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Abstract 

Background: Alzheimer's disease (AD) is a debilitating neurodegenerative disease. Early 
diagnosis of AD and its precursor, mild cognitive impairment (MCI), is crucial for timely 
intervention and management. Magnetic resonance imaging (MRI) radiomics showed a 
promising result for diagnosing and classifying AD, and MCI from normal subjects. Thus, we 
aimed to systematically evaluate the diagnostic performance of the MRI radiomics for this task. 

Methods and materials: A comprehensive search of the current literature was conducted using 
relevant keywords in PubMed/MEDLINE, Embase, Scopus, and Web of Science databases from 
inception to October 17, 2022. Original studies discussing the diagnostic performance of MRI 
Radiomics for the classification of AD, MCI, and normal subjects were included. Method quality 
was evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2), and 
the Radiomic Quality Score tool (RQS). 

Results: We identified 10 studies that met the inclusion criteria, involving a total of 3446 
participants. The overall quality of the included studies was moderate to high. The pooled 
sensitivity and specificity of MRI radiomics for differentiating AD from normal subjects were 
0.8822 (95% CI 0.7888-0.9376),  and 0.8849 (95% CI 0.7978-0.9374), respectively. The pooled 
sensitivity and specificity of MRI radiomics for differentiating MCI from normal subjects were 
0.7882 (95% CI 0.6272-0.8917) and 0.7736 (95% CI 0.6480-0.8639), respectively. Also, the 
pooled sensitivity and specificity of MRI radiomics for differentiating AD from MCI were 
0.6938 (95% CI 0.6465-0.7374) and 0.8173 (95% CI 0.6117-0.9270), respectively. 

Conclusion: MRI radiomics has promising diagnostic performance in differentiating AD, MCI, 
and normal subjects. It can potentially serve as a non-invasive and reliable tool for early 
diagnosis and classification of AD and MCI.  

Keywords: Alzheimer’s disease, Mild Cognitive Impairment, Magnetic Resonance Imaging, 
Radiomics, Classification 
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1. Introduction 

Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder with a  
high socioeconomic burden and morbidity (Lane, Hardy, & Schott, 2018). Clinically, AD is 
defined primarily by comprehensive dementia, which includes memory disorder, cognitive 
disorder, executive dysfunction, personality, and behavior abnormalities, and is accompanied by 
mental disorder symptoms in the majority of patients (Lyketsos et al., 2011). AD and other 
dementias grew in incidence and prevalence by 147.95 and 160.84%, respectively, from 1990 to 
2019 (Li et al., 2022). AD and other dementias are expected to affect 152 million individuals by 
2050 (Nichols et al., 2022). Although meticulous care and medicine might temporarily alleviate 
these symptoms, no definite strategies exist to prevent or cure AD (Srivastava, Ahmad, & Khare, 
2021). Mild cognitive impairment (MCI), a stage between normal aging and dementia, has been 
recognized as a significant risk factor for AD. According to epidemiological studies, roughly 10-
12% of people with MCI develop AD each year (Langa & Levine, 2014). Since many elderly 
individuals suffer from MCI but do not fulfill the diagnostic criteria for AD, early care for people 
at this stage may successfully prevent disease progression (C. R. Jack et al., 2013). 

MCI has little effect on everyday activities, and those affected have normal cognitive 
performance (Vega & Newhouse, 2014). However, MCI is characterized by variable cognitive 
performance and clinical progression, and the clinical results are unknown. Some MCI patients 
stay stable or even return to normal function, while others develop AD (Gauthier et al., 2006). 
Therefore, there is an urgent need to find biomarkers that may identify and predict high-risk MCI 
patients who will proceed to AD, since these patients will need intervention. Cerebrospinal fluid 
(CSF) chemical alterations and neuroimaging evaluations of brain structure and function have 
been established as viable biomarkers of AD (Da et al., 2014; Dickerson, Wolk, & Initiative, 
2013; Salvatore, Cerasa, & Castiglioni, 2018). These characteristics include a rise in CSF tau, 
hypometabolism in the posterior cingulate, and atrophy of the hippocampi (Geuze, Vermetten, & 
Bremner, 2005; Sperling et al., 2011). The automated diagnosis and prognosis of AD patients 
using a machine-learning model and the combined use of these biomarkers have been shown to 
be reliable and highly accurate (Salvatore, Battista, & Castiglioni, 2016). Due to the high 
incidence of AD, the expensive expense of these procedures, and their relative complexity of 
usage, the application of these biomarkers may be restricted. 

Radiomics is a novel technique based on the in-depth fusion of computer science and medicine. 
It represents the variability of disorder via imaging properties and is both inexpensive and non-
invasive (Lambin et al., 2017; Yip & Aerts, 2016). During the early years, radiomics was 
extensively used in oncology (Gillies, Kinahan, & Hricak, 2016), and it is now used for the 
diagnosis and categorical assessment of MCI and AD (Feng & Ding, 2020). In recent years, 
neuroimaging studies have shown that white matter (WM) degradation and demyelination in the 
microscopic and macroscopic structure of WM are crucial physiological markers for identifying 
AD risk and disease development (Nasrabady, Rizvi, Goldman, & Brickman, 2018). These 
microstructural alterations may be observed in three-dimensional whole-brain WM radiomics 
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investigations (Shao et al., 2018). In addition, grey matter (GM) atrophy and pathological 
alterations in the cerebrospinal fluid (CSF) may detect very early disturbances associated with 
pathological aging and AD (C. R. Jack, Jr. et al., 2018).  

To date, the current systematic review and meta-analysis is the first to present the status of 
published literature on the diagnostic performance of MRI radiomics for diagnosing AD and 
MCI. Also, the potential values of MRI radiomics in predicting AD progression and 
development of AD in individuals with MCI are discussed. 

 
2. Methods and materials  

This systematic review was conducted in accordance with the Preferred Reporting Items for 
Systematic Reviews and Meta-analysis (PRISMA) statement (Page et al., 2021). The protocol of 
study has been registered with the international prospective register of systematic reviews 
(PROSPERO) under the code CRD42023389087.  

2.1. Search strategy 

A comprehensive literature review was performed to identify observational studies discussing 
the diagnostic performance of MRI Radiomics in Alzheimer's disease (AD) and mild cognitive 
impairment (MCI) diagnosis. Four online databases, including PubMed/MEDLINE, Embase, 
Scopus, and Web of Science were systematically searched from inception to October 17, 2022, 
using relevant keywords. These terms included "Alzheimer disease", "Alzheimer", “Alzeimer”, 
“Primary Senile Degenerative Dementia”, “Senile Dementia”, “Presenile Dementia”, “Mild 
Cognitive Impairment”, “Radiomic”, and “Radiomics”. A search strategy was designed for each 
database using a combination of these keywords with appropriate Boolean operators (OR/AND). 
The search strategy used in each database is summarized in more detail in Appendix 1. No 
restrictions in terms of publication time, study design, language, and country of publication were 
applied to retrieve all available literature.  

2.2. Inclusion and exclusion criteria 

All of the observational studies, including cross-sectional, case-control, and cohort studies that 
addressed the diagnostic performance of MRI radiomics in AD and MCI diagnosis, which met 
the inclusion criteria were enrolled in this study. The inclusion criteria were as follows: (1) 
patient’s age ≥ 18 years; (2) AD and MCI diagnosis confirmed by mini-mental state examination 
(MMSE) score; (3) containing original data regarding brain structural and/or functional 
abnormalities on brain MRI; and (4) using radiomics methods for AD and MCI diagnosis with 
reported diagnostic performance indices, such as sensitivity and specificity. 

The following studies were excluded: (1) other types of studies rather than observational 
(including case reports/series, editorials, comments, correspondence, guideline, experimental, 
and interventional studies, as well as meta-analysis, and systematic and narrative reviews); (2) 
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grey literature; (3) articles without available full text; (4) irrelevant studies; (5) studies that did 
not report diagnostic performance indices, such as sensitivity and specificity; (6) studies that 
focused on the prediction of the MCI progression to AD; (7) studies that merged MCI and AD 
patient to differentiate them from cognitively normal controls; and (8) pre-prints and not peer-
reviewed publications.   

2.3. Study selection process   

Extracted citations were imported into the EndNote 20 software (Clarivate Analytics, 
Philadelphia, PA, USA), and duplicates were removed. Two independent reviewers (A.A and 
MA.Y) carried out the first level of screening by selecting eligible studies based on their titles 
and abstracts. Selected articles were subjected by the same reviewers to the second level of 
screening to be reviewed by their full text based on the inclusion and exclusion criteria. Any 
disagreement was dissolved by consulting a third reviewer (R.S).  

2.4. Data extraction 

The whole manuscripts of the final included studies were reviewed by two independent 
investigators (M.K and S.S), and the following information was collected using a predefined 
Microsoft Excel worksheet: first author’s name, period of each study, the country where the 
study was conducted, dataset source, total number, age, gender, and MMSE score of healthy 
controls and patients with AD and MCI, features of the used MRI method (strength, vendor, and 
sequence), type of segmentation, ROI (segmented location) / VOI, radiomics feature extraction 
and selection (number of features, extracted features, software, feature extraction, and selection 
method), pre-processing status, and statistical data of radiomics findings (TP, TN, FP, and FN). 
In cases where TP, TN, FP, and FN are not reported, we will reconstruct these four items based 
on the sensitivity and specificity reported as well as the number of controls and patients. We will 
round these four items closer to whole numbers if they are in decimal form. Consequently, there 
may be a slight difference between the sensitivity and specificity mentioned in our article and 
those in the included articles due to this rounding. 

 

2.5. Quality assessment  

Three researchers (M.K, S.S and A.S) independently assessed the methodological quality of the 
included studies with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) 
(Schueler, Schuetz, & Dewey, 2012), and the Radiomic Quality Score tool (RQS) (Zhong et al., 
2021). QUADAS�2 tool was developed to evaluate the quality of non-randomized studies and 
contains four domains: patient selection, index test, reference standard, and flow and timing. 
Each domain is appraised in terms of the risk of bias. Patient selection, index tests, and reference 
standards are also appraised in terms of concerns regarding the applicability and classify the risk 
of bias of each included a study into low, high, or unclear risk. Signaling questions are included 
to help judge the risk of bias. The RQS that analyzes the quality of a radiomics study is a 



6 

 

consensus list composed of sixteen items for methodological issues specific to radiomics studies 
for a maximum score of 36. 

2.6 Quantitative Meta-Analysis 
2.6.1 Software 

R version 4.2.2 (R Core Team [2022]. R: A language and environment for statistical computing. 
R Foundation for Statistical Computing, Vienna, Austria) was used for all calculations, 
visualizations, and further analysis on meta-analyses with substantial heterogeneity. 

2.6.2  Statistical analysis 

The statistical significance level was defined as a p-value of < 0.05. The effect size was 
quantified using the proportion of true and false cases that were correctly identified as such by 
the AI model. The analytical model was composed of fixed and random effects, simultaneously. 
The I2 index was used to determine heterogeneity, with an I2 < 40% value indicating that 
inconsistency across studies is not significant. In such cases, we conducted the meta-analysis 
using the fixed effects model. However, in case the I2 estimates varied by more than 40%, we 
performed the analysis using the random effects technique.  

2.6.3      Sensitivity analysis 

To further illuminate the possible sources of heterogeneity, we performed a sensitivity analysis 
on meta-analyses with considerable heterogeneity (I2 > 40%). We removed one study each time 
and recalculated the effect size (Leave-One-Out Analyses). 

 

3. RESULTS 
3.1. Overview & Basic Information 

234 records were identified through database searching. After removing the duplicates, 147 
records remained, out of which 87 were screened. Eventually, the full-text versions of 67 articles 
were obtained and carefully evaluated, leading to the inclusion of 10 articles in the final analysis 
(Figure 1).  

Table 1 summarizes the demographic and neuropsychological data of 979, 1300, and 1123 
individuals with AD, MCI, and CN, respectively, adding up to a total of 3446 Individuals, with 
mean ages of 71.27 (SD: 9.15), 71.8 (SD: 8.92), and 68.2 (SD: 7.74), respectively.  

Table 2, on the other hand, summarizes the basic characteristics of the included studies. 
Accordingly, 5 studies utilized the Alzheimer’s Disease Neuroimaging Initiative database 
(ADNI), while 5 other used their centers’ private databases. Furthermore, two studies, both of 
which had ADNI as a source of data, used a second database, as well. The segmentation process 
was performed automatically, manually, and both automatically/manually in 6, 2, and 2 studies, 
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respectively. Also, being the selected region of interest (ROI) in 6 out of the 10 included articles, 
hippocampus was the most frequently named ROI of choice among the articles.  

The results of the critical appraisal step based on two separate tools, i.e., the QUADAS and RQS 
tools, revealed low concerns regarding the applicability aspects of the obtained data 
(Supplementary Figure 1, Supplementary Figure 2, and  

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 3). In the risk of bias domain, all the studies achieved relatively decent 
scores in all the fields, and “Flow and Timing” turned out to be the strong suit of all the included 
studies. However, study conducted by Cheung et al. (Cheung, Chau, Tang, & Life, 2022) was a 
major source of concern regarding reference standards (Supplementary Figure 1, Supplementary 

Table  1, and  

Supplementary Table  2).  

The pooled sensitivity, specificity, and precision of the proposed AI models were meta-analyzed. 
Moreover, the mean and standard deviation (SD) of the accuracy and AUCs of the included 
articles are reported below. 

 

3.2.AD Vs. MCI 

6 studies provided data on the diagnostic accuracy metrics of radiomics models in differentiating 
AD from MCI cases. The pooled sensitivity, specificity, precision, accuracy, and AUC of the 
mentioned task were 0.6938 (95% CI: [0.6465; 0.7374], I^2 = 44.0%, I^2 95% CI: [0.0%; 
77.8%]) ( 
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Figure 2), 0.8173 (95% CI: [0.6117; 0.9270], I^2 = 91.3%, I^2 95% CI: [83.7%; 95.3%]) ( 

‘Figure 3), 0.7468 (95% CI: [3.06; 5.35], I^2 = 93.9%, I^2 95% CI: [89.3%; 96.5%]) ( 

 

 

Figure 4), 74.22 (SD: 13.63), and 77.52 (SD: 11.39), respectively. Since the I2 level was 
considerably high in specificity and precision analyses, a sensitivity analysis was conducted, 
indicating the lowest heterogeneity is achieved by removing Cheung et al. study (Cheung, et al., 
2022) (Figure 5), and Zheng et al. study (Zheng, Zhang, Li, Tong, & Ouyang, 2022) ( 

 

 

 

Figure 6), respectively. Despite an I^2 level of 44%, none of the studies was detected as an outlier 
for sensitivity meta-analysis.  

3.3. AD Vs. CN 

8 studies provided data on the diagnostic accuracy metrics of radiomics models in differentiating 
AD from CN cases. The pooled sensitivity, specificity, precision, accuracy, and AUC of the 
mentioned task were 0.8822 (95% CI: [0.7888; 0.9376], I^2 = 72.6%, I^2 95% CI: [44.0%; 
86.6%]) (Figure 7), 0.8849 (95% CI: [0.7978; 0.9374], I^2 = 89.2%, I^2 95% CI: [81.1%; 
93.8%]) ( 

 

 

 

Figure 8), 0.8779 (95% CI: [0.8255; 0.9161], I^2 = 68.2%, ], I^2  95% CI: [33.2%; 84.8%]) 
(Figure 9), 87.70 (SD: 0.08), and 90.42 (SD: 0.08) respectively. Since the I2 level was 
considerably high in sensitivity, specificity, and precision analyses, a sensitivity analysis was 
conducted, indicating the lowest heterogeneity is achieved by removing Zheng et al. study 
(Zheng, et al., 2022) ( 
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Figure 10), Q. Feng et al. study (Q. Feng et al., 2018) (Figure 11), and Q. Feng et al. study (Q. 
Feng, et al., 2018) ( 

 

 

 

Figure 12), respectively. 

3.4. MCI Vs. CN 

6 studies provided data on the diagnostic accuracy metrics of radiomics models in differentiating 
MCI from CN cases. The pooled sensitivity, specificity, precision, accuracy, and AUC of the 
mentioned task were 0.7882 (95% CI: [0.6272; 0.8917], I^2 = 91.2%, I^2 95% CI: [83.7%; 
95.3%]) (Figure 13), 0.7736 (95% CI: [0.6480; 0.8639], I^2 = 94.3%, I^2 95% CI: [90.1%; 
96.7%]) ( 

 

 

 

Figure 14), 0.797 (95% CI: [0.6793; 0.8791], I^2 = 93.9%, I^2 95 % CI: [89.3%; 96.5%]) (Figure 

15), 76.6 (SD: 11.65), and 79.91 (SD: 11.09), respectively. Since the I2 level was considerably 
high in sensitivity, specificity, and precision analyses, a sensitivity analysis was conducted, 
indicating the lowest heterogeneity is achieved by removing Cheung et al. study (Cheung, et al., 
2022) ( 

 

 

 

Figure 16), Zhao et al. study (Zhao et al., 2020) (Figure 17), and Cheung et al. study (Cheung, et 
al., 2022) ( 

 

 

 

Figure 18), respectively. 
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4. Discussion 
 

The present study, aiming to evaluate the diagnostic performance of MRI radiomics in the 
classification of CN, MCI, and AD, demonstrated that MRI radiomics could be considered a 
valuable and reliable neuroimaging biomarker for distinguishing and diagnosing these cognitive 
diseases, with an excellent performance of 90.4% for differentiating CN vs. AD, followed by 
79.9% for CN vs. MCI, and 77.5% for MCI vs. AD. To the best of our knowledge, this is the 
first systematic review and meta-analysis that comprehensively evaluated the existing literature 
on the application of MRI radiomics and its diagnostic value in cognitive disease diagnosis. The 
present study suggests that radiomics can be considered a beneficial tool for the diagnosis of 
MCI and AD which is associated with high diagnostic accuracy and can help to improve early 
diagnosis, timely management, and planning of personalized treatment for individuals suffering 
from underlying cognitive disorders. 

With a more than 2-fold increase in the number of cases since 1990, AD and other dementias 
affected 43.8 million people and were the fifth leading cause of mortality worldwide, with 2.4 
million deaths in 2016 (Nichols et al., 2019). Besides this increasing trend in recent decades, AD 
incidence and burden are expected to continue to rise, partly due to increased population growth 
and aging (Nichols, et al., 2019). Although not all MCI patients develop AD, they are at a greater 
risk of progression to AD in the future. A recent systematic review and meta-analysis found that 
AD rate among patients suffering from MCI was 28% (Hu et al., 2017). Thus, early diagnosis 
and appropriate treatment of MCI can lead to a reduction in the risk of AD development in the 
future. Moreover, timely diagnosis and management of AD may be beneficial in lowering the 
disease burden. 

Currently, a combination of clinical, histopathological, and radiological studies and CSF analysis 
are implemented to establish the MCI and AD diagnosis; however, these available methods have 
low sensitivity, and some cannot be routinely used in daily practice. With the purpose of 
improving diagnostic accuracy, prediction, and classification of diseases, radiomics were 
developed and became increasingly used in various clinical settings (Kumar et al., 2012).  

In recent years, radiomics has shown promising results in the diagnosis of various 
neuropsychological disorders, such as autism spectrum disorder and attention deficit 
hyperactivity disorder (Chaddad, Desrosiers, & Toews, 2017; Sun et al., 2018). With an 
increasing trend in radiomics application in MCI and AD settings, considerable improvements in 
the prediction, classification, and diagnosis of these diseases have occurred. By using a 
quantitative approach and extracting numerous features from brain images of patients suffering 
from MCI and AD, radiomics can play an important role in personalized and precision medicine 
(Avanzo, Stancanello, & El Naqa, 2017; Lambin, et al., 2017). 

By providing valuable information on microstructural changes of brain texture, radiomics gives 
the opportunity for early diagnosis and timely treatment of MCI at the early stages which can 
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further help to prevent its progression towards AD. The current study found that MRI radiomics 
had a relatively high diagnostic accuracy in differentiating CN and MCI, with an AUC of almost 
80%. Studies showed that MRI radiomics can play an important role in distinguishing 
individuals with CN and MCI, especially those in whom structural changes cannot be detected 
easily and volumetry provides limited diagnostic information (Cheung, et al., 2022). Although 
findings of the present study revealed that MRI radiomics had the lowest performance (77.5%) in 
distinguishing MCI from AD, the diagnostic value was still remarkable, with a sensitivity of 
almost 70%, precision, accuracy, and AUC over 74%, and specificity of almost 82%. This may 
represent that differentiating between MCI and AD is more difficult and challenging than 
distinguishing MCI from CN or AD from CN. This may be partly due to the fact that the severity 
of abnormal changes in brain in MCI is lower than those in AD which can make the disease 
diagnosis difficult.  

Combining radiomics with other clinical, histopathological, laboratory, and genetic findings can 
help to improve the ability to distinguish MCI and AD, however, further studies are needed to 
assess the diagnostic value of radiomics when combined with other clinical parameters.  

Our study revealed that MRI radiomics had an excellent diagnostic performance in 
differentiating AD from CN individuals, with a pooled AUC of 90.4%. The hippocampus was 
the most frequently assessed brain region by enrolled studies. It is demonstrated that the 
hippocampus is the major brain area mainly affected during AD (Halliday, 2017). Radiological 
studies revealed various degrees of hippocampal volume reduction and atrophy in MCI and AD 
(Catani, Dell’Acqua, De Schotten, & Reviews, 2013). In addition to structural changes, altered 
metabolism, abnormal function, and impaired microstructures of the hippocampus are also 
detected in AD (Hondius et al., 2016; Huijbers et al., 2015). Furthermore, pieces of evidence 
demonstrated that the changes in the hippocampus structure and texture were associated with 
memory performance in MCI and AD (Christensen et al., 2015; Sørensen et al., 2017; Zhang et 
al., 2012). Thus, the assessment of changes in the hippocampus size, structure, and function can 
be a useful marker for the evaluation of patients with possible underlying MCI and AD (Du et 
al., 2022). Although evaluating hippocampal size and volume can help diagnose AD, several 
recent studies showed that assessment of hippocampal texture using radiomics is more beneficial 
than and superior to volumetry of the hippocampus (Luk et al., 2018; Sørensen et al., 2016); 
however, other studies found comparable diagnostic performance between volumetry and texture 
analysis (Cheung, et al., 2022; Ranjbar et al., 2019). 

Moreover, another beneficial advantage of radiomics is that it is useful in providing information 
regarding altered metabolic features in the hippocampus, such as neurofibrillary tangle and 
amyloid beta deposition, which affect tissue texture but cannot be detected in volumetry or MRI 
evaluation (Hwang et al., 2016; Manning et al., 2015). Rather than the hippocampus, other brain 
areas can also be affected in MCI and AD. Corpus callosum, amygdala, thalamus, and ventricles 
were also found to be affected in MCI and AD (Cheung, et al., 2022; De Oliveira et al., 2011; Q. 
Feng, et al., 2018). Moreover, a study also showed that changes may even vary in different 
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subregions of the hippocampus and are associated with cognitive ability of individuals (F. Feng 
et al., 2018). Although the majority of studies focused on evaluating hippocampus texture, 
radiomics findings of other brain areas are studied to a less extent and need further evaluation. 

The present study has several limitations that need to be addressed. First, the majority of 
included studies had small sample sizes, which might significantly affect the model reliability. 
Second, a small proportion of studies reported no external validation, which means the model 
generalizability cannot be ascertained. Third, in most of the studies, participant groups were not 
fully matched, and no adjustment for possible confounders was conducted. Fourth, although the 
association between radiomics findings and clinical cognitive features of patients suffering from 
MCI and AD has been assessed by several studies, data regarding its relationship with metabolic, 
genetic, and functional features is very scarce, and the possible association needs to be 
elaborated. Finally, since the majority of studies evaluated structural MRI radiomics and the 
hippocampus was mostly studied, data regarding other imaging modalities such as functional 
MRI, parametric MRI, and positron emission tomography, and other cerebral regions were 
limited and scarce. Future longitudinal, prospective, multicentric studies with larger sample sizes 
are needed to validate current findings, test the validity of available models, and evaluate 
abnormal changes in other cerebral regions during MCI and AD progression. Moreover, the 
applicability of using MRI radiomics in daily clinical practice needs to be understood. In 
addition, assessing radiomics findings of imaging modalities rather than MRI is encouraged. 
Lastly, the diagnostic performance of the combination of radiomics with genetic, metabolic, and 
laboratory markers in the screening, diagnosis, and monitoring of cognitive diseases need further 
investigation. 

 
5. Conclusion 

The present study revealed that the evaluation of brain structure and texture using MRI radiomics 
could be considered a useful tool for diagnosis and distinguishing MCI and AD. A growing body 
of literature showed that MRI radiomics, as a quantitative, non-invasive neuroimaging 
biomarker, had acceptable diagnostic performance in the diagnosis of MCI and AD, with high 
sensitivity, specificity, and accuracy. Quantitative assessment of brain texture using radiomics 
can lead to an improvement in MCI and AD diagnosis, planning personalized treatment, and a 
further reduction in the burden of these cognitive diseases. To the best of our knowledge, this is 
the first systematic review and meta-analysis that comprehensively reviewed and assessed the 
diagnostic value of MRI radiomics in MCI and AD diagnosis. Although MRI radiomics showed 
promising results in improving the diagnosis of these diseases, its application in daily clinical 
practice is still limited and needs to be proven. Moreover, it is still unknown whether combining 
MRI radiomics with other clinical, functional, metabolic, genetic, or laboratory markers can help 
to improve diagnostic performance. Moreover, the application and performance of MRI 
radiomics in screening and follow-up of patients with underlying MCI and AD are yet to be 
understood. 
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Figures’ legends: 

Figure 1 Flow diagram summarizing the selection of eligible studies. 



17 

 

 

 

 

 

 

 

 

 

Figure 2 Sensitivity of differentiating AD from MCI. 
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‘Figure 3 Specificity of differentiating AD from MCI. 

 

 

 

 

Figure 4 Precision of differentiating AD from MCI. 
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Figure 5 Heterogeneity of specificity of differentiating AD from MCI. 

 

 

 

 

 

Figure 6 Heterogeneity of precision of differentiating AD from MCI. 



20 

 

 

Figure 7 Sensitivity of differentiating AD from CN. 

 

 

 

 

 

Figure 8 Specificity of differentiating AD from CN. 
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Figure 9 Precision of differentiating AD from CN. 

 

 

 

 

 

Figure 10 Heterogeneity of sensitivity of differentiating AD from CN. 
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Figure 11 Heterogeneity of specificity of differentiating AD from CN. 

 

 

 

 

 

Figure 12 Heterogeneity of precision of differentiating AD from CN. 
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Figure 13 Sensitivity of differentiating CN from MCI. 

 

 

 

 

 

Figure 14 Specificity of differentiating CN from MCI.  
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Figure 15 Precision of differentiating CN from MCI. 

 

 

 

 

 

Figure 16 Heterogeneity of sensitivity of differentiating CN from MCI. 



25 

 

 

Figure 17 Heterogeneity of specificity of differentiating CN from MCI. 

 

 

 

 

 

Figure 18 Heterogeneity of precision of differentiating CN from MCI. 
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Tables’ legends: 

Table 1 Demographic and neuropsychological data of the included individuals. 
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MMSE: Mini-Mental State Examination 

 

AD MCI CN 

First 

Author 

Numb

er 

Age Gender 

(M/F) 

MMSE Numb

er 

Age Gender 

(M/F) 

MMSE Numb

er 

Age Gender 

(M/F) 

MMSE 

Cheung, 

2022 

97 NA NA NA 293 NA NA NA 192 NA NA NA 

Du,2022 36 72.45±2.8 17/19 22.5±3.0 NA NA NA NA 36 72.08±1.

4 

17/19 29.2±0.4 

 F. Feng, 

2018 

38 71.7±8.3 16/22 17.6±5.6 33 70.6±8.2 14/19 26.6±2.6 45 68.2±6.9 22/23 28.6±1.4 

Q. Feng, 

2018 

78 69.18±12.

23 

25/53 16.94±5.

94 

NA NA NA NA 44 65.43±9.

7 

20/24 29.14±0.

77 

Q. Feng, 

2019 

NA NA NA NA 42 67.14±10.

57 

18/24 25.88±0.

92 

44 65.43±9.

7 

20/24 29.14±0.

77 

Q. Feng, 

2020 

97 67.67±10.

73 

39/58 17.42±5.

73 

53 65.13±13.

48 

26/27 26.00±0.

96 

45 64.76±9.

92 

20/25 29.11±0.

78 

liu, 2022 80 65(46-88) 42/38 15(0-25) NA NA NA NA 80 64.5(48-

83) 

40/40 28(12-

30) 

Ranjbar, 

2019 

41 76.1±8.7 16/25 NA 70 76.0±8.4 43/27 NA 62 75.2±4.7 26/36 NA 

Zhao, 2020 261 68.84±8.1

7 

107/154 16.53±5.

22 

223 68.91±8.9

4 

105/118 24.94±3.

22 

231 66.93±6.

91 

97/134 28.46±1.

64 

Zheng, 

2022 

251 74.82±7.4

9 

131/120 23.2±2.1

1 

636 73.28±7.6

9 

376/260 27.44±1.

82 

388 74.62±5.

73 

198/190 29.09±1.

07 
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Table 2 Basic characteristics of the included studies. 

 

First 

Author

/Year 

Co

un

tr

y 

Dat

aset 

Sour

ce 

MRI Device 

Information 

Type of 

Segment

ation 

Model Classifier ROI(Re

gion of 

interest

) 

Feature Extraction 

      Vendor Seq

uen

ce 

      Number of Features Extracted Features Software 

Eva Y. 

W. 

Cheung

/2022 

Chi

na 

ADNI Siemens, 

General 

Electrics, 

and Philips 

3D 

T1-

wei

ght

ed 

MP

RAG

E 

Automati

cally(Anat

omic 

Automati

c Labeling 

(AAL)) 

Random forest  Whole 

brain (45 

regions) 

120 (10 features selected to differentiate MCI vs CN. 

11 features selected to differentiate AD vs MCI. 11 

features used to differentiate AD vs CN.) 

FOS, 3D Shape, 

GLDM, GLCM, 

GLRLM, and GLSZM  

3D-slicer 

(‘‘pyradiomics

’’ package) 

Yang 

Du/202

2 

Chi

na 

ADNI Siemens, 

General 

Electrics, 

and Philips 

3D 

T1-

wei

ght

ed 

MP

RAG

E 

Automati

cally(AAL)

/Manually 

Support vector 

machine(SVM) 

Hippoca

mpus  

214 ( after feature selection by T-test, Mann-

Whitney, and LASSO 4 features were selected) 

HISTO, GLCM, 

GLDM, GLSZM, 

GLRLM, and 

NGTDM 

3D-slicer 

(‘‘pyradiomics

’’ package) 

Feng 

Feng/2

018 

Chi

na 

Exclu

sive 

Siemens 3T 

(Skyra) 

3D 

T1-

wei

ght

ed 

MP

RAG

E 

Automati

cally 

SVM Hippoca

mpus  

1692 (After feature selection by ANOVA 111 

features were used for machine learning) 

Intensity features, 

Textural features 

on the GLCM, 

GLRLM, and 

Wavelet transform 

features  

MATLAB 

Qi 

Feng/2

018 

Chi

na 

Exclu

sive 

Discovery 

MR750 

(General 

Electrics) 

3D 

T1-

wei

ght

ed 

MP

Manually Logistic regression (LR) Corpus 

callosum 

385 (After feature selection by T-test, Correlation 

analysis, and LASSO 11 features used for final 

machine learning 

Texture 

parameters, GLCM 

and RLM 

Artificial 

Intelligence 

Kit (A.K) 
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RAG

E 

Qi 

Feng/2

019 

Chi

na 

Exclu

sive 

Discovery 

MR750 

(General 

Electrics) 

3D 

T1-

wei

ght

ed 

MP

RAG

E 

Automati

cally 

Logistic Regression Hippoca

mpus 

385(After feature selection by t-test, Correlation 

analysis and LASSO 4 features selected for machine 

learning) 

Histogram, Form 

factor, GLCM, and 

GLRLM 

A.K 

Qi 

Feng/2

021 

Chi

na 

Exclu

sive 

Discovery 

MR750 

(General 

Electrics) 

3D 

T1-

wei

ght

ed 

MP

RAG

E 

Manually LR Amygdal

a 

3360 (after maximum relevance and minimum 

redundancy (mRMR) and (LASSO), 5 features used 

for AD vs NC, 16 for AD vs MCI and 16 for MCI vs 

NC) 

Histogram 

features, Shape 

features, Haralick, 

GLCM, RLM, and 

Wavelet transform 

features 

A.K 

Shui 

Liu/20

22 

Chi

na 

Exclu

sive 

Siemens 3T 

(Skyra) 

3D 

T1-

wei

ght

ed 

MP

RAG

E 

Automati

cally 

SVM, KNN, Ada boost, 

BDT, GP, GBDT, LR, PLS 

DA, QDA, RF, SGD, XG 

boost 

Whole 

brain 

11026 features from 106 brain regions (After 

feature selection by K-Best and LASSO, 5 features 

were used for machine learning) 

FOS, Shape-based 

features, GLCM, 

GLRLM, GLSZM, 

NGTDM, and GLDM 

United Image 

PLatform 

Sara 

Ranjba

r/2019 

US

A 

ADNI Not 

reported 

MP

RAG

E T1 

Automati

cally/Man

ually 

Diagonal Quadratic 

Discriminant Analysis 

(DQDA) 

Hippoca

mpus 

238 (after feature selection by Sequential Forward 

Feature Selection, 4 features were used for CN vs 

MCI, 2 for MCI vs AD and 1 for CN vs AD) 

GLCM, LoGHist, 

DOST, GFB, and 

LBP 

MIPAV, 

Python 

Kun 

Zhao/2

020 

Chi

na 

Exclu

sive, 

ADNI 

Not 

reported 

T1-

wei

ght

ed 

Automati

cally 

SVM/XG boost Hippoca

mpus 

990( after using t-test and Liptak-Stouffer z-score, 
57 features used for machine learning) 

Intensity-based 

features, Shape-

based features 

and Texture-based 

features 

Multi-atlas-

based local 

label learning 

(LLL) 

Qiang 

Zheng/

2022 

Chi

na 

ADNI

, 

EDSD 

Not 

reported 

T1-

wei

ght

ed 

Automati

cally 

SVM Hippoca

mpus 

110 (no feature selection used) Intensity features, 

Shape features, 

and Textural 

features 

MATLAB 

 

ADNI: Alzheimer’s Disease Neuroimaging Initiative database, EDSD: European DTI Study on Dementia database, MIPAV: Medical Image Processing, Analysis, and Visualization, HISTO: histogram-based 

matrix, GLDM: gray-level dependence matrix, GLSZM: gray-level size zone matrix, GLCM: gray level co-occurrence matrix, NGTDM: neighboring gray-tone difference matrix, FOS: first-order statistics, 

3DS: three-dimensional (3D) shape features, 2DS: two-dimensional (2D) shape features, GLRLM: gray level run length matrix, RLM: run-length matrix, LoGHist: Laplacian of Gaussian Histogram, DOST: 

rotationally invariant Discrete Orthonormal Stockwell Transform, GFB: Gabor Filter Banks, LBP: Local Binary Patterns, MPRAGE: magnetization prepared rapid gradient-echo imaging 



31 

 

 

Supplementary figures’ legends: 

Supplementary Figure 1 Critical appraisal based on the QUADAS tool - part 1. 
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Supplementary Figure 2 Critical appraisal based on the QUADAS tool - part 2. 
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Supplementary Figure 3 Critical appraisal based on the RQS tool. 
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Supplementary tables’ legends: 

Supplementary Table  1 Basic adherence rate according to the six key domains. 

  Basic adherence rate 

Total 16 items 35.6% 

Domain 1: Protocol quality and stability in image and segmentation 40% 

 Protocol quality 10 (100%) 

 Test-retest 5 (50%) 

 Phantom study 1 (10%) 

 Multiple segmentation 0 (0%) 

Domain 2: Feature selection and validation 60% 

 Feature reduction or adjustment of multiple testing 7 (70%) 

 Validation 5 (50%) 

Domain 3: Biologic/clinical validation and utility 5% 

 Multivariate analysis with non-radiomics features 0 (0%) 

 Biologic correlates 1 (10%) 

 Comparison to ‘gold standard’ 1 (10%) 

 Potential clinical utility 0 (0%) 

Domain 4: Model performance index 63.3% 

 Discrimination statistics 10 (100%) 

 Calibration statistics 9 (90%) 

 Cut-off analysis 0 (0%) 

Domain 5: High level of evidence 0% 

 Prospective study 0 (0%) 

 Cost-effective analysis 0 (0%) 

Domain 6: Open science and data 8 (80%) 
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Supplementary Table  2 Details of quality assessment by Radiomics Quality Score (RQS) of all included studies. 

First Author 

Im
a
g
e
 p
ro
to
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o
l 
q
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li
ty
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le
 s
e
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m
e
n
ta
ti
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m
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y
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ll
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e
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Im
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 t
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ts
 

F
e
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e
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u
c
ti
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n
 o
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a
d
ju
s
tm
e
n
t 
fo
r 

m
u
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le
 t
e
st
in
g
 

M
u
lt
iv
a
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a
b
le
 a
n
a
ly
s
is
 w
it
h
 n
o
n
-

ra
d
io
m
ic
s 
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a
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re
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D
e
te
c
t 
a
n
d
 d
is
c
u
s
s 

b
io
lo
g
ic
a
l 
c
o
rr
e
la
te
s 

C
u
t-
o
ff
 a
n
a
ly
s
e
s 

D
is
c
ri
m
in
a
ti
o
n
 s
ta
ti
st
ic
s 

C
a
li
b
ra
ti
o
n
 s
ta
ti
s
ti
c
s 

P
ro
s
p
e
c
ti
v
e
 s
tu
d
y
 r
e
g
is
te
re
d
 i
n
 a
 t
ri
a
l 

d
a
ta
b
a
se
 

V
a
li
d
a
ti
o
n
 

C
o
m
p
a
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n
 t
o
 g
o
ld
 s
ta
n
d
a
rd
 

P
o
te
n
ti
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l 
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u
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C
o
st
-e
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e
c
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v
e
n
e
ss
 a
n
a
ly
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is
 

O
p
e
n
 s
c
ie
n
c
e
 a
n
d
 d
a
ta
 

Total 

Cheung 2022 2 0 0 0 -3 0 0 0 2 1 0 2 0 0 0 4 8 (22.22%) 

Du 2022 2 1 0 0 3 0 0 0 1 0 0 3 0 0 0 1 11 (30.55%) 

F. Feng 2018 1 0 0 0 3 0 0 0 2 1 0 2 2 0 0 3 14 (38.88%) 

Q. Feng 2018 1 1 0 0 3 0 0 0 2 1 0 -5 0 0 0 1 4 (11.11%) 

Q. Feng 2019 1 0 0 0 3 0 0 0 2 1 0 -5 0 0 0 0 2 (5.55%) 

Q. Feng 2021 1 1 0 0 3 0 0 0 2 1 0 -5 0 0 0 0 3 (8.33%) 

Liu 2022 1 1 0 0 3 0 0 0 2 1 0 -5 0 0 0 1 4 (11.11%) 

Ranjbar 2019 2 0 0 0 -3 0 0 0 2 1 0 -5 0 0 0 2 -1 (0%) 

Zhao 2020 2 0 0 0 3 0 1 0 2 1 0 3 0 0 0 2 14 (38.88%) 

Zheng 2022 2 1 1 0 -3 0 0 0 2 1 0 3 0 0 0 2 9 (25%) 

 

 


