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Abstract

Mood disorders are among the leading causes of disease burden worldwide. They
manifest with changes in mood, sleep, and motor-activity, observable with phys-
iological data. Despite effective treatments being available, limited specialized
care availability is a major bottleneck, hindering preemptive interventions. Near-
continuous and passive collection of physiological data from wearables in daily life,
analyzable with machine learning, could mitigate this problem, bringing mood dis-
orders monitoring outside the doctor’s office. Previous works attempted predicting
a single label, e.g. disease state or a psychometric scale total score. However, clini-
cal practice suggests that the same label can underlie different symptom profiles,
requiring personalized treatment. In this work we address this limitation by propos-
ing a new task: inferring all items from the Hamilton Depression Rating Scale
(HDRS) and the Young Mania Rating Scale (YMRS), the most-widely used stan-
dardized questionnaires for assessing depression and mania symptoms respectively,
the two polarities of mood disorders. Using a naturalistic, single-center cohort
of patients with a mood disorder (N=75), we develop an artificial neural network
(ANN) that inputs physiological data from a wearable device and scores patients
on HDRS and YMRS in moderate agreement (quadratic Cohen’s κ = 0.609) with
assessments by a clinician. We also show that, when using as input physiological
data recorded further away from when HDRS and YMRS were collected by the
clinician, the ANN performance deteriorates, pointing to a distribution shift, likely
across both psychometric scales and physiological data. This suggests the task
is challenging and research into domain-adaptation should be prioritized towards
real-world implementations.
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1 Introduction

Mood disorders, also referred to as affective disorders, are a group of diagnoses in the Diagnostic
and Statistical Manual 5th edition (DSM-5) [3] classification system. They are a leading cause of
disability worldwide and a major contributor to the overall global burden of disease [63], with an
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estimated total economic cost greater than USD326.2 billion in the United States alone [31]. They
encompass a variety of symptom combinations affecting mood, motor activity, sleep, and cognition
and manifest in episodes categorized as major depressive episodes (MDEs), featuring feelings of
sadness and loss of interest, or, at the opposite extreme, (hypo)manic episodes (MEs), with increased
activity and self-esteem, reduced need for sleep, expansive mood and behavior. According to the
DSM-5 classification system, MDEs straddle two nosographic constructs, i.e. Major Depressive
Disorder (MDD) and Bipolar Disorder (BD), whereas MEs are the earmark of BD only [80].

Clinical trials to this day entirely rely on clinician-administered standardized questionnaires for
assessing mood disorders symptoms severity. However, the psychiatric community has increasingly
been looking to biomarkers that could help validate or push forward the current understanding of
mental disorders, providing some measurable and objective indicators [15]. Hamilton Depression
Rating Scale-17 (HDRS) [32] and Young Mania Rating Scale (YMRS) [83] are the two most-
widely used clinician-administered scales for depressive and manic symptoms respectively; they
are commonly used for setting treatment outcome criteria and tracking disease course [76]. While
compressing these scales to the total sum across their items has been a typical approach in clinical
trials [14, 22], a focus on individual symptoms allows for a richer clinical description. For instance,
considering individual items can identify drug specificity for symptom domains, thereby enabling
tailored treatment [49, 81]. This modus operandi is also found in everyday psychiatric practice where
the specialist, when recommending a given intervention, takes into account the specific features of
a patient, including their symptom patterns, beyond a reductionist disease label [62, 68]. Figure 1
shows the HDRS and YMRS items and illustrates how patients sharing the same nosographic category
and the same severity level (defined from binning HDRS and YMRS total score as in Tohen et al.
[77]) can "look" clinically different. The HDRS and YMRS full questionnaires are provided in
Appendix B and Appendix C for reader’s convenience.

Low availability of specialized care for mood disorders, with rising demand straining current capacity
[59, 65], is a major barrier to symptom monitoring, resulting in long waits for appointments and
reduced scope for pre-emptive interventions. Furthermore, psychiatric interviews only sample a
snapshot of the clinical course and recall bias can affect patients’ report of their conditions in the
time between appointments [35]. The fortunate conjuncture of advances in machine learning (ML)
and, on the other hand, widespread adoption in the general population of increasingly miniaturized
and powerful wearable devices set the stage for personal sensing [52]. This involves near-continuous
and passive collection of data from sensors embedded in the context of daily life, with the aim
of identifying digital biomarkers associated with mental health symptoms at the individual level.
Personal sensing promises to lower barriers to healthcare access and shift the healthcare paradigm
from reactive to proactive. Mood disorders stand out as particularly amendable to modeling with
digital biomarkers since their predominant features (disturbances in mood, sleep patterns, and motor
activity) correlate with changes in physiological parameters, conveniently measurable with wearable
sensors. Indeed, changes in the autonomic system, as captured with electrodermal activity, heart
rate variability, as well as actigraphy patterns (instances of digital biomarkers) have been linked to
mood-states [27, 64, 74].

Studies aiming to automate psychological states detection have been burgeoning on the back of
this unprecedented opportunity. However, most examined non-clinical phenotypes (e.g. stress) and
recruited general populations (e.g. college students) were assessed with self-reported questionnaires
and commercial wearable devices [6, 69, 78]. Only few previous endeavors specifically addressed
mood disorders using clinician assessments. Côté-Allard et al. [12] explored a binary classification
task, that is distinguishing subjects with BD on a ME from different subjects with BD recruited outside
of a disease episode, when stable. The study experimented with different subsets of pre-designed
features from wristband data and proposed a pipeline leveraging features extracted from both short
and long segments taken within 20-hour sequences. Pedrelli et al. [57], expanding on Ghandeharioun
et al. [30], used pre-designed features from a wristband and a smartphone to infer HDRS residualized
total score (derived by subtracting baseline total score from total score at following assessments) with
traditional ML models. Tazawa et al. [73] employed gradient boosting with pre-designed features
from wristband data and pursued case-control detection in MDD and, secondarily, HDRS total score
prediction. Similarly, a brief communication by Jacobson et al. [36] predicted case-control status in
MDD from actigraphy features with gradient boosting. Nguyen et al. [53] used a sample including
patients with either schizophrenia or MDD wearing an actigraphic device and explored case-control
detection where schizophrenia and MDD were either considered jointly (binary classification) or as
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separate classes (multi-class classification). Of notice, this was the first work to apply artificial neural
networks (ANNs) directly on minimally processed data, showing that they outperformed traditional
machine learning models. Lastly, the work of Lee et al. [43], using a large nationwide South Korean
cohort of patients with a mood disorder, including both MDD and BD, investigated mood episode
prediction with a random forest and derived features from wearable and smartphone data. Table 1
reports the works cited above and shows how they all pursued either binary/multi-class classification
or HDRS (residualized) total score regression. All but one extracted pre-designed features from
wearable data. Finally, it should be noted that, since collecting data from patients on an acute episode,
using specialist assessments and research-grade wearables, is a challenging and expensive enterprise,
the sample size of previous studies typically range from tens of patients to a few dozens (with the
exception of Lee et al. [43] with 270 patients).

The contribution of this work is two-fold: (1) Taking one step beyond the prediction of a single
label, which misses on actionable clinical information towards personalizing treatment, we propose
a new task in the context of mood disorders monitoring with physiological data from wearables:
inferring all items in HDRS (17 items) and YMRS (11 items), as scored by a psychiatrist. The device
we used was the Empatica E4 wristband [24] which monitors acceleration, blood volume pressure,
heart rate, inter-beat intervals, electrodermal activity, and skin temperature, with no active interaction
required of the user. (2) We investigate some of the methodological challenges associated with the
task at hand and explore possible ML solutions. c1: inferring multiple (28) target variables, i.e.
multi-task learning (MTL). c2: modeling ordinal data, such are HDRS and YMRS items. c3: learning
subject invariant representations, since, especially with noisy data and a sample size in the order of
dozens, models tend to focus on subject specific features to master the task at hand leading to poor
generalization [54]. c4: learning from imbalance data, as patients on a acute episode usually receive
intensive treatment and acute states therefore tend to be relatively short periods in the overall disease
course [17, 79] thereby tilting scores towards low values.

2 Results

2.1 Study sample & pipeline

The following analyses are based on 75 subjects with a DSM-5 mood disorder diagnosis (either
MDD or BD). Subjects recruited on an acute episode had up to four assessments, at different stages
of the disease course: T0 acute phase (upon hospital admission or at the home treatment unit), T1
response onset (50% reduction in total HDRS/YMRS), T2 remission (total HDRS/YMRS ≤ 7),
and T3 recovery (total HDRS/YMRS continuously ≤ 7 for a period of ≥ 8 weeks). On the other
hand, subjects with an historical diagnosis but clinically stable at the moment of study admittance
(euthymia) were interviewed only once. An overview of the study sample clinical-demographic
characteristics is given in Table 3. A total of 149 recording sessions, amounting to over 7000 hours,
were available for the present study.

At the start of each assessment, a clinician collected clinical-demographics, including HDRS and
YMRS, and provided an Empatica E4 which participants were required to wear on their non-dominant
wrist until battery ran out (∼48 hours). The wearable records (sampling rate) 3D acceleration (ACC,
32Hz), blood volume pressure (BVP, 64Hz), electrodermal activity (EDA, 4Hz), heart rate (HR, 1Hz),
inter-beat intervals (IBI, i.e. the time between two consecutive heart ventricular contractions) and skin
temperature (TEMP, 1Hz). IBI was not considered in the present analyses due to extensive sequences
of missing values across all recordings, unlike other channels, likely due to high sensitivity to motion
and motion artifacts, as suggested previously [67]. Recording sessions were quality-controlled to
remove physiologically implausible values, then split into (non-overlapping) segments according to a
tunable segment length value sl (in real time seconds) and labeled with clinician’s HDRS and YMRS
scores. The distribution over item scores was imbalanced towards lower values (Figure A.1), as
illustrated by the ratio between the size (i.e. number of segments or equivalently number of recording
sessions) of the majority class and of the minority class (referred to ρ), which ranged from 4.75 to 99
(median = 20.75).

Some items correspond to symptoms that likely fluctuate over a 48-hour session, especially in an
ecological setting where treatments can be administered (e.g., Y9 disruptive-aggressive behavior
may be sensitive to a sedative drug administered at some point after the beginning of the recording
when HDRS and YMRS were scored). To limit this, we isolated segments from the first five hours
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(close-to-interview samples) and used them for the main analysis. Then, in order to study the effect
of distribution shift, we tested the trained model on samples from each 30-minute interval following
the first five hours of each recording (far-from-interview samples). It should be noted that further
to a shift in the target variables, a shift in the distribution of physiological data collected with the
wearable device is to be expected, owing to different patterns of activity during the day, circadian
cycles, and administered drugs. The cut-off of five hours was chosen as a compromise between
maximizing samples included in the main analysis and minimizing distribution shift. An illustration
of the analysis work-flow is provided in Figure 2.

2.2 Automated Mood Disorder Symptoms Scoring

We used ANNs to model the mapping from physiological recordings to HDRS and YMRS scores.
In brief, we had a classifier CF tasked with assigning scores to segments, which comprised three
sequential modules: (1) channel encoders (EN) for projecting sensory modalities sampled at different
frequencies onto the same space, (2) a representation module (RM) consisting of a single BiLSTM
layer for extracting features, and (3) item predictors (IP), as many as there are HDRS and YMRS
items, outputting probabilities over scores. This classifier adopted a hard parameter-sharing approach
to MTL (c1): the channel encoders and the representation module were shared across tasks and
extracted a common representation h = RM (EN (·)) which was then fed into task-specific item
predictors. Losses from different items were then aggregated with a weighted average, to reflect
that some items (those with a rank step size of two) count more towards the scale total score. We
added a critic CR to the above classifier. CR’s objective was to identify subjects using h in an
adversarial game, controlled by the hyperparameter λ, designed to encourage RM (EN (·)) to extract
cross-subjects invariant representations.

As with psychiatry clinical trials, where prospective raters are trained to align with assessments made
by an established specialist [2], we used the inter-rater agreement between the ANN and the clinician,
measured with the Cohen’s κ [51], as evaluation metric for the model. Cohen’s κ is a statistic familiar
and interpretable to clinicians and clinical trials with multiple rates typically ensure, in the preparation
to the study, that a satisfactory level of agreement is reached, in other words that raters converge in the
scores they issue. Cohen’s κ takes values in [-1, 1], where 1 (-1) means perfect (dis)agreement and a
value of 0 indicates random agreement. More specifically, we used the quadratic variant of Cohen’s
κ (QCK): quadratic weightage penalizes disagreements proportionally to their squared distance,
which makes the metric more appropriate to ordinal variables and also less susceptible to imbalanced
classes [16, 19, 21, 70]

Best model details On top of the model design described above, we explored a number of ML
approaches and discovered the best setting in terms of validation performance through Bayesian
Search with Asynchronous HyperBand [46]. We also computed which hyperparameters were the
best predictors of the validation QCK. This was obtained by training a random forest with the
hyperparameters as inputs and the metric as the target output and deriving the feature importance
values for the random forest. The loss type was the hyperparameter most predictive of validation
QCK. Table A.1 reports importance values for all hyperparameters. The selected model employed
the Cohen’s κ loss with quadratic weightage [18] (c2), which was preferred to other losses that
either treated scores as purely nominal variables or incorporated some notion of orders among
ranks. The best model used a (small) critic penalty (λ = 0.07) added to the main objective, i.e.
scoring HDRS/YMRS. Such a penalty was designed to make CF less reliant on subject-specific
information for the main objective and worked by encouraging RM (EN (·)) to conceal subject-
specific information from the representation provided to CR (c3). However, the training curve showed
that the reduction in the main classification loss across epochs was paralleled by the reduction in the
(cross-entropy) loss paid by CR, tasked with telling subjects apart. Resampling and loss re-weighting
(c4) was chosen as a strategy to address class imbalance over other approaches that either re-scale the
loss proportionally to the probability assigned to correct rank or re-scale the predicted probabilities
by the ranks frequency in the training set. Finally, a segment length sl of 16 seconds was selected
as best value for segmentation. The highest validation QCK for other choices of sl (in seconds)
was 0.5167 (8s), 0.5084 (32s), 0.418 (64s), 0.3632 (128s), 0.2543 (256s) , 0.1659 (512s), 0.03199
(1024s). Note that sl was explored among powers of 2 for computational convenience and that, when
segmenting the first 5 hours of each recording, different sl values produced different samples number
and length (the lower the sl values, the higher the number of samples, the shorter the sample). The
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predictive value of hyperparameter sl towards validation QCK was fairly low relatively to other
hyperparameters.

Main results Our best ANN model achieved an average QCK across HDRS and YMRS items of
0.609 in close-to-interview samples, a value that can be semi-qualitatively interpreted as moderate
agreement. Item level QCK correlated weakly with item class imbalance but fairly with item
Shannon’s entropy. Table 2 shows QCK for each item in HDRS and YMRS. Briefly, QCK was
highest for H12 somatic symptoms gastrointestinal (0.775) and lowest for H10 anxiety psychic (0.492).
H10 had also the highest entropy (1.370), however, H7 work and activities, despite having the second
highest entropy (1.213), had a QCK of 0.629, ranking as 9th best predicted item.

Shift over time When tested on far-from-interview samples, our system overall had a drop in
performance. The average QCK was 0.498, 0.303, 0.182 on segments taken respectively from the
first, second, and third thirty-minute interval. After this decline the average QCK fluctuated through
the following thirty-minute intervals with 0.061 as the lowest value 15 hours into the recording. The
items with the biggest drop in QCK relatively to their baseline value were 1) H9 agitation, H10
anxiety somatic, Y4 sleep, and Y9 disruptive-aggressive behavior in the first thirty-minute interval 2)
H9 agitation, H10 anxiety somatic, Y9 disruptive-aggressive behavior, and H4 early insomnia in the
second thirty-minute interval 3) Y4 sleep, H4 early insomnia, Y9 disruptive-aggressive behavior, and
H10 anxiety somatic in the third thirty-minute interval. On the other hand, items that retained their
original QCK value the most were: a) H1 depressed mood, Y11 insight, H2 feelings of guilt in first
thirty-minute interval; b) H17 insight H1 depressed mood and H2 feelings of guilt in the second thirty-
minute interval; c) H4 early insomnia, Y4 sleep, H10 anxiety somatic, and Y9 disruptive-aggressive
behavior in the third thirty-minute interval. This pattern matched clinical intuition as items in the
former group can be relatively more volatile and more reactive to environmental factors (including
medications), whereas items in the latter group tend to be change more slowly. Item level QCK across
successive thirty-minute intervals is shown in Figure A.2.

2.3 Post-hoc diagnostics

In order to gain further insights into the errors that our system made on close-to-interview holdout
samples, we studied distribution of residuals, i.e. the signed difference between predictions (model
outputs) and ground truth (clinician scores). For the sake of better comparability, items with a rank
step of two (e.g. Y5 irritability) were re-scaled to have a rank step of one like other items. Figure 3
illustrates that the model was correct most of the times, residuals were in general evenly distributed
around zero, and when wrong the model was most often off by just one. Consistently with item level
QCK values, H10 anxiety psychic stands out from other HDRS item as one particularly difficult to
predict, with a residuals distribution that is slightly skewed towards negative values; in other words,
the model tends to predict a higher score than the ground truth.

Furthermore we investigated the correlation structure among item residuals to check whether any
meaningful pattern emerged. Figure 4 shows the undirected graphical model for the estimated
probability distribution over HDRS and YMRS item residuals. The graph only has positive edges,
that is only positive partial correlation between item residuals and co-variates. HDRS and YMRS
nodes tend to have weak interactions across the two scales, with the exception of nodes that map
the same symptom, e.g. Y11 and H17 both query insight. Within each scale, partial correlations
are stronger among nodes underlying a common symptom domain, e.g. H1 and H2 constitute "core
symptoms of depression" [39], and speech (Y6) is highly related to mood (Y1) and thought (Y7, Y8)
[82]. Average node predictability for HDRS and YMRS items, a measure of how well a node can be
predicted by nodes it shares an edge with, akin to R2, was 48.428%.

Stability analyses in which we bootstrapped all models 500 times showed that some edges were
estimated reliably (i.e. they were included in all or nearly 500 bootstrapped samples), but there also
was considerable variability in the edge parameters across the bootstrapped models. Individual edges
and their rank order should be interpreted with care.

2.4 Channels contribution

We were interested in whether physiological data modalities contributed differently towards perfor-
mance across items. This question, further to clinical relevance, has also practical implications since
other devices may not implement the same sensors as Empatica E4. Figure 5 shows that while all
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modalities seem to positively contribute to test performance across items, this is markedly the case
with ACC as the model records the biggest drop in performance upon removal of this channel from
input features. Specifically, upon zeroing out the contribution of ACC, the biggest deterioration in
performance was observed for a) items mapping anxiety, i.e. H12 somatic symptoms gastrointestinal
(relative difference in QCK ∆QCK = −0.403), H14 genital symptoms (∆QCK = −0.334), H11
anxiety somatic (∆QCK = −0.321), H13 general somatic symptoms (∆QCK = −0.285), H15
hypocondriasis (∆QCK = −0.282), b) YMRS4 sleep and YMRS9 disruptive-aggressive behavior
(with a ∆QCK of −0.371 and −0.281 respectively), and c) core depression items, i.e. H1 depressed
mood (∆QCK = −0.276) and H2 feelings of guilt (∆QCK = −0.263). On the other hand, the
contribution of BVP was relatively modest since upon dropping this channel items generally had only
a marginal reduction in QCK, most marked for H16 loss of weight (∆QCK = −0.0953) and H11
anxiety somatic (∆QCK = −0.0780).

3 Discussion

In this work we introduced a new task in mood disorders monitoring with personal sensing, that is
inferring all 28 items from HDRS and YMRS, the most widely used clinician-administered scales for
depression and mania respectively, the two polarities of mood disorders. While previous studies aimed
to predict a single label, e.g. the disease status or the total score on a psychometric questionnaire,
we advocate for modeling the full mood disorders symptom profile since such information, useful
towards precision psychiatry, goes lost when reduced to a single label. This new task is complex and
comes with a number of methodological challenges, some of which we have herewith analyzed.

We developed and tested our framework using samples taken in the five hours following the clinical
interview (close-to-interview samples). Our model showed moderate agreement [51] with expert
clinician (average QCK of 0.609) on holdout samples. The item level performance showed fair
correlation with the item entropy, indicating that items with a higher “uncertainty” in their sample
distribution tend to be more difficult to predict. Difference in entropy is partly inherent to the scale
design as the number of ranks is not the same across all items. Among the explored options of
segmentation window length, 16 seconds was used in the selected model. While this might be an
optimal duration, it should also be noted that higher segmentation window length values translated in
fewer segments available for model development. The space of explored solutions to the problem at
hand included a hyper-parameter λ ∈ R+

0 , which controlled the degree to which the model should be
encouraged to learn cross-subjects invariant representations when solving the main task (HDRS and
YMRS inference). A λ value of zero means that no penalty is paid for learning to distinguish among
subjects from the learned representation. Of notice, λ was non-zero in the optimal model, yet the
training curve showed that the reduction of the main loss across epochs was paralleled by an increase
in subjects identifiability from the learned representations. This suggests that an ANN (even a simple
architecture such as the one we employed) tends to become reliant on representations that encode
subject specific information for solving the task at hand.

When used on samples collected from thirty-minute sequences following the first five hours of the
recordings (far-from-interview samples), our model had a significantly lower performance with
average QCK declining down to 0.182 in the third half-hour and then oscillating but never recovering
to the original level. Across the first three thirty-minute intervals, the items suffering the sharpest
decline relatively their baseline performance were items mapping symptom involved with sleep or
psycho-motor activity, i.e. H4 early insomnia, H9 agitation, H10 anxiety somatic, Y4 sleep, and
Y9 disruptive-aggressive behavior. These symptoms likely have some natural variability over time,
especially in response to drugs administration. On the other hand, symptoms corresponding to more
stable phenomena and arguably less reactive to drugs administration in the short-term were those
retaining a QCK closest to the corresponding baseline value, i.e. H1 depressed mood, H2 feelings of
guilt, and Y11/H17 insight. While a departure from the scores collected at the start of the recording
seem plausible, especially for some items, a shift in the physiological data distribution is very likely
in a naturalist setting. This points to the importance of testing in samples collected at different points
in time than those used for model development. Furthermore, this also highlights the methodological
challenge of learning representations invariant to background (latent) features, unrelated to the target
variable, that may dominate the signal and may be unduly exploited by ANNs, foiling generalization.

Residuals from predictions on holdout close-to-interview samples showed a symmetric distribution,
centered around zero, showing that the model was not systematically predicting either higher or

6

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.25.23287744doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.25.23287744
http://creativecommons.org/licenses/by/4.0/


smaller values than the ground truth. The network of item residuals illustrated that our model erred
along the correlation structure of the two symptom scales, as stronger connections were observed
among items mapping the same symptom or a common domain. In other words, whenever the
model mispredicted a given symptom it also tended to mispredict symptoms from the same domain.
Re-training our best model including all input channels but one showed that acceleration was the most
important modality. Coherently, items whose QCK deteriorated the most upon removing this channel
were those mapping symptom domains clinically observable through patterns of motor behavior.

As this work proposes an novel framework to predict individual items in psychometric scales, we
would like to highlight a number of limitations in our study. (a) Patients were scored on HDRS
and YMRS by a single clinician. Having scores from multiple (independent) clinicians on the same
patients would be desirable since it would help appreciate model performance in view of inter-rater
agreement. We note that it was the same clinician who scored all subjects recruited for this study and
thus we did not have to train multiple clinicians to reach an acceptable level of inter-rater agreement.
(b) The lack of follow-up (independent) HDRS and YMRS scoring within the same session did not
allow to estimate to what degree a shift from the baseline assessment in the items score might be at
play. Relatedly, we acknowledge that the choice of five hours for our main analyses may be disputable
and other choices may have been valid too; five hours is an informed attempt to trade off a reasonably
high number of samples with a minimization in the distribution shift over both target variables and
physiological data. On the other hand, the main point of this study was to suggest a novel task and to
explore related ML challenges; thus studying the effect of different time cut-off for the main analyses
was not within the scope of this work. (c) Given the naturalist setting, patients were on medications,
which might interfere with physiological variables being recorded. (d) As this was a single center
study, further investigations are needed using multi-center data to assess generalization to different
hospitals and potentially different countries.

Conclusion - In summary, we presented a novel task in personal sensing for mood disorders, that is
inferring individual symptoms severity. We believe that this task is better aligned with the objectives
of personalized medicine than other tasks suggested in previous works since it enables matching
different clinical profiles with the most appropriate treatment plan. This would not be possible if
the disease state or the overall severity level is all we know about a patient. We illustrated some of
the associated ML challenges and explored possible approaches. The most difficult hurdle towards
real-world implementations is generalization to future points in time. A departure from the scores
collected during the interview seems reasonable, especially for some items and, in this sense, having
more frequent observation might help. However, a shift in the distribution of physiological data is
likely the major obstacle as subjects go through different patterns of activity during the day and move
across different environments.

Future directions - Results from the analyses herewith presented and related limitations point to
future directions we believe are worth investigating. (i) The decline in performance over future points
in time stands out the main challenge towards real-world implementations and suggests that the model
struggles to adapt to changes in background (latent) variables, e.g. changes in activity patterns and/or
environment. Research into domain adaptation should therefore be prioritized. We also speculate
that mood disorders symptomatology and relevant physiological data might have slow- as well as
fast-changing components. A model with a segment length of 16 seconds would seem unsuitable
for representing the latter. Trying to explicitly capture both dynamics is therefore something we
will explore in the future. (ii) Generalization to patients unseen during model development is
a desirable property towards real-world applications of a mood symptoms scoring system and
something we consider exploring in the future. Another approach altogether to tackle this point,
sidestepping considerations of cross-subjects variability, is to develop (or fine-tune) a model for
each individual patient, which has been explored in other related fields [8, 61]. (iii) As supervised
learning performance has been shown to grow roughly logarithmically in the size of annotated
datasets [72], annotation remains a major bottleneck in biomedical settings because it is, as the field
of EMA in mood disorders shows, notoriously resource-intensive to obtain. Self-supervised-learning
approaches would seem the way forward towards real-world applications [42], as shown for example
with large language models where pre-training in a self-supervised way enabled tremendous gains in
performance [20, 58]. Yet, relatively little research has been done into its use in personal sensing.
Lastly, (iv) For a ML system to be trustworthy and actionable in a clinical setting, further research
into model explainability (i.e. why a given output is produced) and uncertainty is needed [23, 37].
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4 Methodology

4.1 Study protocol

The analyses herewith presented rely on an original dataset being collected as part of a prospective,
exploratory, observational, single-center, longitudinal study with a fully pragmatic design embedded
into current real-world clinical practice. The study was conducted in compliance with the ethical
principles of medical research involving humans (WMA, Declaration of Helsinki and Hospital Clinic
Ethics & Research Board (HCB/2021/104, HCB/2021/1127)). Subjects with a DSM-5 diagnosis of
either MDD or BD were recorded with an Empatica E4 and were scored by a clinician on HDRS and
YMRS. Further details are given in Anmella et al. [4].

4.2 Pre-processing and data selection

The raw data from an E4 Empatica recording session comes as a collection of 1D arrays of recorded
sensory modalities. We quality-controlled our data with the rules by Kleckner et al. [40] and the
addition of a rule to remove HR values that exceeded the physiologically plausible range (25-250
bpm). Each quality-controlled recording session was then segmented using a sliding window, whose
length sl (in real time seconds) is a hyperparameter, enforcing no overlap between bordering segments
(to prevent models from exploiting overlapping motifs between segments). These segments and the
corresponding clinician-scored psychometric questionnaires (HDRS and YMRS) from the subjects
wearing the E4 device formed our dataset, {(xi, yi)}Ni=1, consisting of N observations, where xi
is a recording segment including different sensory modalities (i.e., ACC, BVP, EDA, HR, TEMP)
and yi is a 28-entry vector resulting from the HDRS and YMRS concatenation. Close-to-interview
samples, i.e. segments from the first five hours of recordings, were split into train, validation, and
test sets with a ratio of 70-15-15. Segments from the following thirty-minute intervals of recording
(far-from-interview) were used for inference only to study how the developed model responded to
distribution shift across time.

4.3 Evaluation Metric

HDRS and YMRS items are ordinal in nature (see Appendix B and Appendix C), that is to say
although there is a finite set of possible labels like in any classification task, the labels present a
natural inherent order among themselves like in regression problems: each HDRS and YMRS item
admits an ordered sequence of ranks (also referred to as classes or scores) yj,k = ⟨yj,1 ≺ ... ≺ yj,k⟩,
where j indexes the items/tasks and k indexes the item ranks. By way of example, H11 anxiety
somatic can be scored as 0-Absent, 1-Mild, 2-Moderate, 3-Severe, or 4-Incapacitating. As expected,
the item distribution was imbalanced towards low scores. This is because patients on an acute episode
usually receive intensive treatment and acute states therefore tend to be relatively short-lived periods
in the overall disease course [17, 79]. Metrics accounting for class imbalance should be used when
evaluating a classification system in such a setting, since, otherwise, a trivial system assigning all
items to a single class (e.g. the corresponding majority item rank) could outperform genuinely
engineered systems.

Baccianella et al. [5] proposed the use of macro-averaged versions of common distance metrics
(e.g. the mean absolute error) for the evaluation of a classifier in a setting with imbalanced ordinal
data. We preferred Cohen’s κ, in particular its quadratic version, since, further to its suitability to
imbalanced ordinal data, it is familiar and easily interpretable to clinicians [70], i.e. it expresses the
degree to which the ANN learned to score segments in agreement with the clinician’s assessments.
QCK penalizes disagreements proportionally to their squared distance and is defined as:

Cohen’s κ = 1−
∑

r,c ωr,cOr,c∑
r,c ωr,cEr,c

where r, c ∈ {1, 2, ...,K} respectively index the rows and columns of three square matrices ω,O,
and E. K is the number of classes, for instance, K = 5 for H1 depressed mood and K = 3 for
H4 early insomnia. Or,c is the number of observations, whose ground truth (clinician’s score in our
use case) is the cth class, that are classified in the rth class by the prediction model. E is the outer
product between the two classification histogram vectors (prediction and ground truth), normalized
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such that E and O have the same sum. ωi,j is weight penalization for every pair r, c. The quadratic
weightage sets ωr,c = (r − c)2/(K − 1)2.

4.4 Model Design

The task at hand is supervised, specifically we sought to learn a mapping from the recording segment
to HDRS and YMRS scores: f : xi 7→ ŷi. We used ANNs as model class for f (·). The model we
developed comprised two independent sub-models (Figure 2):
(1) a classifier (CF), which itself consisted of three sequential modules: (1.1) a channel encoder (EN)
for projecting sensory modalities onto the same dimensionality, (1.2) a representation module (RM),
for extracting features, and lastly (1.3) 28 parallel item predictors (IP), indexed by j ∈ {1, ..., 28}
and each learning p (yi,j |IPj (hi)), that is the conditional distribution over ranks for the jth item
given hi = RM (EN (xi));
(2) a critic (CR), using the representation from RM for telling subjects apart. The critic competed
in an adversarial game against the channel encoders and the representation module, designed to
encourage cross-subjects invariant representations.

4.4.1 Classifier

The task of inferring HDRS and YMRS items is an instance of MTL (c1), to which we adopted
a hard parameter-sharing approach: all tasks shared the same model trunk RM (EN (·)), and thus
the same base representation of the input data h = RM (EN (·)), which was then distributed across
task-specific layers, IP. Comparatively to developing as many independent learners as there are
tasks, MTL offers advantages such as improved data efficiency, reduced overfitting through shared
representations, and fast learning by leveraging auxiliary information. However, in some pathological
instances, tasks might interfere with each other, a phenomenon known as negative transfer [13]. As
usually done with hard parameter-sharing [60], the multi-task loss was set equal to the average of
task-specific losses, each weighted by the corresponding item rank step to account for different item
weights on the scale total score:

LMT (xi; ξ, ϕ, ψ) = − rj∑
j rj

ℓj (IPj(RM(CE(xi))), yi)

where rj is the rank step size of the jth item and ξ, ϕ, and ψ are respectively EN, RM, and IP
parameters. Details on the specific form of ℓ, the task-loss, are given below.

Channel encoders Since the sampling rate varies across the recorded signals within a segment,
these are typically time-aligned, e.g. to the level of a second in wall-time [1, 45]. However, the
down-sampling process employed to time-align data (usually via max-pooling or averaging) can risk
removing useful information in the raw recordings. Thus, we took a different approach, shown to be
more effective in this setting [44], whereby each channel was mapped to the same dimensionality
with the use of an channel encoder. We experimented with a simple Multilayer Perceptron (MLP), a
Gated Recurrent Unit (GRU) [11] or, alternatively, the Time2Vec representation proposed in [38].
We could then concatenate the encoded representations and feed them to RM in the same manner
as the time-aligned data. Prior to passing segments through EN, each channel was re-scaled. The
optimal embedding dimensionality and re-scaling type (either standardization or normalization) were
set during tuning.

Representation module A class of deep learning architectures specifically engineered to exploit
dependencies in time series data are Recurrent Neural Networks (RNNs) [48]. These consume an
input sequence one time-step at a time and encode historical information from previous time-steps
in a hidden state so that at any given time point, further to the current time point input, the model
receive information about previous time points passed on down a hidden state (a recurrence link),
sequentially updated with each new time step. Specifically, we used a single-layer BiLSTM [66]
for RM. This consists of two LSTMs, one taking the input in a forward direction, and the other in a
backward direction, thereby improving the representation of temporal information in the model.

Item predictors (c2) The extracted representation h = RM (EN (·)) was then used as input to 28 IP,
each dedicated to a specific HDRS/YMRS item. We experimented with three different treatments of
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the target variables, each translating to a different set up of the task-specific layer and the task-specific
loss.

1) Each item score prediction was treated as a multi-class classification problem, therefore ignoring
the natural order among item ranks. Accordingly, the jth item predictor consisted of a fully-connected
layer, with as many output units as the number of ranks under that item, to which a softmax activation
was applied and the categorical cross-entropy (CCE) was used as loss function.

2) We used the same task-specific architecture as in 1) but adopted the QWK loss, as proposed in
de La Torre et al. [18], which re-writes Cohen’s κ in terms of probability distributions.

3) We implemented the ordinal neural network transformation model (ONTRAM) [41] which
parameterize the CCE loss to incorporate the order of the outcome, by deriving class probabilities
from the conditional density function of a latent variable onto which observed classes are mapped.

4.4.2 Critic (c3)

We encouraged cross-subjects invariance in the representation extracted with RM (EN (·)) by adding
a critic CR, whose task was to correctly distinguish subjects apart from extracted representation, in
an adversarial game, similarly to [10, 55].

Concretely, the critic, a simple MLP, took as input the extracted representation h and was trained to
identify subjects from it. CR’s task was therefore to minimize, with respect to CR’s parameters θ, the
following CCE loss:

LCR (RM (CE (xi)) ; θ) = −1s logCRs (RM (EN (xi)))

where 1s is an indicator taking value 1 when the ith segment belongs to the sth subject and 0
otherwise, and CRs(·) is the critic output (i.e. a probability from a softmax activation) for the sth
subject. On their part, EN and RM tried to trump the CR by filtering out from h information that
could make the CR’s task easy, while, at the same time retaining enough useful information for the
item predictors IPj. To achieve this, the following term was added to LMT (the multi-task loss),
which was minimized with respect to EN’s and RM’s parameters, ξ and ϕ:

LR(xi; ξ, ϕ) = λ [−1s log(1− CRs (RM (EN (xi)))]

where λ ∈ R+
0 . The classifier’s total loss was then LCF = LMT+LR, where LR acted as a regularizer,

a price the classifier CF paid for encoding subject-specific information in the representation h learned
by RM(EN(·)). Values of λ trade off learning cross-subjects invariant representations h against
solving the main objective; for λ = 0, no incentive is given towards learning cross-subjects invariant
representation. In practice at each training step, we alternated between optimization of LCF and LCR,
while keeping parameters of the sub-model not being optimized (respectively, θ and ξ, ϕ, ψ) fixed.
Values of λ in [0, 1] were used before [10, 55], so we sampled values from U[0,1] during tuning.

4.5 Learning from imbalanced data (c4)

In a setting with class imbalance, a classifier might struggle with predicting the minority class, usually
the point of interest, since this is swamped by the abundance of instances of the majority class. We
adapted to our use case three popular imbalance learning approaches, as follows:

1) Focal loss [47]: the CCE loss from each item predicor IPj was multiplied during training by
αj,k (1− pj,k)

γ where: αj,k and pj,k were respectively the inverse frequency (as estimated from
the training set) and predicted probability of the ground truth kth rank for the jth item, γ was a
hyperparameter (usually set to 2). αj,k ∈ R+ was a rank-wise weight that was used to increase the
importance of the minority class. Easily classified examples, where pj,k → 1, caused the modulating
factor to approach 0 and reduced the sample’s impact on the loss. γ ∈ R+

0 adjusted the rate at which
easy examples are down-weighted.

2) Probability thresholding [9]: during inference, probabilistic predictions for each rank under the
jth item were divided by the corresponding rank frequency (computed on the training set). The new
values were then normalized dividing each by the total sum. To avoid division by zero in the case of
item ranks having zero frequency in the training set, the prior for such zero frequency ranks was set to
a small non-zero value. The above is a simple post hoc method to re-calibrate predictions, increasing
(decreasing) the predicted probability for ranks with a low (high) frequency in the training set.
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3) Resampling and loss re-weighting: resampling mitigates data imbalance during training by
replacing the original training set with a new one that has been resampled to be less (or not at all)
imbalanced. Resampling needs some adaptation to a multi-task setting, in that resampling for one task
may produce more severe imbalance across other tasks. The approach we took was to resample on
the basis of the concatenation of the HDRS and YMRS severity bands: for each segment HDRS and
YMRS total score was computed and binned using the cut-points suggested in [77]; each segment was
therefore assigned the concatenation of such severity bands as a new label used for resampling. Thus,
given a total number B of HDRS-YMRS severity bands in the training set, segments from each band
b ∈ {1, .., B} were resampled so that their number was equal to the total number of segments divided
by B: random under-sampling (RUS) and random over-sampling (ROS) were therefore applied to
segments from relatively over-represented and under-represented bins respectively. Note that, since
the same HDRS-YMRS severity bracket can be attained from multiple different combinations of
HDRS and YMRS scores, the approach above mitigated but did not altogether banish unbalance
at the individual item level. Furthermore, as resampling induces a departure from the original data
distribution, to counterbalance this and favor learning the original data distribution, the loss of the xi
was rescaled proportionally to the resampling ratio of the HDRS-YMRS bin (b) xi belonged to. That
is to say, in our setting, if a segment was from a severity band on which RUS (ROS) was used, its loss
(resulting from aggregation of corresponding item losses) was increased (decreased) proportionally
to the resampling ratio.

4.5.1 Model training and hyperparameter tuning

Given the explorative nature of this work, with various model configurations and optimization
objectives, we performed an exhaustive search using the Hyperband Bayesian optimization [46] to
find the hyperparameters that yield the best QCK in the validation set. All models were trained
with AdamW optimizer [50] for a maximum of 400 epochs. Moreover, to speed up the training and
search procedure, we employed an early stopping learning rate scheduler: we reduce the learning
rate αLR = 0.3αLR if the model has not improved in its validation performance after 10 consecutive
epochs; we terminate the training procedure if the model has not improved after 2 learning rate
reductions. Dropout [71] and weight decay were added to prevent overfitting. Table 4 shows the
hyperparameters search space and the configuration of the best model after 300 iterations.

4.6 Prediction Error Examination

Using the best performing setting among those explored in the experiments detailed above we
computed residuals (i.e. signed difference between prediction and ground truth) on close-to-interview
samples and illustrated their distribution across items. Furthermore, towards investigating correlations
between residuals, checking for any remarkable pattern in view of the natural correlation structure of
HDRS and YMRS, we estimated a regularized partial correlation network, in particular a Gaussian
graphical lasso (glasso) [29], over the item residuals. Network edge sparsity, to avoid false positives,
is enforced with the the least absolute shrinkage and selection operator (LASSO) [75], which indeed
shrinks all edge-weights towards zero and sets small weights to exactly zero. The strength of the
regularization is traded-off by a hyper-parameter λ, selected with the Extended Bayesian Information
Criterion (EBIC) [28]. The EBIC itself has a tuning parameter γ, controlling the trade-off between
sensitivity and precision, which, as in Haslbeck and Waldorp [33], we set to 0.25. We also estimated
node predictability, measuring how well a node can be predicted by nodes it shares an edge with,
which can be interpreted similarly to R2 [34]. Lastly, bootstrapping routines were used to gain insight
into the stability of the estimated parameters.

4.7 Channels Importance

We took a simple, model-agnostic approach to assessing each individual channel contribution to the
task at hand. That is to say, we selected the system performing best on the task and re-trained it
including all channels (tri-axial ACC, EDA, BVP, HR, and TEMP) but one. For each left-out channel
we measured the difference in performance across items relatively to the baseline model (the one
trained on all channels).
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Code availability

The codebase developed for this work is available at repository to be released upon acceptance
for publication. Python 3.10 programming language was used for the symptoms scoring system,
where deep learning models were implemented in PyTorch [56] while hyperparameter tuning and
visualization model performance were performed in Weight & Biases [7]. All models were trained
on a single Nvidia RTX 2080Ti GPU. Graphical modeling of the residuals and related analyses were
performed in R 4.2.2 using packages qgraph [26] for network estimation and visualization, and
bootnet [25] for bootstrapping.

Data availability

Data in de-identified form may be made available from the corresponding author upon reasonable
request.
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Figure 1: Patients sharing diagnostic category and severity level can have different clinical
profiles. Top row shows a pair of patients with Major Depressive Disorder (MDD) on a depressive
episode. While both share the same severity levels, total HDRS ≥ 23 [77], patient (a), with HDRS
totaling 24, exhibits high levels of anxiety (H9, H10, H11), whereas patient (b), with HDRS totaling
26, displays a marked insomnia component (H4, H5, H6). Bottom row shows a pair of patients with
Bipolar Disorder (BD) on a manic episode with total YMRS ≥ 25 [77]. Patient (c), with YMRS
totaling 30, has an irritable/aggressive profile (Y2, Y5, Y9) whereas patient (d), with YMRS totaling
30, has a prominently elated/expansive presentation (Y1, Y3, Y7, Y11). The two pairs show that the
same severity level and the same (or a similar) total score can be realized from different combinations
of symptoms, giving rise to different clinical presentations that may benefit from bespoke treatment
and management. HDRS and YMRS items and normalized scales are displayed on the right-hand side
of the figure and the full scales are available for reader’s convenience in Appendix B and Appendix C.
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Figure 2: Analysis work-flow. Patients recruited in this study had up to four assessments, corre-
sponding to different disease stages. At the start of each assessment a clinician scored the patient on
the Hamilton Depression Rating Scale (H in the figure) and the Young Mania Rating Scale (Y in the
figure) and provided an Empatica E4 device asking the patient to wear it for ∼48 hours (i.e. average
E4 battery life). An ANN model is fed with recording segments and is tasked with recovering the
scores issued by the clinician. The quadratic Cohen’s κ measures the degree to which the machine
scores are in agreement with those from the clinician. The ANN model is made of a classifier CF
and a critic CR. The former comprises three main modules: 1) a channel encoder CE, projecting
input sensory channels onto a new space where all channels share the same dimensionality, regardless
of the native E4 sampling frequency; 2) a representation module RM, extracting a representation h
that is shared across all items; and 3) one item predictor IPj for each item. The critic is tasked with
telling subjects (S in the figure) apart using h and is pitted in an adversarial game against RM(CE(·)),
designed to encourage the latter to extract cross-subjects invariant representations.
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Figure 3: Item residuals overall show a symmetric distribution centered around zero, showing
that the model is correct most of the time, it is not systematically either under- or over-predicting,
and when wrong, it is usually off by only one. Residuals, signed difference between prediction (ŷ)
and ground truth (y), are shown across Hamilton Depression Rating Scale (Top) and Young Mania
Rating Scale (Bottom) item.
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Figure 4: Partial correlations between item residuals indicate that the model learned the scales
natural correlation structure. Network displaying the relationship between Hamilton Depression
Rating Scale (blue) and Young Mania Rating Scale (red) item residuals. Green edges represent
positive partial correlations between variables. Rings around nodes represent variance in a given
variable with shadowed parts displaying the proportion of variance in that node that is explained
by nodes that connect with it. Connections are stronger between items underpinning a common
symptom domain. H: Hamilton Depression Rating Scale; Y: Hamilton Depression Rating Scale
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Figure 5: Overall all physiological data modalities contributed towards the test performance
across item, however this was particularly pronounced for acceleration, whereas the model
performance was only marginally impacted by the removal of blood volume pressure from input
features. Effect of dropping individual channels on the performance across items. The dotted line is
at the level of baseline model performance on a given item while each bar indicates the performance
upon re-training the best model including all channels but the one corresponding to the bar color
code, as shown in the legend. ACC: acceleration; BVP: blood volume pressure; EDA: electrodermal
activity; HR: heart rate; QCK: Quadratic Cohen’s κ; TEMP: temperature.
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Table 1: Our work is the first attempting to infer the full mood disorders symptom profile
from physiological wearable data, providing actionable clinical information beyond a single
reductionist label. Previous studies recruiting patients with either a Diagnostic and Statistical
Manual of Mental Disorders (DSM) or an International Classification of Diseases (ICD) mood
disorder diagnosis, using psychiatrist assessments and passively collected wearable data are herewith
reported. BD: Bipolar Disorder; F%: Percent Females; Mage: mean age; MAE: Mean Absolute Error;
MDD: Major Depressive Disorder; SCZ: Schizophrenia; SDage: standard deviation age

DEVICE(S) NUM.
PATIENTS

PATIENTS
FEATURES

TASK

THIS WORK EMPATICA E4 75 MDD, BD; MAGE =44.16
SDAGE =14.42 F%=56

HDRS AND YMRS ITEMS
MULTI-TASK REGRESSION

[12] EMPATICA E4 47 BD; MAGE =44
SDAGE =15 F%=67.24

MANIA VS EUTHYMIA
BINARY CLASSIFICATION

[30] EMPATICA E4
AND ANDROID PHONE

12 MDD; MAGE =37
SDAGE =17 F%=75

HDRS TOTAL SCORE
REGRESSION

[57] EMPATICA E4
AND SMARTPHONE

31 MDD; MAGE =33.7
SDAGE =14) F%=74

HDRS TOTAL SCORE
REGRESSION

[36] ACTIWATCH 23 MDD; MAGE =48.2
SDAGE =11.0 F%=43

DEPRESSION DETECTION
BINARY CLASSIFICATION

[73] SILMEE W20 45 MDD, BD; MAGE =52.1
SDAGE =13.2 F%=46.7

DEPRESSION DETECTION
BINARY CLASSIFICATION

[53] ACTIWATCH 45 MDD, SCZ; MAGE =44.70
SDAGE =11 F%=73.33

DISEASE DETECTION
BINARY/MULTI-CLASS CLASSIFICATION

[43] FITBIT CHARGE HR 2 OR 3
AND SMARTPHONE

270 MDD, BD; MAGE =23.3
SDAGE =3.63 F%=54.4

MOOD EPISODE PREDICTION
BINARY CLASSIFICATION

23

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.25.23287744doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.25.23287744
http://creativecommons.org/licenses/by/4.0/


Table 2: Performance ranges from 0.775 on "somatic symptoms gastrointestinal" and to 0.492
on "anxiety psychic". Item level performance across Hamilton Depression Rating Scale (a) and
Young Mania Rating Scale (b) items. QCK: Quadratic Cohen’s κ.

QCK

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10
0.642 0.624 0.694 0.534 0.595 0.512 0.629 0.604 0.508 0.492

H11 H12 H13 H14 H15 H16 H17 Y1 Y2 Y3
0.636 0.775 0.582 0.594 0.691 0.637 0.574 0.602 0.590 0.627

Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11
0.629 0.591 0.572 0.582 0.588 0.755 0.602 0.566
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Table 3: Clinical-demographic characteristics of the study population (N = 75). According to
the DSM-5, a mood episode can be categorized as either a major depressive episode or a manic
episode. As a bridge between these two, the DSM-5 admits a mixed symptoms specifier to cases
where symptoms from both polarities are present. SD: standard deviation; IQR: inter-quartile range;
MDE-MDD: Major Depressive Episode in Major Depression Disorder; MDE-BD: Major Depressive
Episode in Bipolar Disorder; ME: Manic Episode; MX: Mixed symptoms episode; Eu-BD: Euthymia
in Bipolar Disorder; Eu-MDD: Euthymia in Major Depressive Disorder.

MEAN (SD) MEDIAN (IQR)

AGE 44.66 (14.42) 45.00 (24.50)
HDRS (TOTAL) 7.27 (6.94) 4.00 (6.00)
YMRS (TOTAL) 7.21 (8.75) 3.00 (10.00)

NUMBER OF SUBJECTS (%)

SEX MALE: 33 (44) FEMALE: 42 (56)
MOOD STATE MDE-MDD: 9 (12) MDE-BD: 12 (16) ME: 28 (37) MX: 7 (9)

EU-MDD: 3 (4) EU-BD: 16 (21)
ASSESSMENT(S) 1: 75 (100) 2: 44 (59) 3: 22 (29) 4: 8 (11)
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Table 4: Hyperparameter search space and final configuration.

HYPERPARAMETER SEARCH SPACE FINAL VALUE

BATCH SIZE UNIFORM, MIN: 8, MAX: 128, INTERVAL: 8 96
CRITIC λ UNIFORM, MIN: 0 MAX: 1 0.0723
SEGMENT LENGTH sl UNIFORM, 2n , 3 ≤ n ≤ 10 16
FOCAL LOSS γ 0,1,2,3,4,5 5
IMBALANCE MODE NA, FOCAL LOSS, PROB. THRESHOLD FOCAL LOSS

WEIGHTS RESAMPLE
LEARNING RATE αLR UNIFORM, MIN: 0.0001, MAX: 0.01 0.0009
PREPROCESSING NA, NORMALIZATION, STANDARDIZATION STANDARDIZATION
LOSS FUNCTION CROSS-ENTROPY, WEIGHTED κ WEIGHTED κ

ONTRAM
WEIGHT DECAY UNIFORM, MIN: 0, MAX: 1 0.1853

CHANNEL ENCODERS
EMBEDDING TYPE MLP, GRU, TIME2VEC MLP
EMBEDDING DIM. UNIFORM, MIN: 32, MAX: 64, INTERVAL: 8 312

REPRESENTATION MODULE
NUM. UNITS UNIFORM, MIN: 8, MAX: 2048, INTERVAL: 8 1568
DROPOUT UNIFORM, MIN: 0, MAX: 1 0.4870
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A Appendix

Figure A.1: Distribution over Hamilton Depression Rating Scale (blue) and Young Mania Rating
Scale (red) items across the recording sessions used in this study. The number above each barplot,
ρ, is the cardinality of the majority class over that of the minority rank. Higher values of ρ thus
indicate a more pronounced imbalance between the majority and the minority rank.
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Figure A.2: Quadratic Cohen’s κ (QCK) deteriorated across all items when the model was
tested on segments taken further away from when the interview took place. The first point
(0 on the x-axis) is the baseline performance, i.e. holdout segments from the first five hours of
recordings (close-to-interview). Following points refer to the successive thirty minute intervals.
(close-to-interview).
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Table A.1: Hyperparameters sorted by their importance towards predicting the monitored met-
ric, validation Quadratic Cohen’s κ (QCK). QCK predictability from hyperparameters is derived
by training a random forest with the hyperparameters as inputs and the metric as the target output
and estimating feature importance values for the random forest. Details at docs.wandb.ai/parameter-
importance.

HYPERPARAMETER IMPORTANCE

LOSS FUNCTION 0.205
DROPOUT 0.073
BATCH SIZE 0.070
WEIGHT DECAY 0.055
PREPROCESSING 0.035
NUM. UNITS 0.033
EMBEDDING DIM. 0.032
CRITIC λ 0.026
LEARNING RATE αLR 0.025
IMBALANCE MODE 0.022
FOCAL LOSS γ 0.019
EMBEDDING TYPE 0.015
SEGMENT LENGTH sl 0.013

29

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.25.23287744doi: medRxiv preprint 

https://docs.wandb.ai/guides/app/features/panels/parameter-importance
https://docs.wandb.ai/guides/app/features/panels/parameter-importance
https://doi.org/10.1101/2023.03.25.23287744
http://creativecommons.org/licenses/by/4.0/


B Hamilton Depression Rating Scale

Hamilton Depression Rating Scale (HDRS) [32] which consist of 17 items, each with a score to
indicate severity of the symptom.

H1. Depressed Mood (sadness, hopeless, helpless, worthless)

0 - Absent.
1 - These feeling states indicated only on questioning.
2 - These feeling states spontaneously reported verbally.
3 - Communicates feeling states non-verbally, i.e. through facial expression, posture, voice

and tendency to weep.
4 - Patient reports virtually only these feeling states in his/her spontaneous verbal and

non-verbal communication

H2. Feelings of guilt

0 - Absent.
1 - Self reproach, feels he/she has let people down.
2 - Ideas of guilt or rumination over past errors or sinful deeds.
3 - Present illness is a punishment. Delusions of guilt.
4 - Hears accusatory or denunciatory voices and/or experiences threatening visual halluci-

nations.

H3. Suicide

0 - Absent.
1 - Feels life is not worth living.
2 - Wishes he/she were dead or any thoughts of possible death to self.
3 - Ideas or gestures of suicide.
4 - Attempts at suicide (any serious attempt rate 4).

H4. Insomnia: early in the night

0 - No difficulty falling asleep.
1 - Complains of occasional difficulty falling asleep, i.e. more than 1⁄2 hour.
2 - Complains of nightly difficulty falling asleep.

H5. Insomnia: middle of the night

0 - No difficulty.
1 - Patient complains of being restless and disturbed during the night.
2 - Waking during the night – any getting out of bed rates 2 (except for purposes of voiding).

H6. Insomnia: early hours of the morning

0 - No difficulty.
1 - Waking in early hours of the morning but goes back to sleep.
2 - Unable to fall asleep again if he/she gets out of bed.

H7. Work and Activities

0 - No difficulty.
1 - Thoughts and feelings of incapacity, fatigue or weakness related to activities, work or

hobbies.
2 - Loss of interest in activity, hobbies or work – either directly reported by the patient or

indirect in listlessness, indecision and vacillation (feels he/she has to push self to work
or activities).

3 - Decrease in actual time spent in activities or decrease in productivity. Rate 3 if the
patient does not spend at least three hours a day in activities (job or hobbies) excluding
routine chores.

4 - Stopped working because of present illness. Rate 4 if patient engages in no activities
except routine chores, or if patient fails to perform routine chores unassisted.
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H8. Retardation
0 - Normal speech and thought.
1 - Slight retardation during the interview.
2 - Obvious retardation during the interview.
3 - Interview difficult.
4 - Complete stupor.

H9. Agitation
0 - None.
1 - Fidgetiness.
2 - Playing with hands, hair, etc.
3 - Moving about, can’t sit still.
4 - Hand wringing, nail biting, hair-pulling, biting of lips.

H10. Anxiety Psychic
0 - No difficulty.
1 - Subjective tension and irritability.
2 - Worrying about minor matters.
3 - Apprehensive attitude apparent in face or speech.
4 - Fears expressed without questioning.

H11. Anxiety Somatic (physiological concomitants of anxiety)
0 - Absent.
1 - Mild.
2 - Moderate.
3 - Severe.
4 - Incapacitating.

H12. Somatic Symptoms Gastro-Intestinal
0 - None.
1 - Loss of appetite but eating without staff encouragement. Heavy feelings in abdomen.
2 - Difficulty eating without staff urging. Requests or requires laxatives or medication for

bowels or medication for gastro-intestinal symptoms.
H13. General Somatic Symptoms

0 - None.
1 - Heaviness in limbs, back or head. Backaches, headaches, muscle aches. Loss of energy

and fatigability.
2 - Any clear-cut symptom rates 2.

H14. Genital Symptoms
0 - Absent.
1 - Mild.
2 - Severe.

H15. Hypocondriasis
0 - Not present.
1 - Self-absorption (bodily).
2 - Preoccupation with health.
3 - Frequent complaints, requests for help, etc.
4 - Hypochondriacal delusions.

H16. Loss of Weight
0 - Less than 1 lb weight loss in week.
1 - Greater than 1 lb weight loss in week.
2 - Greater than 2 lb weight loss in week.
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H17. Insight
0 - Acknowledges being depressed and ill.
1 - Acknowledges illness but attributes cause to bad food, climate, overwork, virus, need

for rest, etc.
2 - Denies being ill at all.
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C Young Mania Rating Scale

Young Mania Rating Scale (YMRS) [83] which consist of 11 items, each with a score to indicate
severity of the symptom.

Y1. Elevated Mood
0 - Absent.
1 - Mildly or possibly increased on questioning.
2 - Definite subjective elevation; optimistic, self-confident; cheerful; appropriate to content.
3 - Elevated; inappropriate to content; humorous.
4 - Euphoric; inappropriate laughter; singing.

Y2. Increased Motor Activity-Energy
0 - Absent.
1 - Subjectively increased.
2 - Animated; gestures increased.
3 - Excessive energy; hyperactive at times; restless (can be calmed).
4 - Motor excitement; continuous hyperactivity (cannot be calmed).

Y3. Sexual Interest
0 - Normal; not increased.
1 - Mildly or possibly increased.
2 - Definite subjective increase on questioning.
3 - Spontaneous sexual content; elaborates on sexual matters; hypersexual by self-report.
4 - Overt sexual acts (toward patients, staff, or interviewer).

Y4. Sleep
0 - Reports no decrease in sleep.
1 - Sleeping less than normal amount by up to one hour.
2 - Sleeping less than normal by more than one hour.
3 - Reports decreased need for sleep.
4 - Denies need for sleep.

Y5. Irritability
0 - Absent.
2 - Subjectively increased.
4 - Irritable at times during interview; recent episodes of anger or annoyance on ward.
6 - Frequently irritable during interview; short, curt throughout.
8 - Hostile, uncooperative; interview impossible.

Y6. Speech (Rate and Amount)
0 - No increase.
2 - Feels talkative.
4 - Increased rate or amount at times, verbose at times.
6 - Push; consistently increased rate and amount; difficult to interrupt.
8 - Pressured; uninterruptible, continuous speech.

Y7. Language-Thought Disorder
0 - Absent.
1 - Circumstantial; mild distractibility; quick thoughts.
2 - Distractible, loses goal of thought; changes topics frequently; racing thoughts.
3 - Flight of ideas; tangentiality; difficult to follow; rhyming, echolalia.
4 - Incoherent; communication impossible.
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Y8. Content
0 - Normal.
2 - Questionable plans, new interests.
4 - Special project(s); hyper-religious.
6 - Grandiose or paranoid ideas; ideas of reference.
8 - Delusions; hallucinations.

Y9. Disruptive-Aggressive Behavior
0 - Absent, cooperative.
2 - Sarcastic; loud at times, guarded.
4 - Demanding; threats on ward.
6 - Threatens interviewer; shouting; interview difficult.
8 - Assaultive; destructive; interview impossible.

Y10. Appearance
0 - Appropriate dress and grooming.
1 - Minimally unkempt.
2 - Poorly groomed; moderately disheveled; overdressed.
3 - Disheveled; partly clothed; garish make-up.
4 - Completely unkempt; decorated; bizarre garb.

Y11. Insight
0 - Present; admits illness; agrees with need for treatment.
1 - Possibly ill.
2 - Admits behavior change, but denies illness.
3 - Admits possible change in behavior, but denies illness.
4 - Denies any behavior change.
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