72 (0.48- 1.08), p=0.11
	CABG +/- Valve Repair	10	149/2487	1996/70931	1.17 (0.84- 1.61), p=0.35
	Arthroplasty	3	54/11698	1900/792538	2.72 (0.30- 24.42), p=0.37
	Amputation	2	433/1918	882/4643	1.40 (1.10- 1.77), p=0.006
	AAA Repair	3	170/753	1187/6745	1.16 (0.65- 2.05), p=0.62
Operation					
	Urology	4	68/1447	1778/192080	0.69 (0.36- 1.33), p=0.27

Morbidity							
	0	∣)verall Morbi	dity	48	5751/54587	415172/565061 6	1.26 (1.10- 1.44), 0.001
		Good Qual	ity Studies	22	3236/32771	273850/374329 4	1.30 (1.12- 1.51), p<0.001
		Geographic	Location				
			Oceania	22	2244/23786	163548/248526 9	1.46 (1.14- 1.87), p=0.003
			Australia	16	2071/23098	163319/248424 2	1.43 (1.06- 1.92), p=0.02
			New Zealand	6	173/688	229/1027	1.60 (1.12- 2.26), p=0.009
			North America	26	3507/30801	251624/316534 7	1.15 (0.95- 1.39), p=0.15
			Canada	5	282/976	3056/15140	1.71 (0.90- 3.24), p=0.10
			USA	21	3225/24856 8	248568/315020 7	1.07 (0.87- 1.32), p=0.53
		Surgical Specialty					
			All	2	395/2227	447/2382	0.93 (0.80- 1.08), p=0.36

	Cardiovascular Surgery	15	2077/23313	162893/249022 1	1.42 (1.11- 1.82), p=0.005
	ENT	1	17/37	15/56	2.32 (0.97- 5.58), p=0.06
	General Surgery	11	656/9277	60002/951448	0.97 (0.84- 1.12), p=0.67
	Neurosurgery	1	12/175	191/4106	1.51 (0.82- 2.76), p=0.18
	OBGYN	3	46/1467	922/89475	2.24 (0.66- 7.57), p=0.19
	Orthopedic Surgery	6	1084/13287	135413/180346 7	0.68 (0.35- 1.31), p=0.25
	Urology	9	1464/4804	55289/309461	1.79 (1.32- 2.41), p<0.001
Operation					
	AAA Repair	2	214/1239	27959/190732	1.15 (0.99- 1.34), p=0.07
	Amputation	2	26/91	56/327	0.41 (0.02- 8.66), p=0.56
	Arthroplasty	5	1068/13266	135390/180344 4	0.75 (0.38- 1.46), p=0.40

	CABG (+/-) Valve Repair	5	369/1805	4240/50858	1.50 (1.27- 1.76), p<0.001
	Malignant Tumor Resection	3	177/3522	29443/616169	0.93 (0.79- 1.08), p=0.33
	Renal Transplantatio n	8	1273/3647	27370/118883	1.97 (1.34- 2.89), p<0.001
	Thyroidectomy	3	37/405	1146/13513	1.72 (1.00- 2.97, p=0.05
	Transplantatio n	9	1303/3882	27783/121609	1.77 (1.23- 2.53), p=0.002
	Valve Repair	3	77/539	771/3716	0.66 (0.25- 1.74), p=0.40
Publicatio n Period					
	2017 and later	20	513/15200	49775/1586724	1.10 (0.86- 1.400, p=0.46
	Before 2017	20	1819/52698	97326/7522611	1.28 (0.74- 2.23), p=0.38

346 347 348 349 350 351 Results of meta-analysis of pooled results from observational studies reporting outcomes on overall morbidity and mortality (<30day and >30day). Includes sub-group analysis by quality of study (good quality), geographic region (Oceania, North America), country, surgical specialty, operation, and publication period (before 2017, 2017 and later). Indigenous outcomes represent all reported Indigenous groups, including combining Pacific Islander, Māori and/or Native Hawaiian for relevant studies. AAA: Abdominal Aortic Aneurysm; CABG: Coronary Artery Bypass Grafting; OBGYN: Obstetrics and Gynecology.

352

353 **Hospital Stay Outcomes**

354

355 Forty-five studies were included in the meta-analysis for hospital stay outcomes. There was a significant

356 increase in reoperation rates (OR=1.33, 95% CI: 1.02-1.74, p=0.04) and LOS for Indigenous patients

357	(SMD=0.15, 95% CI: 0.02-0.29, p=0.02). The difference in reoperation rates (OR=1.33, 95% CI: 1.02-
358	1.74, p=0.03) and LOS (SMD=0.65, 95% CI: 0.14-1.16, p=0.01) before 2017 was statistically significant,
359	while the difference in reoperation rates (OR=1.35, 95% CI: 0.61-2.97, p=0.46) and LOS (SMD=0.02,
360	95% CI: -0.04-0.08, p=0.53) after 2017 was not statistically significant. Oceanic Indigenous patients had
361	the highest odds of reoperation and longest LOS (SMD=0.54, 95% CI -0.00-1.08, p=0.05). There were no
362	significant differences in readmission rates for either population group (S3 Table). The three studies
363	included in narrative analysis did not report significant differences in hospital stay outcomes for
364	Indigenous patients [51,53,60].

365

366 **DISCUSSION**

367 368 This study presents a comprehensive overview and summary of the state of post-operative outcomes for 369 Indigenous populations worldwide. Our findings are consistent with existing literature that describes 370 disparate post-operative outcomes for Indigenous patients [14,16]. Specifically, this study presents 371 evidence that Indigenous patients in Canada, the USA, Australia, and New Zealand experience greater 372 post-operative morbidity, including infections and other systemic complications, than their non-Indigenous 373 counterparts. We also found that long-term mortality was significantly increased for Indigenous patients 374 from New Zealand, echoing existing literature [61,62]. Additionally, this study highlighted a high proportion 375 of low-quality studies on the topic, as well as a very low representation of Indigenous patients in 376 published research, which is a call to action for researchers to scrutinize this topic more thoroughly. 377 Specifically, this study found that Indigenous people in Australia and New Zealand had significantly higher 378 post-operative morbidity and mortality compared to non-Indigenous peoples. These differences were not 379 statistically significant in Canadian and American populations. However, previous studies, with differing 380 inclusion and exclusion criteria, have highlighted disparities between Indigenous and non-Indigenous 381 surgical outcomes in Canada and the USA [16,65]. 382 383 On an international stage, the UNDRIP was adopted by the UN General Assembly in 2007 to protect 384 Indigenous Peoples worldwide, including enshrining the right of Indigenous Peoples "without

discrimination, to ... health and social security" [13]. As previously mentioned, Canada, the USA,

386 Australia, and New Zealand were the only four countries to vote against this Declaration in 2007 [13]. 387 However, all four countries have since ratified and given their support for the Declaration, as well as 388 adopted their own national frameworks [24,25]. On a national level in North America, the TRC and 389 ADRIP called on the healthcare sector to recognize, measure, and close the gaps in Indigenous health 390 outcomes [24,25]. To date, these calls to actions have not meaningfully improved the reporting of 391 Indigenous health outcomes in the North American context, as evidenced by the preponderance of low-392 guality studies retrieved in this study and the trend of increased post-operative infections and 393 immunological complications in Indigenous patients in the last five years. However, other metrics of post-394 operative morbidity have improved in the last five years, such as non-significant differences in overall 395 morbidity, hospital LOS, and reoperation rates for Indigenous patients. These conflicting results illustrate 396 that it remains to be seen if the TRC, UNDRIP, and/or ADRIP will lead to the structural changes needed 397 in healthcare systems to ameliorate surgical inequities for Indigenous patients.

398

399 On a more positive note, there demonstrably has been more interest in studying these inequities, as 400 evidenced by the exponential rise in publications centered on this topic and inclusion of Indigenous 401 patients in studies since these legislations have been adopted. In our study, we found that the publication 402 rate doubled over the last decade, from 22 in 2012-2016 to 45 in 2017-2021, and that this translated into 403 a seven-fold increase in the Indigenous population studied (22,364 vs 168,031 patients). In the USA, 404 many of these publications were made possible thanks to the harnessing of data and statistical power 405 from the National Surgical Quality Improvement Program (NSQIP), created by the American College of 406 Surgeons (ACS) [66]. However, despite Canadian institutions having access to NSQIP since as early as 407 2011, none of the Canadian studies utilized NSQIP, which may partially explain the poor guality of studies 408 from Canada (n=6/9, 66.7%) compared to the USA (n=15/39, 38.5%). One possible explanation for the 409 lack of NSQIP utilization in the Canadian context may be that the Canadian NSQIP databases do not 410 record ethnicity/race data, while this information is recorded in USA databases. This demonstrates a lack 411 of appropriate tools for measuring health equity, despite call to action 19 from the TRC of Canada that 412 states "we call upon the federal government, in consultation with Aboriginal peoples, to establish 413 measurable goals to identify and close the gaps in health outcomes between Aboriginal and non-414 Aboriginal communities, and to publish annual progress reports and assess long term trends" [24].

Collecting and recording Indigenous status in national databases would directly help address this call to action, and we recommend re-visiting current Canadian policies against collecting ethnicity data in order to better analyze differences in healthcare outcomes between various ethnic groups.

418

419 Systemic racism and discrimination are prevalent in post-colonial health systems. These factors likely 420 contribute to the observed disparities in surgical outcomes in this study, rather than Indigenous culture 421 itself [67,68]. Institutions, including healthcare systems, created by settlers were designed to benefit the 422 colonizers and disadvantage original inhabitants. Indigenous Peoples around the world were purposefully 423 exposed to infectious diseases, denied treatments, experienced forced sterilization, and were banned 424 from practicing their traditional ways of healing [69,70]. We must acknowledge the ongoing effects that 425 colonization contributes to the current and lasting socioeconomic marginalization and consequent health 426 care disparities experienced by Indigenous populations globally [71,72]. In this way, we can confront and 427 begin to close these gaps. As a global surgical community, it is essential to reimagine models of surgical 428 care that confront the impacts of colonialism on underserved populations. Reimagining surgical models to 429 comprehensively integrate contextualized, longitudinal, and community-centric methods that meet the 430 unique needs of Indigenous patients may help to diminish these gross surgical disparities and improve 431 the health of Indigenous patients.

432

433 Limitations

434

435 The heterogeneity among surgical specialties, geographies, and distinct Indigenous groups challenged 436 this meta-analysis. While we limited our search to Canada, New Zealand, Australia, and the USA, it is 437 important to recognize the unique and varied Indigenous groups across these countries who, while facing 438 similar health and social inequities, have distinct cultural, social, and political ways and practices. The 439 nuances created by heterogeneity in our sample cannot be fully addressed in the scope of this article, nor 440 is there available data to allow for sub-analyses by distinct Indigenous groups. Further, there are 441 substantial differences in the healthcare systems in the four included countries, which undoubtedly 442 influence health outcomes for marginalized groups. Additionally, we used "number of events" rather than 443 "number of patients" as our population number in the morbidity analysis. Therefore, this study may have 444 overestimated the independence of each event. A single patient may experience multiple different

445 complications, but these were included in the analysis as independent events per patient, not number of 446 patients who experienced complications. The results of this study are also limited by the poor quality of 447 studies available in the literature. Indeed, half of the included studies were judged to be of poor quality, 448 with a majority being predominantly retrospective in nature and many reporting unadjusted results. 449 Finally, the lived experiences of diverse Indigenous patients across the world and the true impact of 450 racism and system inequities in healthcare the outcomes experienced by Indigenous patients cannot fully 451 be addressed in a meta-analysis of post-surgical outcomes. While out of this study's scope, it is important 452 to consider the adverse impacts of systemic racism on health status prior to patients undergoing surgery, 453 including but not limited to disparities in access to culturally appropriate primary and preventative care as 454 well as lack of timely access to surgical care.

455

456 CONCLUSION

457

458 This study provides evidence that Indigenous patients in Canada, New Zealand, Australia, and the USA 459 continue to experience worse post-operative outcomes compared to non-Indigenous patients. 460 Furthermore, despite multiple calls to action on both national and international levels to assess and 461 address the impacts of colonialism and health inequities for Indigenous populations, the availability of 462 good quality studies on surgical health of Indigenous patients is limited. In order to address the inequities 463 in post-operative outcomes for Indigenous Peoples, we must re-imagine models of surgical care that 464 comprehensively integrate preventative and long-term post-operative care and prioritize accessible, 465 feasible, and culturally appropriate care for Indigenous groups. Lastly, while there has been a significant 466 increase in studies focused on and including Indigenous patients since 2017, further research is needed 467 to investigate the upstream adverse impacts of systemic racism on Indigenous health prior to patients 468 undergoing surgery.

469

470 ACKNOWLEDGMENTS

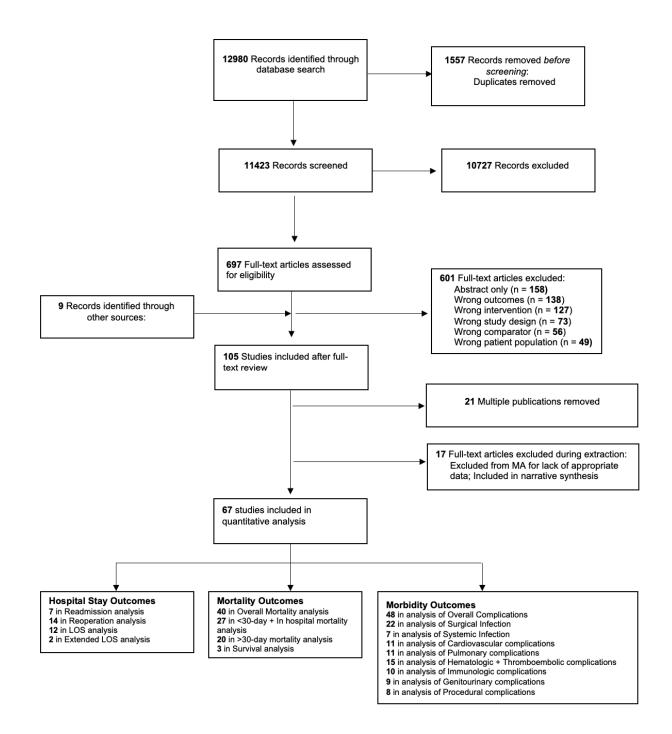
471

The authors respectfully acknowledge that this review was conducted on Treaty 6 territory, the traditional
land of the Nêhiyawak (Cree), Anishinaabe (Saulteaux), Niitsitapi (Blackfoot), Métis, Dene, and Nakota
Sioux Peoples, the unceded territories of the x□məθk□əy□əm (Musqueam), S□wx□wú7mesh
(Squamish), səlilwəta□ (Tsleil-Waututh), and Tsimshian Nations, traditional territory of the Lheidli

- 476 T'enneh, part of the Dakelh (Carrier) First Nation, as well as the traditional lands of the Sinixt, the
- 477 Ktunaxa, the Secwepmec and the Syilxsince in the country now known as Canada since time
- 478 immemorial.
- 479

5

481	1.	Meara JG, Leather AJM, Hagander L, Alkire BC, Alonso N, Ameh EA, et al. Global
482		surgery 2030: Evidence and solutions for achieving health, Welfare, and Economic
483		Development. International Journal of Obstetric Anesthesia. 2016;25:75–8.
484	2.	Shrime MG, Bickler SW, Alkire BC, Mock C. Global burden of surgical disease: an
485		estimation from the provider perspective. Lancet Glob Health. 2015 Apr;3:S8-S9.
486	3.	Zuckerman S, Haley J, Roubideaux Y, Lillie-Blanton M. Health Service Access, Use, and
487		Insurance Coverage Among American Indians/Alaska Natives and Whites: What Role
488		Does the Indian Health Service Play?. Am J Public Health. 2004 Jan;94(1):53-59.
489	4.	Robson B, Harris R, editors. Hauora: Māori Standards of Health IV. A study of the years
490		2000–2005. Wellington: Te Ropū Rangahau Hauora a Eru Pomare; 2007.
491	5.	Valery PC, Coory M, Stirling J, Green AC. Cancer diagnosis, treatment, and survival in
492		Indigenous and non-Indigenous Australians: a matched cohort study. Lancet. 2006
493		Jun;367(9525):1842-8.
494	6.	Office of the High Commissioner for Human Rights. About indigenous peoples and
495		human rights. https://www.ohchr.org/en/indigenous-peoples/about-indigenous-peoples-
496		and-human-rights. Accessed June 27, 2022.
497	7.	Pulver LJ, Haswell MR, Ring I, et al. Indigenous Health: Australia, Canada, Aotearoa,
498		New Zealand and the United States: Laying Claim to a Future that Embraces Health for
499		Us All. Published online 2010
500	8.	King M, Smith A, Gracey M. Indigenous health part 2: the underlying causes of the health
501		gap. Lancet. 2009 Jul;374(9683):76-85.
502	9.	Young TK, Reading J, Elias B, O'Neil JD. Type 2 diabetes mellitus in Canada's first
503		nations: status of an epidemic in progress. CMAJ. 2000 Sep;163(5):561-6.
504	10.	Bourassa C, McKay-McNabb K, Hampton M. Racism, Sexism and Colonialism: The
505		Impact on the Health of Aboriginal Women in Canada. Canadian Women Studies.
506		2004;24(1):23-29.
507	11.	Greenwood M, de Leeuw S, Lindsay NM, Reading C, editors. Determinants of Indigenous
508		Peoples' health in Canada: Beyond the social. Toronto: Canadian Scholar's Press; 2018
509	12.	Glenn, EN. Settler Colonialism as Structure: A Framework for Comparative Studies of
510		U.S. Race and Gender Formation. Sociology of Race and Ethnicity. 2015 Jan;1(1):52–72.
511	13.	United Nations Department of Economic and Social Affairs [Internet]. 2007 Sep 13
512		[accessed 2023 Feb 8]. Available from:
513		https://www.un.org/development/desa/indigenouspeoples/declaration-on-the-rights-of-
514		indigenous-peoples.html
515	14.	McLeod M, Signal V, Gurney J, Sarfati D. Postoperative Mortality of Indigenous
516		Populations Compared With Nonindigenous Populations. JAMA Surgery. 2020
517		Jul;155(7):636-656.
518	15.	Lehman SJ, Baker RA, Aylward PE, Knight JL, Chew DP. Outcomes of cardiac surgery in
519		Indigenous Australians. Med J Aust. 2009 May;190(10):588-93.
520	16.	McVicar JA, Poon A, Caron NR, Bould D, Nickerson JW, Ahmad N, et. al. Postoperative
521		outcomes for Indigenous Peoples in Canada: a systematic review. CMAJ. 2021
522		May;193(20):E713-E722.
523	17.	Patro N, Li B, Lee Y. Investigating disparities in surgical outcomes in Canadian
524		Indigenous populations. Canadian Journal of Surgery. 2021 Dec;64(6 Suppl 2):S100-
525		S101.


526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545	 Tricco AC, Lillie E, Zarin W, O'Brien K, Colquhoun H, Levac D; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018 Oct;169(7):467-473. doi:10.7326/M18-0850 Brooke BS, Schwartz TA, Pawlik TM. MOOSE Reporting Guidelines for Meta-analyses of Observational Studies. JAMA Surg. 2021 Aug;156(8):787-788. doi:10.1001/jamasurg.2021.0522 Cooke M, Mitrou F, Lawrence D, Guimond E, Beavon D. Indigenous well-being in four countries: An application of the UNDP's human development index to indigenous peoples in Australia, Canada, New Zealand, and the United States. BMC International Health and Human Rights. 2007 Dec;7(9). doi:10.1186/1472-698x-7-9. Brave Heart MYH, Chase J, Elkins J, Altschul DB. Historical trauma among indigenous peoples of the americas: Concepts, research, and clinical considerations. Journal of Psychoactive Drugs. 2011 Oct-Dec;43(4):282-290. doi:10.1080/02791072.2011.628913 Hurd K, Barnabe C. Mortality causes and outcomes in indigenous populations of Canada, the United States, and Australia with rheumatic disease: A systematic review. Semin Arthritis Rheum. 2018 Feb;47(4):586-592. doi:10.1016/j.semarthrit.2017.07.009 Wells GA, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle- Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta- analyses. Ottawa Hospital Research Institute. Available from: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
546 547 548 549	24. Truth and Reconciliation Commission of Canada. Truth and Reconciliation Commission of Canada: Calls to Action. [cited July 23, 2022]. Available from: <u>https://www2.gov.bc.ca/assets/gov/british-columbians-our-governments/indigenous-people/aboriginal-peoples-documents/calls_to_action_english2.pdf</u> .
550	25. American Declaration on the Rights of Indigenous Peoples [Internet]. 2016 Jun 15
551	[accessed 2023 Feb 8]. Available from:
552	https://www.oas.org/en/sare/documents/DecAmIND.pdf
553	 Hong Z, Wu J, Smart G, Kaita K, Wen SW, Paton S, et al. Survival analysis of liver
554	transplant patients in Canada 1997–2002. Transplantation Proceedings. 2006
555	Nov;38(9):2951-2956. doi:10.1016/j.transproceed.2006.08.180
556	 Al-Qurayshi Z, Randolph GW, Srivastav S, Aslam R, Friedlander P, Kandil E. Outcomes
557	in thyroid surgery are affected by racial, economic, and healthcare system demographics.
558	Laryngoscope. 2016 Sep;126(9):2194-2199. doi:10.1002/lary.25871
559	 Amirian H, Torquati A, Omotosho P. Racial disparity in 30-day outcomes of metabolic
560	and Bariatric Surgery. Obes Surg. 2020;30(3):1011-1020. doi:10.1007/s11695-019-
561	04282-9
562	 Betancourt-Garcia MM, Vatcheva K, Gupta PK, Martinez RD, McCormick JB, Fisher-
563	Hoch SP, et al. The effect of Hispanic ethnicity on surgical outcomes: An analysis of the
564	NSQIP database. Am J Surg. 2019;217(4):618-633. doi:10.1016/j.amjsurg.2018.10.004
565	 Holleran TJ, Napolitano MA, LaPiano JB, Arnott S, Amdur RL, Brody FJ, et al. Racial
566	disparities in 30-day outcomes after colorectal surgery in an integrated healthcare
567	system. J Gastrointest Surg. 2022 Feb;26(2):433-443. doi:10.1007/s11605-021-05151-6
568	 Brown O, Geynisman-Tan J, Gillingham A, Collins S, Lewicky-Gaupp C, Kenton K, et al.
569	Minimizing risks in minimally invasive surgery: Rates of surgical site infection across
570	subtypes of laparoscopic hysterectomy. J Minim Invasive Gynecol. 2020 Sep-
571	Oct;27(6):1370-1376.e1. doi:10.1016/j.jmig.2019.10.015

572 573 574 575	32. Causey MW, McVay D, Hatch Q, Johnson E, Maykel JA, Champagne B, et al. The impact of race on outcomes following emergency surgery: An American College of Surgeons National Surgical Quality Improvement Program Assessment. Am J Surg. 2013 Aug;206(2):172-179. doi:10.1016/j.amjsurg.2012.11.022
576 577 578 579	 Chen Y-W, Fong ZV, Qadan M, Kunitake H, Mullen JT, Chang DC. Should all patients receive the same prophylaxis? racial variation in the risk of venous thromboembolism after major abdominal operations. Am J Surg. 2021 Nov;222(5):884-889. doi:10.1016/j.amjsurg.2021.05.020
580 581 582	 Chertack N, Baky F, Samplaski MK, Vij SC, Bakare T. The impact of race and gender on 30-day urologic surgery complications. Urology. 2022 Apr;162:77-83. doi:10.1016/j.urology.2021.05.023
583 584 585	 Elahi M, Matata B, Yii M. Ethnicity and adverse operative outcomes among Australian patients undergoing first-time isolated coronary artery bypass graft surgery. Int Surg. 2008 Nov;93(6):358-365
586 587 588	 Goulet S, Trepman E, Mmath MC, Koulack J, Fong H, Duerksen F, et al. Revascularization for peripheral vascular disease in Aboriginal and non-Aboriginal patients. J Vasc Surg. 2006 Apr;43(4):735-741. doi:10.1016/j.jvs.2005.11.058
589 590 591	 Kamaraju A, Feinn R, Myrick K, Halawi MJ. Total versus Unicondylar Knee Arthroplasty: Does race play a role in the treatment selection? J Racial Ethn Health Disparities. 2022 Oct;9(5):1845-1849. doi:10.1007/s40615-021-01120-6
592 593 594 595	 Majoni SW, Ullah S, Collett J, Hughes JT, McDonald S. Weight change trajectories in Aboriginal and Torres Strait Islander australians after Kidney Transplantation: A cohort analysis using the Australia and New Zealand dialysis and Transplant Registry (ANZDATA). BMC Nephrol. 2019 Jun;20(1):232. doi:10.1186/s12882-019-1411-1
596 597 598	39. Page S, Yong MS, Saxena P, Yadav S. Outcomes in dialysis-dependent indigenous and Non-Indigenous patients undergoing cardiac surgery at Townsville University Hospital. Heart Lung Circ. 2021 Aug;30(8):1200-1206. doi:10.1016/j.hlc.2021.02.013
599 600 601 602	40. Prabhu A, Tully PJ, Bennetts JS, Tuble SC, Baker RA. The morbidity and mortality outcomes of Indigenous Australian peoples after isolated coronary artery bypass graft surgery: The influence of geographic remoteness. Heart Lung Circ. 2013 Aug;22(8):599-605. doi:10.1016/j.hlc.2013.01.003
603 604 605	41. Rogers NM, Lawton PD, Jose MD. Plasma cell infiltrates and renal allograft outcomes in indigenous and non-indigenous people of the Northern Territory of Australia. Nephrology (Carlton). 2011 Nov;16(8):777-783. doi:10.1111/j.1440-1797.2011.01487.x
606 607 608	42. Sanford Z, Taylor H, Fiorentino A, Broda A, Zaidi A, Turcotte J, et al. Racial disparities in surgical outcomes after spine surgery: An ACS-NSQIP analysis. Global Spine J. 2019 Sep;9(6):583-590. doi:10.1177/2192568218811633
609 610 611	43. Seipp R, Zhang N, Nair SS, Khamash H, Sharma A, Leischow S, et al. Patient and allograft outcomes after kidney transplant for the indigenous patients in the United States. PLoS One. 2021 Feb;16(2):e0244492. doi:10.1371/journal.pone.0244492
612 613 614	44. Sood MM, Tangri N, Komenda P, Rigatto C, Khojah S, Hiebert B, et al. Incidence, secular trends, and outcomes of cardiac surgery in Aboriginal Peoples. Can J Cardiol. 2013 Dec;29(12):1629-1636. doi:10.1016/j.cjca.2013.06.003

615 616 617	45. Storsley LJ, Young A, Rush DN, Nickerson PW, Ho J, Suon V, et al. Long-term medical outcomes among Aboriginal Living Kidney Donors. Transplantation. 2010 Aug;90(4):401-406. doi:10.1097/tp.0b013e3181e6e79b
618 619	46. Swart EM, Sarfati D, Cunningham R, Dennett E, Signal V, Gurney J, et. al. Ethnicity and rectal cancer management in New Zealand. N Z Med J. 2013 Oct;126(1384):42-52.
620	 Treacy PJ, Chatfield MD, Bessell J. Is gastric banding appropriate in indigenous or
621	remote-dwelling persons? Obes Surg. 2016 Aug;26(8):1728-1734. doi:10.1007/s11695-
622	015-1993-z
623	 Wang TKM, Wei D, Evans T, Ramanathan T, Haydock D. Comparison of characteristics
624	and outcomes for type A aortic dissection surgery by Māori, Pasifika or other ethnicities.
625	N Z Med J. 2020 May;133(1514):33-40.
626	 Wiley HRL, Varilek BM, Saucedo-Crespo H, Sakpal SV, Auvenshine C, Steers J, et al.
627	Kidney Transplant Outcomes in indigenous people of the Northern Great Plains of the
628	United States. Transplant Proc. 2021 Jul-Aug;53(6):1872-1879.
629	doi:10.1016/j.transproceed.2021.05.003
630	50. Wu J, Ebrahim AK. Ethnic disparities for thyroid surgery. ANZ J Surg. 2020
631	Dec;90(12):2527-2531. doi:10.1111/ans.16410
632	 Anderson E, Glogoza M, Bettenhausen A, Guenther R, Dangerfield D, Jansen R, et al.
633	Disparities in cardiovascular risk factors in northern plains American Indians undergoing
634	coronary artery bypass grafting. Health Equity. 2018 Aug;2(1):152-160.
635	doi:10.1089/heq.2018.002
636	 Boyd BAJ, Winkelman WD, Mishra K, Vittinghoff E, Jacoby VL. Racial and ethnic
637	differences in reconstructive surgery for apical vaginal prolapse. Am J Obstet Gynecol.
638	2021 Oct;225(4):405.e1-405.e7. doi:10.1016/j.ajog.2021.05.002
639 640 641 642	53. Ezomo OT, Sun D, Gronbeck C, Harrington MA, Halawi MJ. Where do we stand today on racial and ethnic health disparities? an analysis of primary total hip arthroplasty from a 2011–2017 national database. Arthroplast Today. 2020 Dec;6(4):872-876. doi:10.1016/j.artd.2020.10.002
643	 Sequist TD, Narva AS, Stiles SK, Karp SK, Cass A, Ayanian JZ. Access to renal
644	transplantation among American Indians and Hispanics. Am J Kidney Dis. 2004
645	Aug;44(2):344-352. doi:10.1053/j.ajkd.2004.04.039
646	55. Singleton N, Buddicom E, Vane A, Poutawera V. Are there differences between Maori
647	and non-Maori patients undergoing primary total hip and knee arthroplasty surgery in
648	New Zealand? A registry-based cohort study. N Z Med J. 2013 Aug;126(1379):23-30
649	 Zafar S, Dun C, Srikumaran D, Wang P, Schein OD, Makary M, et al. Endophthalmitis
650	rates among Medicare beneficiaries undergoing cataract surgery between 2011 and
651	2019. Ophthalmology. 2022 Mar;129(3):250-257. doi:10.1016/j.ophtha.2021.09.004
652	 Amirian H, Torquati A, Omotosho P. Racial disparity in 30-day outcomes of metabolic
653	and Bariatric Surgery. Obes Surg. 2020 Mar;30(3):1011-1020. doi:10.1007/s11695-019-
654	04282-9
655	58. Betancourt-Garcia MM, Vatcheva K, Gupta PK, Martinez RD, McCormick JB, Fisher-
656	Hoch SP, et al. The effect of Hispanic ethnicity on surgical outcomes: An analysis of the

657	NSQIP database. Am J Surg. 2019 Apr;217(4):618-633.
658	doi:10.1016/j.amjsurg.2018.10.004
659	 Shah BR, Frymire E, Jacklin K, Jones CR, Khan S, Slater M, et al. Peripheral arterial
660	disease in ontario first nations people with diabetes: A longitudinal population-based
661	cohort study. CMAJ Open. 2019 Dec;7(4):E700-E705. doi:10.9778/cmajo.20190162
662 663 664 665	60. Mordhorst TR, Jalali A, Nelson R, Brodke DS, Spina N, Spiker WR. Cost analysis of primary single-level lumbar discectomies using the value driven outcomes database in a large academic center. Spine J. 2021 Aug;21(8):1309-1317. doi:10.1016/j.spinee.2021.03.017
666	61. Manatū Hauora - Ministry of Health [Internet]. [Cited 2022 Jul 22]. Available from:
667	https://www.health.govt.nz/.
668	 Shaw C, Blakely T, Sarfati D, Fawcett J, Hill S. Varying evolution of the New Zealand
669	lung cancer epidemic by ethnicity and socioeconomic position (1981-1999). N Z Med J.
670	2005 Apr;118(1213):U1411
671	 Stefani LC, Hajjar L, Biccard B, Pearse RM. The need for data describing the surgical
672	population in Latin America. Br J Anaesthesia. 2022 Jul;129(1):10-12. doi:
673	10.1016/j.bja.2022.02.029.
674	64. O'Brien P, Bunzli S, Lin I, Bessarab D, Coffin J, Dowsey MM, et al. Addressing surgical
675	inequity for Aboriginal and Torres Strait Islander people in Australia's universal health
676	care system: a call to action. ANZ J Surg. 2021 Mar;91(3):238-44.
677	 Zhang W, Lyman S, Boutin-Foster C, Parks ML, Pan TJ, Lan A, et. al. Racial and Ethnic
678	Disparities in Utilization Rate, Hospital Volume, and Perioperative Outcomes After Total
679	Knee Arthroplasty. J Bone Joint Surg Am. 2016 Aug;98(15):1243-52. doi:
680	10.2106/JBJS.15.01009. [Erratum in: J Bone Joint Surg Am. 2017;99(6):e30]
681 682 683 684 685 686	 American College of Surgeons - National Surgical Quality Improvement Program [Internet]. Chicago, IL; Date unknown [accessed 2023 Feb 8]. Available from: https://www.facs.org/quality-programs/data-and-registries/acs-nsqip/ Bodkin-Andrews G, Carlson B. The legacy of racism and Indigenous Australian identity within education. Race Ethnicity and Education. 2014 Nov;19(4):784-807, DOI: 10.1080/13613324.2014.969224
687 688	68. King M Smith A Gracey M. Indigenous health part 2: the underlying causes of the health gap. Lancet. 2009 Jul;374:76–85.
689 690 691	69. Horrill T, McMillan DE, Schultz ASH, Thompson G. Understanding access to healthcare among Indigenous peoples: A comparative analysis of biomedical and postcolonial perspectives. Nurs Inq. 2018 Jul;25(3):e12237. doi: 10.1111/nin.12237.
692	 Research will help Aboriginal patients. Koori Mail. 2011 April;499:67. Available from:
693	https://aiatsis.gov.au/collection/featured-collections/koori-
694	mail?combine=2011&items_per_page=24
695	 Wakewich P, Wood B, Davey C, Laframboise A, Zehbe I. Colonial legacy and the
696	experience of First Nations women in cervical cancer screening: A Canadian
697	multicommunity study. Crit Public Health. 2016 Jan;26(4):368–380.
698	https://doi.org/10.1080/09581596.2015.1067671

699	72. Betancourt JR, Green A, Carrillo JE, et. al. Defining cultural competence: a practical
700	framework for addressing racial/ethnic disparities in health and health care. Public Health
701	Rep. 2003 Jul-Aug;118(4):293–302.

	Indigenous Non-			on–Indigenous		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M–H, Random, 95% CI
Al-Quarayshi 2016	4	43	1125	13247	1.7%	1.11 [0.39, 3.10]	
Amirian 2020	55	717	4921	85054	5.8%	1.35 [1.03, 1.78]	
Betancourt-Garcia 2019	1425	20232	157462	2433675	7.2%	1.10 [1.04, 1.16]	-
Brown 2020	2	546	294	34254	1.0%	0.42 [0.11, 1.71]	
Causey 2013	168	1134	11237	60093	6.7%	0.76 [0.64, 0.89]	-
Chen 2020	143	3296	28684	610065	6.6%	0.92 [0.78, 1.09]	-
Chertack 2021	191	1157	27919	190578	6.7%	1.15 [0.99, 1.35]	-
Elahi 2008	17	20	311	496	1.2%	3.37 [0.97, 11.66]	
Goulet 2006	64	108	261	720	4.7%	2.56 [1.69, 3.87]	
Holleran 2021	65	290	6969	27907	5.8%	0.87 [0.66, 1.15]	-
Kamaraju 2021	285	2918	28023	259459	6.9%	0.89 [0.79, 1.01]	-
Lehman 2009	25	283	207	2352	4.5%	1.00 [0.65, 1.55]	
Majoni 2019	241	343	3085	6207	6.1%	2.39 [1.89, 3.03]	-
Page 2021	35	42	17	30	1.5%	3.82 [1.29, 11.33]	· · · · · · · · · · · · · · · · · · ·
Prabhu 2013	70	297	439	2451	5.7%	1.41 [1.06, 1.88]	
Rogers 2011	43	108	9	69	2.4%	4.41 [1.98, 9.81]	
Sanford 2019	12	175	191	4106	3.4%	1.51 [0.82, 2.76]	
Seipp 2021	106	165	53	165	4.4%	3.80 [2.41, 5.99]	
Sood 2013	147	574	2344	11596	6.5%	1.36 [1.12, 1.65]	-
Swart 2013	14	70	18	74	2.4%	0.78 [0.35, 1.71]	
Wang 2020	94	136	118	191	4.3%	1.38 [0.87, 2.21]	
Wiley 2021	30	117	163	505	4.4%	0.72 [0.46, 1.14]	
Total (95% CI)		32771		3743294	100.0%	1.30 [1.12, 1.51]	•
Total events	3236		273850				
Heterogeneity: $Tau^2 = 0.0$	8; Chi ² =	161.36.	df = 21 (P < 0.0000	(1); $I^2 = 8$	7%	
Test for overall effect: Z =							0.01 0.1 1 10 10 Favours Indigenous Favours non-Indigenous

(A)

	Indigenous		Non-Indigenous		Odds Ratio		Odds		Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Rand	om, 95% Cl		
Alvord 2009	78	2155	91	2264	11.4%	0.90 [0.66, 1.22]			-		
Amirian 2020	13	717	652	85054	6.3%	2.39 [1.37, 4.16]					
Betancourt-Garcia 2019	619	20232	58291	2433675	17.2%	1.29 [1.19, 1.39]					
Boan 2017	10	57	6	84	2.3%	2.77 [0.94, 8.10]					
Brown 2020	2	546	294	34254	1.4%	0.42 [0.11, 1.71]		· · · · ·			
Changoor 2015	49	2978	2329	145610	12.0%	1.03 [0.77, 1.37]			-		
Goulet 2006	4	108	25	720	2.3%	1.07 [0.36, 3.13]					
Henman 2012	14	84	4	123	2.0%	5.95 [1.88, 18.79]					
Holleran 2021	33	290	3273	27907	10.0%	0.97 [0.67, 1.39]		-			
Hsieh 2020	0	837	29	55098	0.4%	1.11 [0.07, 18.25]					
Keenan 2019	1	82	0	154	0.3%	5.69 [0.23, 141.18]					
Meatherall 2005	3	21	1	23	0.5%	3.67 [0.35, 38.34]					
O'Brien 2018	9	778	228	36124	4.9%	1.84 [0.94, 3.60]			· · ·		
Page 2021	3	42	1	30	0.5%	2.23 [0.22, 22.56]					
Pai 2010	2	38	2	52	0.7%	1.39 [0.19, 10.33]			•		
Prabhu 2013	2	297	18	2451	1.3%	0.92 [0.21, 3.97]					
Sanford 2019	9	175	69	4106	4.4%	3.17 [1.56, 6.46]					
Seipp 2021	80	165	63	165	8.3%	1.52 [0.98, 2.36]					
Sood 2013	51	574	802	11596	11.7%	1.31 [0.98, 1.77]					
Treacy 2016	1	33	16	433	0.7%	0.81 [0.10, 6.34]		· · · · ·			
Wang 2013	0	82	2	444	0.3%	1.07 [0.05, 22.55]	-				
Wang 2020	2	136	6	191	1.1%	0.46 [0.09, 2.32]		· · · · ·			
Total (95% CI)		30427		2840558	100.0%	1.34 [1.12, 1.59]			•		
Total events	985		66202								
Heterogeneity: Tau ² = 0.0)4: $Chi^2 =$	37.73. 0	df = 21 (P)	$= 0.01$; I^2	= 44%	L.	~ *			-	1.00
Test for overall effect: Z =						0.	01	0.1 Favours Indigenous	i 1' Favours non-Indig		100

(B)								
(5)		Indige	nous	Non-Ind	igenous		Odds Ratio	Odds Ratio
	Study or Subgroup	Events	Total	Events Total		Weight	M-H, Random, 95% CI	M–H, Random, 95% Cl
	Alizzi 2010	32	423	20	412	11.0%	1.60 [0.90, 2.85]	
	Alvord 2009	94	2155	94	2264	15.2%	1.05 [0.79, 1.41]	+
	Amirian 2020	1	717	382	85054	2.2%	0.31 [0.04, 2.21]	
	Betancourt-Garcia 2019	284	20232	37056	2433675	17.1%	0.92 [0.82, 1.04]	+
	Elahi 2008	17	20	296	493	4.7%	3.77 [1.09, 13.04]	
	Keenan 2019	36	82	43	154	11.3%	2.02 [1.15, 3.54]	
	Page 2021	15	42	6	30	5.6%	2.22 [0.74, 6.64]	
	Sanford 2019	0	175	34	4106	1.2%	0.34 [0.02, 5.51]	
	Sood 2013	61	574	622	11596	15.4%	2.10 [1.59, 2.77]	-
	Swart 2013	4	70	3	74	3.4%	1.43 [0.31, 6.65]	
	Wang 2020	58	136	71	191	12.9%	1.26 [0.80, 1.97]	+-
	Total (95% CI)		24626		2538049	100.0%	1.42 [1.03, 1.94]	◆
	Total events	602		38627				
	Heterogeneity: $Tau^2 = 0.15$; $Chi^2 = 44.16$, $df = 10$ (P < 0.0000)				< 0.00001); $I^2 = 77$	%	0.01 0.1 1 10 100
	Test for overall effect: $Z = 2.17$ (P = 0.03)							Favours Indigenous Favours non-Indigenous

(C) Odds Ratio Indigenous Non-Indigenous Odds Ratio Study or Subgroup Total Weight M-H, Random, 95% Cl Events Total Events M-H, Random, 95% CI Alvord 2009 5 2155 9 2264 6.0% 0.58 [0.19, 1.74] Boan 2017 84 8.5% 1.22 [0.56, 2.67] 15 57 19 Chahal 2021 30 235 413 2725 12.5% 0.82 [0.55, 1.22] Kasiske 1998 11.4% 0.97 [0.59, 1.61] 26 68 487 1253 Kwan 2018 787 2751 23539 110524 14.8% 1.48 [1.36, 1.61] Majoni 2019 241 343 3085 6207 14.0% 2.39 [1.89, 3.03] Rogers 2011 43 108 9 69 8.4% 4.41 [1.98, 9.81] Seipp 2021 53 165 11.9% 3.80 [2.41, 5.99] 106 165 Storsley 2010 76 2.2% 14.06 [1.63, 121.58] 6 38 1 Wiley 2021 117 0.61 [0.33, 1.11] 14 92 505 10.3% Total (95% CI) 123872 100.0% 1.53 [1.08, 2.17] 6037 27707 Total events 1273 Heterogeneity: Tau² = 0.21; Chi² = 65.18, df = 9 (P < 0.00001); I² = 86% 0.01 0.1 10 100 Test for overall effect: Z = 2.40 (P = 0.02) Favours Indigenous Favours non-Indigenous