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Ensuring timely patient discharges is central to managing a hospital’s patient flow; however, discharges are

dependent on the coordination of multiple care teams and thus are highly decentralized in nature. Many

large hospitals have established capacity management centers to centrally direct and inform flow and support

clinical teams across the hospital system, but they often lack transparency into what are the actionable,

high-yield barriers to discharge that they need to focus on to be most effective. Moreover, these barriers are

patient-specific and context-dependent, i.e., a patient’s clinical-operational context determines what issues

must be resolved and with which urgency. In this study, we leverage a machine learning model that predicts

which patients are likely to be discharged in the next 24 hours together with a mixed-integer prescriptive

optimization model to identify a subset of issues called minimal barriers that stand in the way of discharging

a patient. Such barriers balance two aims: a high likelihood that the patient will be discharged from the

hospital in the next 24 hours if these barriers are resolved; and a high likelihood that these barriers will indeed

be resolved. We empirically demonstrate the efficacy of the proposed formulation and solution methodology

in identifying a small number of minimal barriers using real data from a large academic medical center.

1. Introduction

Large hospitals often operate at or near maximum capacity, thereby experiencing significant con-

gestion and delays in patient care. Ensuring smooth patient flow in such settings requires central

capacity management teams to maintain a delicate balance between hospital admissions (inflow)

and discharges (outflow). The inflow of admissions of new patients is a relatively transparent pro-

cess that can be centrally tracked. Elective admissions (e.g., elective surgeries or chemotherapy

administration) are known in advance, and even unscheduled admissions through the emergency

department (ED) or hospital-to-hospital transfers require a submission of a bed request to a cen-

tral admitting department. In contrast, the process of discharging patients from the hospital is

usually highly decentralized and requires coordination of resources across numerous role groups,
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making it opaque to capacity planners. Furthermore, frequent delays in the discharge process lead

to congestion in critical upstream areas like the ED and the operating rooms (Copenhaver et al.

2019).

The challenge of ensuring timely discharges involves multiple dimensions. First, there is a high

degree of heterogeneity across patients due to their clinical characteristics as well as non-clinical

factors such as the availability of social support. Second, the discharge management of care is often

spread across different groups of care providers (e.g., physicians and nursing teams) and other

professionals (e.g., case managers and social workers). Each of these groups may have a different

perspective with respect to the readiness of a patient to be discharged from the hospital. The

resulting lack of central transparency can lead to the suboptimal allocation of resources that are

essential to the discharge of patients. For example, the discharge of a patient may depend on a

diagnostic test, but the prioritization of the respective resources is often unaware that the specific

patient’s discharge depends on such a resource. These problems are further compounded by scale—

a large hospital system typically has to manage hundreds of patient admissions and discharges each

day.

To effectively address such a large-scale, high-impact operational problem calls for a systematic

data-driven approach which requires, first and foremost, a structured and interpretable representa-

tion of each patient’s clinical and administrative status throughout their hospitalization. In earlier

work, Safavi et al. (2019) introduced the terminology of barriers to discharge to dynamically rep-

resent the list of issues (e.g., “abnormal lab results”, “issues with mobility”, or “patient awaiting

placement at a facility”) that could potentially stand in the way of discharging a patient. Retro-

spective analysis shows, however, that not all barriers of a patient are resolved before discharge;

in other words, their resolution may not be necessary for discharge. Moreover, even among the

barriers that are resolved before discharge, there may be some whose resolutions were not neces-

sary for discharge. Conceptually, this suggests that there exists a subset of minimal barriers whose

collective resolution constitutes the minimal effort to enable a patient’s discharge. Our goal is to

identify the minimal barriers (i.e., approximately necessary and sufficient) for a given patient so

that they can potentially be resolved earlier than they would have been without any intervention.

1.1. Approach—Discharge Prediction, Resolution Likelihood, and Minimal Barriers

To solve this problem, we proceed in three steps. First, we leverage (with some modifications)

an existing neural network modeling approach (Safavi et al. 2019) which can accurately predict

how likely a patient is to be discharged within the next 24 hours as a function of different clinical

and administrative features. We then change the input and output representation of the model

in a way that allows us to provide clinically interpretable model predictions. Specifically, for the
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input representation, we propose a framework to dynamically represents a patient’s clinical and

administrative characteristics throughout her hospitalization in terms of what barriers to discharge

are active and resolved. If we consider a patient’s data as a combination of static features (such

as age and sex) which do not change during the hospitalization, and dynamic features (such a

blood pressure and mobility status), new barriers can be triggered (e.g., patient being placed on

intravenous narcotics), and remain open until they are subsequently resolved (the patient being

taken off of intravenous narcotics). For the output representation, using the discharge likelihoods

predicted by the model, we categorize patients by their discharge readiness: those highly likely to

be discharged, those unlikely to be discharged, and those “maybe” patients for whom discharge

could potentially be facilitated by resolving specific barriers. The concept of barriers is central to

how care teams approach the day-to-day management of inpatients, making the model’s output

easily interpretable and actionable.

Second, we use this input representation to train another set of machine learning models predict-

ing, for each existing barrier of a patient, the likelihood it will be resolved prior to discharge. This

step is critical given the complex, personalized nature of barriers which is influenced by several

attributes, such as frequency (how often a barrier is triggered in the population), overall resolution

likelihood (how often that barrier is resolved amongst those for whom it is triggered), and the

workload burden (the amount of work required to resolve the barrier prior to discharge). Intuitively,

this step assesses whether the respective barrier is necessary for the patient’s discharge.

Finally, these predictive models are subsequently combined with a mixed integer optimization

model to answer the following question: among a patient’s numerous barriers, does there exist a

small subset of those barriers which balances the likelihood that such barriers are resolved prior

to discharge and the increased likelihood of discharge for that patient given that those barriers

are resolved? We call this the minimal barriers (MIN) identification problem. Intuitively, among a

patient’s currently open barriers, the MIN should be defined as those which are both necessary and

sufficient for discharge. That is, they are likely to be resolved prior to discharge, and a patient’s

discharge is likely to occur given that these barriers are resolved.

The central modeling challenge posed by such a problem is that this is not merely about pre-

diction, as the outcome (a patient’s discharge) is dependent on actions (the resolution of barriers)

which may or may not take place. Understanding and addressing this question is a critical step

in achieving the broader aim of developing a transparent, centralized, scalable, and effective dis-

charge process for hospitalized patients. Although the framework outlined above is more broadly

applicable, in this work we limit our focus to surgical inpatients, i.e., patients who are cared for by

a surgical service and require hospitalization following their surgical procedure. One would need to

create additional clinical barriers that are relevant for the patient population of interest by working

with subject-matter experts from that clinical domain.
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1.2. Contributions

Our main contributions can be summarized as follows:

1. Using the barriers framework, we develop machine learning models to predict, for each patient

and each of their open barriers, the likelihood of the barrier’s resolution by the time of dis-

charge.

2. We incorporate these predictions into a prescriptive mixed integer optimization model that

identifies which barriers of a patient, if resolved, are most effective to increase discharge

timeliness. By jointly optimizing for both discharge likelihood and barrier resolution likelihood,

we are able to select a small set of realistic and impactful barriers. We also develop a scalable

iterative approach to solve this problem that finds optimal solutions for each patient in seconds.

3. Finally, we present a detailed empirical assessment using real patient data to illustrate the

effectiveness of the approach in identifying actionable patients and their respective MIN for

surgical inpatients at a large academic medical center. In doing so, we discuss how to calibrate

our approach to identify a practically reasonable number of patients and barriers. We also show

that our personalized barrier resolution likelihood approach is superior to a näıve approach

that does not incorporate such information. Further, we show that our approach is practically

tractable for the problem sizes of interest in practice. Lastly, we connect our work to recent

developments in prescriptive optimization to show how our framework generalizes beyond the

neural-network setting.

Implications for Practice: This study has several practical implications for hospital capacity

management. As hospitals increasingly focus on creating centralized management (such as capacity

coordination centers), the modeling and algorithmic framework and tools we have created signifi-

cantly enhance the ability to prioritize patients and specific actions per patient:

1. Categorize patients by discharge readiness: we classify patients into three groups by discharge

readiness—those highly likely to be discharged, those unlikely to be discharged, and those

“maybe” patients for whom discharge could potentially be facilitated by resolving specific

barriers. At full scale, this enables us to focus attention on only 20-30 patients on a given day

among hundreds hospitalized, for each of whom a small number of minimal barriers needs to

be identified.

2. Identify a small subset of barriers: by incorporating the likelihoods that a patient’s barriers

will be resolved prior to discharge, we are able to identify a small subset of barriers that both

require resolution and for which resolution is likely to result in discharge. (As we demonstrate

in Section 3, incorporating this likelihood is critical to identify a practical set of barriers to

focus on.)
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3. Enable barrier-specific interventions: finally, this prescriptive framework allows hospitals to

pursue targeted, barrier-specific interventions. For example, the subset of patients identified as

having a magnetic resonance imaging (MRI) barrier to discharge (per the prescriptive model)

could be prioritized for such imaging. Absent such information, it can be difficult for teams

managing a limited number of MRI machines to make strategic decisions about how best to

prioritize the use of such resources across all patients requiring that service.

While the focus of our work is on hospitalized surgical patients, we believe this framework is

broadly applicable outside of hospital operations and healthcare. The fundamental question we

address is as follows:

What is the best way to increase the predicted likelihood of a specified outcome by modifying

certain features under consideration while taking into account the likelihood such features must

change prior to that specific outcome or the cost associated with changing such features?

This has natural analogues in settings like revenue management (e.g., modeling the probability of

purchase with costs associated with a variety of possible intervention strategies) and supply chain

resilience (e.g., identifying interventions to decrease risk of various failures across the system).

Finally, while we focus on a setting in which the core underlying model is a neural network, our

framework is more broadly applicable (we discuss this in depth later).

1.3. Related Literature

Our research is closely related to existing research in healthcare operations, interpretable machine

learning, causal inference (particularly treatment personalization), and combinatorial multi-armed

bandits. We briefly summarize the connections to such work and how our work differs.

Healthcare operations: Inpatient capacity management and patient flow planning has been

studied from a variety of perspectives. Conforti et al. (2011) and Gartner and Kolisch (2014) look

at the problem from a hospital resource allocation perspective and employ mathematical models

to maximize patient flow and contribution margins, respectively, while ensuring each patient goes

through their respective clinical pathway. From inpatient bed capacity management perspective,

some studies such as Kim et al. (2014), McCoy et al. (2018) focus on predicting total discharge

volume on a given day while others such as Liu et al. (2010), Azari et al. (2012), Morton et al.

(2014) focus on predicting length-of-stay (LOS) for each individual patient. There has also been

work to understand discharge readiness as it progresses through a patient’s hospitalization, both

manually (De Grood et al. 2016) and using machine learning (Levin et al. 2012, Barnes et al.

2016, Safavi et al. 2019). In the present study, we extend our work Safavi et al. (2019) in which

we developed a neural network model to predict discharge likelihoods for surgical inpatients. We

use this underlying model as one input in our novel prescriptive approach while also incorporating

additional information about how likely a specific barrier is to be resolved by the time of discharge.
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Interpretable machine learning: Machine learning (ML) algorithms, able to process substan-

tial electronic clinical and operational data, offer an opportunity to create systematic, scalable, and

accurate predictions of which patients will be discharged (Temple et al. 2015, Karhade et al. 2018,

Van Walraven and Forster 2017). These algorithms, however, must be combined with an inter-

pretable clinical representation to create an output that helps guide the clinical discharge processes.

Rajkomar et al. (2018) proposed an automatized patient representation which analyze electronic

health records (EHRs) and construct relevant features in an unsupervised way. They demonstrate

that deep learning methods using this representation are capable of accurately predicting multiple

medical events such as readmission, prolonged length of stay from multiple centers without site-

specific data harmonization. In contrast, Bertsimas et al. (2020b) construct an expertise-driven

patient representation on top of EHR data and apply an optimal classification tree machine learn-

ing approach to predict several aspects of patient flow such as mortality and discharge within 24

hours; they argue that the black-box nature of deep learning models impedes adoption from doctors

and caregivers which are not engaged in the modeling process.

There has been a variety of work to explain black-box models (e.g., Ribeiro et al. 2016). However,

these frameworks typically account only for which features contribute to the current prediction

score, and as such, they do not answer the decision-making problem of “what interventions should

be made (i.e., barriers resolved) such that a desired outcome is achieved?” Fischetti and Jo (2018)

and Anderson et al. (2020a) tackle this problem by answering the question “what is the minimal

subset of features that needs to be modified in order to change the currently predicted class?”

They present MIP formulations for high-dimensional piecewise linear functions that correspond to

trained neural networks. Anderson et al. (2020a) demonstrate the effectiveness of their approach in

a well-known benchmark image classification problem. From methodological point of view, the work

of Anderson et al. (2020a) is the closest to the framework we are presenting in this study. Their

approach, however, lacks a few key characteristics to be applicable to the problem of identifying

MIN. First, they assume changing each feature is equally costly/likely to happen. In the context of

identifying MIN, the likelihood of each barrier’s resolution is an important parameter to take into

account. Ignoring this aspect has the potential to output a solution that includes barriers which,

if resolved, could significantly improve the patient’s score, but is very unlikely to be resolved.

Secondly, they also assume that all features can be modified independently of one another, whereas

the way we design our feature space ties the values of pairs of trigger and resolution features to

each other according to precedence relationships and does not allow making changes to the static

features. This is an important characteristic that needs to be taken into account in order to generate

feasible solutions in our setting.
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Personalized Treatments: In the causal inference literature, the Potential Outcomes Frame-

work (Rubin 2005) is often used to quantify the causal effect of a treatment for a given patient by

comparing the potential outcomes. The standard framework was developed for a binary treatment

(i.e., treatment or control), and has been adapted for multiple discrete or continuous treatments

since. Recent approaches such as Shalit et al. (2017) and Bica et al. (2020) use machine learning

to estimate personalized potential outcome function from historical observational data containing

both contextual features and a treatment feature. In our setting, resolution of an open barrier

could be thought of as a “treatment.” A major challenge with directly adapting such techniques

here is that there are typically multiple (potentially tens of) open barriers for a given patient and

more than one of them could require resolution prior to discharge (note, though, that there are

some recent literature on multi-arm personalized treatment problems, e.g., Bertsimas et al. 2016,

2020a).

Combinatorial Multi-armed Bandits: Lastly, the class of combinatorial multi-armed bandit

problems (CMAB) from reinforcement and online learning problems (Chen et al. 2016) share some

similarities with our approach. In CMAB, the objective in each round is to choose a subset of base

arms (collectively called a super arm) in a way that maximizes the expected gain. It is assumed

that each arm’s properties are only partially known and may become better understood in the

subsequent rounds only by choosing that arm. A variant of the problem is called Contextual CMAB

(CC-MAB) which incorporates side information associated with each arm in each round (Chen

et al. 2018). The exploitation phase of the CC-MAB problem resembles our problem very closely

in that it allows personalization (via context features) and combinatorial selection of multiple

arms. The key difference, however, is that they assume that the reward function (or the expected

outcome) is a known submodular function of the played arms, whereas in our case, the expected

outcome function is not known explicitly and must be learned from historical data.

1.4. Paper Structure

The remainder of the paper is structured as follows: we begin Section 2 by describing the discharge

prediction model adopted from Safavi et al. (2019) followed by the changes we made to the model

to make it amenable for the subsequent prescriptive optimization model. In Section 2.2, we for-

mally define the notion of barriers and describe the trigger-resolution framework to dynamically

represent barriers. Next, in Section 2.3, we introduce the predictive models for barrier resolution

likelihood, and subsequently incorporate the predictive models into a prescriptive optimization

model in Section 2.4 to identify the minimal barriers. Section 3 includes detailed empirical results

when the prescriptive approach is applied to data from a large academic medical center. In Section

4, we draw some final conclusions.
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2. Modeling Approach

In earlier work, Safavi et al. (2019) trained machine learning models to reliably predict whether

a given patient will be discharged from the hospital within the next 24 hours. Such a predictive

model takes as its input a variety of clinical and administrative data extracted from a hospital’s

EHR and provides a prediction score (in [0,1]) as its output which can be interpreted as the

likelihood that the patient will be discharged within 24 hours. They tested three commonly used

machine learning algorithms (logistic regression, classification trees, and neural networks) with

their respective hyperparameters optimized and ultimately selected a feed-forward neural network

(with a single hidden layer with 100 nodes) which outperformed the others across all evaluation

metrics.

Data elements included in their study were structured, including either numerical values (e.g.,

laboratory results) or multiple choice of predetermined text phrases (e.g., diet descriptions within

diet orders). A summary of data included is shown in Table SM1 in the Supplemental Material.

Inclusion of a data source was determined based on (i) whether the clinical care teams currently use

it to evaluate a patient’s discharge readiness, (ii) the reliability of the data, and (iii) the consistency

of usage by different services. From the data included, they extracted two types of features: static

and dynamic. The static features, s, refer to the elements that do not change throughout the same

hospitalization (e.g., age, sex), while dynamic features are those that can change (e.g., whether

patient is receiving intravenous narcotics). The first dynamic feature they used denoted the current

length of stay, d, expressed as the number of days elapsed since admission. To further represent

a patient’s dynamic status, they introduced the concept of barriers. A barrier could be specific to

a type of surgical procedure or generalizable across multiple types of surgical procedures. A list

of 149 potential barriers were identified in Safavi et al. (2019) by a multidisciplinary team that

included physicians, nurses, case managers, physical therapists, and nutritionists.

We note that Safavi et al. (2019) also uses the term milestone to represent a patient’s dynamic

status. In the subsequent sections, we opted for using a single term, barrier, for simplicity since

not having achieved a milestone can be interpreted as a barrier. We used the same data sources

(consequently, the same list of barriers) as in Safavi et al. (2019), but needed to make a number of

changes to the feature representation and the discharge prediction model they proposed in order

to make it amenable for a prescriptive optimization approach. We next describe these changes.

2.1. Changes Made to the Discharge Prediction Model

Data: To conduct our study, we use data from a 1019-bed academic medical center where more

than 36,000 surgical procedures are performed annually. We include all adult inpatients (aged 18

years or older) who had a surgical procedure completed during their hospitalization, were cared for
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by a surgical team on an inpatient floor during their hospitalization, and were discharged between

May 1, 2016, to September 30, 2019. Overall during the study period, there were 52,724 unique

hospitalization episodes with average length of stay of 4.45 days. To mimic how a prescriptive

model might work in practice (with clinical databases updated once daily shortly after midnight),

we capture data at a daily level. In particular, for a given patient on a given day, we use all

data collected prior to that day (i.e., until 23:59 on the day prior). This time was used because

the clinical and administrative database is updated every 24 hours, starting at 23:59. Therefore,

our central unit of observation is a patient-day pair, and our outcome of interest is whether the

patient was discharged within 24 hours (i.e., on that calendar day). The predictive models discussed

subsequently, predict, for each patient, in each day they are in the the hospital. During the study

period, the average number of patients on which the models predicted was 188.2, amounting to

overall 234,649 patient-day pairs. The average number of discharges per day was 42.3. At the

outset, we split the data intro three sets: training (60%), validation (20%), and testing (20%). All

results presented later are based on test set (out-of-sample) performance based on models built

using the training and validation data. To create these sets, we did sampling stratified by patient

encounter, so that any given hospitalization only occurs within one of the three data sets. This

study was conducted with approval from the hospital’s Institutional Review Board.

Model Input and Performance: For the purposes of this study, we also trained the same

three models (logistic regression, classification tress, and neural networks) as in Safavi et al. (2019)

using a modified feature vector representation which transforms dynamic data into features using

a trigger-resolution framework where each barrier is represented by a pair of binary features.

Dynamic representation of barriers in the feature vector is detailed in Section 2.2. Performance of

the models (shown in the Supplementary Material Table SM2) were similar to the ones reported

in Safavi et al. (2019). Given its superior discriminative performance (as measured by area under

the receiver-operator characteristic curve, or AUC ), the neural network model was implemented in

practice at our institution and therefore we use this model structure as the basis of the discharge

prediction part of our approach.

Model Output: Next, to better reflect clinical and operational ambiguity in discharge predic-

tions, we convert the continuous prediction score into three discrete predictions (as opposed to

two); in particular, instead of a binary Yes or No prediction, a third Maybe category is also used,

and the groups are defined as follows (given discharge prediction score s):

predict

No, s∈ [0, S−)
Maybe, s∈ [S−, S+]
Yes, s∈ (S+,1]

where S− and S+ fixed thresholds are defined so that the No and Yes categories have high negative

and positive predictive power (NPV/PPV), respectively. Precisely,
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Table 1 Test sample discharge prediction categories and comparison of actual discharge times

Prediction # (%) of Leave within Leave in Leave after
category Observations 24 hours 24-48 hours 48 hours

No 28146 (59.2%) 1379 (4.9%) 3434 (12.2%) 23333 (82.9%)
Maybe 14024 (29.5%) 5171 (36.9%) 3702 (26.4%) 5151 (39.7%)
Yes 5370 (11.3%) 4072 (75.8%) 845 (15.7%) 453 (8.40%)

• S− was chosen so that 95% of the (training sample) predictions that fall under No category

were not discharged within 24 hours (NPV=95%); and

• S+ was chosen so that 75% of the predictions that fall under Yes category were discharged

within 24 hours (PPV=75%).

These percentages were based on clinical input about tradeoffs of making the respective predictions.

Based on the training and validation data, we set the thresholds as S− = 0.17 and S+ = 0.62. The

performance of these choices on the test data is shown in Table 1.

Note that the Yes and No categories make up of approximately 70% of all predictions. Moreover,

these two correspond informally to “leave within 24 hours” and “leave after 48 hours,” respectively.

On the other hand, most of the patients who leave between 24-48 hours fall under the Maybe

category. Combining this with the insight from Safavi et al. (2019) that “false positive patients

without a clinical reason to stay are typically discharged within 24 to 48 hours”, the Maybe

category roughly corresponds to the potentially actionable patients for the purposes of saving bed-

days. Therefore, we hypothesized that the Maybe patients would be the most prevalent

patients to have specific MIN identified; we perform a detailed assessment of this hypothesis

in Section 3.

Calibration: A critical notion for the meaningful intreptation of clinical prediction models in

practice is that of model calibration (Huang et al. 2020, Steyerberg 2019). For a predictive model

h : F → [0,1], where F is the feature space and the observed outcome data is a binary y ∈ {0,1},

model calibration requires assessing how well h(x) estimates P(y = 1|x), i.e., the probability that

y = 1 given feature vector x ∈ F . There are numerous approaches to assessing model calibration.

For our purposes, we follow one of the common approaches based on the Brier score for h (Huang

et al. 2020). For a set of data D= {(xi, yi)}ni=1 ⊆ F ×{0,1}, it is defined as

BrierD(h) :=
1

n

∑
i

(yi−h(xi))
2
.

Lower Brier scores typically correspond to better calibration for a given prediction task.
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In order to assess whether a given model h is properly calibrated on a data set D, we apply

the Spiegelhalter Z-test (Huang et al. 2020). In particular, a model is defined as calibrated per a

Spiegelhalter test (at the 0.05 level) if SpiegD(h)≤ 1.96, where

SpiegD(h) :=

∣∣∣∣∣
∑

i(yi−hi)(1− 2hi)√∑
i(1− 2hi)2hi(1−hi)

∣∣∣∣∣ ,
and hi := h(xi). We chose to apply this definition because it is easy to use in settings where

many models are being tested and where it is not feasible to visually inspect usual calibration

plots; indeed, this is important in the subsequent section on barrier resolution models. (Note that

Spiegelhalter tests are sometimes interpreted via p values instead. In particular, a p value can

be found by computing p = 2 · Φ(−SpiegD(h)), where Φ is the cumulative density function of a

standard normal; therefore, calibration corresponds precisely with failing to the reject the null at

a significance level of 0.05.)

Given this definition, we verified that the discharge prediction model (as defined above) is prop-

erly calibrated on the training set. The Brier scores of this model on the training, validation, and

testing sets were 0.104, 0.110, and 0.110, respectively; a calibration plot is shown in Figure SM1.

The model was not calibrated per a Spiegelhalter test on the validation nor testing sets. However,

we believed the comparable Brier scores and visual inspection of the calibration plots suggested the

models were sufficient and so we did not apply any modifications (such as Platt scaling or isotonic

regression) to the model after the fact.

2.2. Dynamic Representation of Barriers

We represent the dynamic status of a patient’s barriers by using a trigger-resolution framework

where each barrier is encoded by a pair of binary features: (1) a trigger feature that marks whether

the barrier has been activated during the hospitalization; and (2) a resolution feature that signals

whether the barrier has been resolved. Figure 1 provides an illustrative example of how the trigger-

resolution framework could be used to capture the dynamic state of a patient from the moment

the patient is admitted and until discharge.

Each vertical block in Figure 1 represents a single day during the hospitalization. The first hor-

izontal block illustrates the events’ trigger and resolution timeline. Each type of event (e.g., diet,

physical therapy, medication, etc.) is marked with a different number, when it is triggered (white

rectangles), and when it is resolved (gray circles). The second horizontal block lists the event

descriptions denoted by the rectangles and circles in the block above. Finally, the third horizontal

block illustrates the feature vector representation of the patient for each day during the hospital-

ization. Entire feature vector xi = (si, di, ti,ri) of observation i is composed of four components as

described above: static, days since admission, trigger, and resolution features, respectively. In this
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Figure 1 Example timeline of a total knee replacement patient’s hospitalization

specific example, the static features are illustrated by the first four binary values (s1, s2, s3, s4) =

(0,1,1,0). For the purposes of illustration, let us assume that these features represent, respectively,

“whether the patient’s sex is Female”, “whether the patient’s age is over 65”, “whether the patient

had a knee replacement surgery”, and “whether the patient is on a Cardiology service floor”.

Observe that these four features do not change throughout the hospitalization, as expected. The

number of days since admission is denoted by d on the second line of the feature vector and is

incremented by 1 each day. Finally, the third and fourth lines in the feature vector indicate whether

each barrier (seven of them illustrated in this example) is triggered and resolved, respectively.

According to Figure 1, right after the surgery, the patient was unable to have a regular (oral)

diet, had a need to be seen by a physical therapist (PT), and was on intravenous (IV) narcotics. On

the next day, two of the barriers from the previous day (i.e., diet and PT consult) were resolved,

but a new one was introduced as a suction drain was placed. On Day 2, several other barriers were

introduced. The patient was assessed to need a post acute care facility after discharge, hence a

referral to facility was placed awaiting for acceptance. Moreover, patient appeared to have some

heart issues indicated by an abnormal cardiac rhythm. As a result, a consult order to Cardiology

was placed. On the third and last day, patient was taken off of the IV narcotics and started on oral

(PO) narcotics for the pain. A rehab facility accepted the patient and a cardiology specialist saw

the patient.

It can be seen from the barriers representation on the Day 3 that the patient was discharged

without two of the triggered barriers resolved: “Suction drain” and “Abnormal cardiac rhythm.”

This may seem like an anomaly, but in fact it is not unusual with surgical patients. Depending on

which cohort a patient belongs to (type of surgery, age, post acute care need, etc.), the resolution of
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a barrier may not be necessary for discharge. In this example, the patient is discharged to a rehab

facility where the patient will continue to receive professional medical care, which means as long

as it did not constitute a major immediate problem for the patient (which may be inferred from

a cardiologist signing off after the consult), a cardiac rhythm issue could be kept under control at

the next care facility. Similarly, the suction drain can be removed at a later time, if, for example,

the patient is discharged to a rehab facility. Thus, in itself, the fact the suction was not removed

does not mean necessarily that the patient could not be discharged. In fact, our analysis shows

that, on average, only about 42.7% of the barriers which get triggered at some point during the

hospitalization of the patient get resolved by the time of discharge. This highlights the importance

of identifying the barriers that are critical and necessary for patient’s discharge. Identifying this

subset of necessary and sufficient barriers among many barriers that might be triggered is key to

enabling a proactive approach to facilitating discharges.

Table 2 illustrates the heterogeneity in barrier occurrences and resolutions for a subset of ten

barriers. Specifically, observe that some barriers such as “pending physical therapy (PT) dis-

charge disposition recommendation,” “irregular diet,” and “on intravenous narcotics” occur in

many patients, while others mostly occur only in a smaller fraction (for example, only 1.4% of

patients have an “on heparin” barrier during their hospitalization). There is also heterogeneity in

the percentage of patients for which the respective barrier is resolved prior to discharge. The data

in Table 2 imply that not all barriers are equally likely to be resolved prior to discharge. Moreover,

the importance of a barrier’s resolution for a patient’s discharge is not identical across different

patients, specifically, for some the barrier might be critical to allow discharge, whereas for others

it might not prevent the discharge. Taking this heterogeneity into account, in the next subsection,

we train a new set of predictive models to predict, for a given patient, how likely an open barrier

of the patient is to be resolved prior to discharge.

2.3. Barrier Resolution Prediction Models

The feature vector described in Section 2.2 is designed to represent a patient’s current status,

including their barriers. Therefore, by extracting the feature vector for each (historical) patient at

their time of discharge, we can construct a binary outcome vector where each element represents

whether the patient was discharged with the respective barrier resolved. The availability of this

historical data allows us to train a model for each barrier to predict whether an open barrier of

a patient will be resolved by the time of discharge. This requires training a resolution prediction

model for each barrier included in the model. To develop such models, we first filtered out the

barriers which occurred in fewer than 1000 observations in the combined training and validation

sets (i.e., approximately 0.5% of observations) or were resolved less than 5% of the time, in order
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Table 2 Ten barriers and their respective out-of-sample summary statistics. “Patient level” indicates the

percentage of patients for whom the barrier was triggered (and subsequently resolved prior to discharge), while

“Patient-day level” provides the percentage of hospital days for which the barrier was activated and then the

percentage where it was resolved (after activated first).

Barrier
Patient level Patient-day level Resolution model

% triggered % resolved % open % resolved AUC Brier score

Pending Physical Therapy’s
97.5 44.9 61.2 44.1 0.80 0.18

discharge recommendation
On oral narcotics 70.2 22.6 49.6 21.1 0.73 0.15
Irregular diet 59.2 59.0 44.8 41.2 0.87 0.14
On intravenous narcotics 58.2 78.9 23.9 82.7 0.81 0.11
Urinary catheter 41.5 84.3 25.2 79.9 0.78 0.12
On oxygen device 37.4 91.8 24.1 80.6 0.78 0.13
No urine occurrence 34.2 86.0 17.0 82.0 0.86 0.10
Awaiting post-hospital

15.0 79.8 19.0 81.9 0.76 0.12
facility acceptance

Chest tube 10.0 93.5 7.1 93.0 0.73 0.06
On heparin 1.4 93.2 0.5 92.7 0.82 0.06

to ensure sufficient data. After this initial filtering step, the barrier list was reduced from 146 to

103.

At this stage, our goal for each barrier was to build a model that predicted, for any observation

(patient-day) with that barrier open, whether that barrier is resolved by the time of discharge (given

the patient’s current feature vector). Our primary objective in doing so was to create models with

high discriminative power with respect to the resolution outcome (i.e., high AUC) while ensuring

that the models were appropriately calibrated on the training/validation sets. In particular, for

each of the 103 barriers we performed the following:

1. On the subset of the training data with that barrier open, we train a sequence of ℓ1-regularized

logistic regression models. In particular, we use glmnet (Friedman et al. 2010) to compute

the regularization path for regularization parameters λ1 > λ2 > · · · > λmin > 0 (we use the

default automated grid choice and remove any ℓ2 regularization). Using the parameter λ1se

corresponding to the parameter for the model within one standard error of that with the lowest

cross-validation error (as performed only based on the training set), we exclude any models

with λ < λ1se. (The λ1se choice is based on standard practice recommendations, cf. Hastie

et al. 2009.) This results in a set of regularized logistic regression models Mλ1
, . . . ,Mλ1se

. We

assume that we have K such models (i.e., |{λ1, . . . , λ1se}|=K).

2. We also train K ordinary logistic regression models Uλ1
, . . . ,Uλ1se

defined as follows: for each

model Mλ on the regularization path, we identify the set of nonzero variables for that model

and train an ordinary (unregularized) logistic regression model (again with outcome being

whether the barrier is resolved) but only on the subset of features for which the corresponding
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coefficient in Mλ is nonzero. (The motivation for training such unregularized models as well in

this setting is that regularization is known to potentially adversely affect model calibration.)

3. For the set of 2K logistic regression models, we exclude any models with validation AUC

below 0.5; we also exclude any models which fail to calibrate per a Spiegelhalter test (either

on the training data or on the validation data). Among the remaining models, we pick the

one that maximizes AUCval − Brierval − max{AUCtrain − AUCval,0}, where AUCD denotes

the AUC on data set D. The motivation for this choice is that we simultaneously want to

maximize validation AUC while minimizing Brier score and controlling the imbalance between

the training and validation AUCs.

Based on this process, there were 7 barriers for which there are no calibrated logistic regression

models with validation AUC above 0.5; we excluded these, resulting in a final 96 barriers and

their corresponding prediction models (the final list of barriers can be found in SM4). Therefore,

for each observation, we can obtain the personalized barrier resolution likelihood vector, denoted

L∈ [0,1]96, by concatenating the prediction scores of all resolution prediction models (Lj represents

the resolution likelihood for barrier j; the dependence on the observation is omitted for readability).

Table 2 includes the AUC and Brier score for a sample of 10 of these barriers. Further discussion of

the relationship between the number of observations with a given barrier and out-of-sample AUC

is included in the Supplemental Material.

Having trained the discharge prediction model and the barrier resolution prediction models,

we next describe how these predictive models can be leveraged to formulate and solve the MIN

problem, which in turn can be used to inform decisions on which barriers to target for each patient.

2.4. Prescriptive Model — Identifying Minimal Barriers

As was highlighted in Section 2.2, not all barriers of a patient are resolved prior to discharge. More-

over, among the barriers that are resolved before discharge, there may be some whose resolutions

were not necessary for discharge. Conceptually, this suggests that there exists a subset of barriers

(we call them minimal barriers, or MIN) whose collective resolution constitutes the minimal effort

to enable a patient’s discharge. Our goal is to identify such a set of barriers.

To define our objective, we start with an idealized model. In particular, for a subset S of a

patient’s current barriers, let Pres(S) denote the (idealized) probability that all the barriers in S

are resolved prior to discharge, and let Pdc(S) denote the (idealized) probability that the patient

is discharged within 24 hours given that the S barriers are resolved. We aim to solve the problem

of finding S that maximizes

max
barriers S

Pres(S) ·Pdc(S),

the product of the probability of the barriers being resolved and the probability of discharge given

that resolution. An optimal barrier set S∗ to this problem balances the likelihood of those barriers
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being resolved with the contribution that such barrier resolution makes to a patient’s discharge

likelihood. The advantage of such an objective is that it implicitly accounts for the fact that some

barriers are unlikely to be resolved even if they contribute significantly to discharge likelihood,

while other barriers might be likely to be resolved but make little or no difference to a patient’s

progression towards discharge. To solve this idealized problem, we need a way of estimating the two

central quantities Pres and Pdc. The latter can be estimated using the discharge prediction model

described in Section 2.1 and the former can be estimated using the barrier resolution prediction

models described in Section 2.3.

We now translate this idealized problem of identifying a patient’s minimal barriers into an

optimization problem where the decisions on the open barriers (“whether the barrier should be

selected to resolve”) are reflected as changes in the current feature vector xc of a patient to a

modified vector x (in this section, we suppress the index for observation i to make the exposition

simpler). Consequently, we try to decide which features to modify, by allowable changes, so that

the product of the following two objective functions is maximized:

• J1(x;x
c): the discharge likelihood within 24 hours if all selected barriers are resolved; this

approximates the idealized Pdc.

• J2(x;x
c): the product (among the selected barriers S represented in changing xc to x) of

each of the likelihoods that the given barrier will be resolved before discharge; this approxi-

mates Pres(S), the probability of the barriers in S being resolved, assuming all barriers resolve

independently of one another.

The functions J1 and J2 are computed using the predictive models described in Sections 2.1 and

2.3, respectively, where x and xc are the modified feature vector and the original feature vector of

the patient, respectively.

Using these two objectives, we define the composite objective function J as the product J = J1 ·J2

and we call this the overall likelihood given a subset of barriers. This is directly analogous

to the idealized objective we discussed at the beginning of Section 2.4, with J1 estimating Pdc and

J2 estimating Pres. Instead of optimizing J directly, we adopt a constraint-based multiobjective

optimization perspective. In particular, we compute the Pareto frontier for J1 and J2 by solving

instances of maximizing J2 subject to (iteratively updated) lower bounds on J1. We proceed by

describing the structure of the two different function J1 and J2.

Structure of J2: Notice that the second objective function J2 can be calculated by multiplying

the personalized resolution likelihoods L of the selected barriers readily available from the barrier

resolution prediction models described in Section 2.3. To linearize J2, we take the natural logarithm

of the personalized likelihoods log(Lj) so that maximizing the sum of log-likelihoods of the selected

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.24.23287694doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.24.23287694


Khaniyev et al.: Identifying minimal barriers to discharge 17

barriers would be equivalent to maximizing the likelihood that all selected barriers will be resolved,

which we refer to as their collective resolution likelihood. Addition of a new barrier to the list

of selected barriers always reduces the collective resolution likelihood. Therefore, this objective

function implicitly favors reducing the number of selected barriers.

The advantage over simply minimizing the number of selected barriers is that this way we are

able to account for the differences in the resolution likelihoods of barriers. It is intuitive to conclude

that one would prefer selecting a list of two barriers both very likely to be resolved by the time of

discharge rather than a single barrier which will almost surely not be resolved. In this way, J2 can

be generally thought of as a measure of cost (higher J2 corresponding to lower cost), and in other

settings we expect that J2 might be more directly defined using actual costs.

Structure of J1: On the other hand, optimizing with the first objective function, J1, is a more

challenging task for two reasons: it is implicitly expressed through a trained neural network; and

the underlying decision space is discrete (i.e., binary decisions for whether each barrier is resolved)

and enumeration is not practically feasible. To address this, we make use of the work of Anderson

et al. (2020a) who proposed and evaluated tractable mixed integer program formulations to find

the minimal subsets of features that leads to a desired change in neural network predictions. To

apply their framework, we address two specific modifications:

• Not all features are modifiable; only the resolution features of open barriers can be changed

from 0 to 1. In other words, the only allowed action is to “resolve an existing barrier.”

• The objective is not to minimize the number of selected barriers that can raise prediction score

to a predefined level, but instead to maximize the function log(J2) subject to the prediction

score being at least some threshold z0.

In the Supplemental Material, we include a detailed exposition showing how these modifications

can be made to yield a linear MIP formulation of the subproblem

[SP(z0;x
c)] max

feasible x
logJ2(x;x

c)

s.t. J1(x;x
c)≥ z0,

where z0 ∈ [0,1] is a fixed threshold and xc is a patient’s current feature vector. (The underlying

decision variables are binary variables capturing whether each barrier is resolved.) Note that the key

to this reformulation is using the underlying neural network structure of the model for predicting

discharges. The resulting formulation has 2h+ pb variables and 4h+2pb +1 constraints, where h

is the dimension of the hidden layer in the neural network (in our case, 100) and pb is the number

of barriers (in our case, 96).
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2.4.1. An Iterative Algorithm to Optimize J : Given the formulation of SP as a MIP

which is amenable to commercial solvers, we are now ready to proceed with an algorithm for

maximizing J for a given observation xc. As noted earlier, we do so by solving SP(z0;x
c) across a

spectrum of thresholds z0 ∈ [0,1]. The corresponding algorithm is shown in pseudocode in Algorithm

1, which we refer to as the Barriers-to-Discharge (or BtD) algorithm. The optimal solution x∗

to a given feature vector xc identifies a set of prescribed (or minimal) barriers, namely, the

MIN set. The algorithm follows the usual approach used when computing Pareto frontiers, namely,

instead of solving SP(z0;x
c) for all choices of z0 ∈ {0, ϵ,2ϵ, . . . ,1}, we only solve it for a (typically

smaller) set of values.

In the remainder of the paper, we make use of two important definitions:

Definition 1 (Feasible patient) Given a patient observation with corresponding feature vector

xc, we say that the observation is feasible if there exists some set of open barriers such that J is

strictly improved (up to tolerance ϵ) relative to the value of J when no open barriers are resolved;

an infeasible patient has no prescribed barriers. In mathematical notation, this is equivalent to there

existing some feasible feature vector x such that J(x;xc)>J(xc;xc) = J1(x
c).

Definition 2 (Actionable patient) Given a feasible patient with feature vector xc, we say that

the patient is actionable with likelihood J∗, where J∗ := J(x∗;xc) as computed via the BtD

algorithm. For every J ′ <J∗, we say that the patient is actionable above threshold J ′.

Algorithm 1 BtD(xc, l, ϵ)

Initialize: z0← J1(x
c,xc); Jmax← 1; Jbest← 0; and xbest← xc

while Jbest <Jmax do

[feasible, J1, J2,x
∗] ← SP(z0;x

c)

if not feasible then

break

else # SP is feasible

J← J1 · J2 and Jmax← J2

if J > Jbest then

Jbest← J and xbest← x∗

end if

end if

z0 ← J1 + ϵ

end while

return xbest, Jbest
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3. Empirical Results

In this section, we assess the performance of our proposed approach on real data from a large

academic medical center. More specifically, we answer the following questions:

1. How does the composite objective function J perform in discriminating likelihood of discharge

given a selected subset of barriers?

2. Does the BtD algorithm primarily identify Maybe patients as those who are actionable above

certain thresholds as initially hypothesized? How does a patient’s actionability relate to their

initial discharge score, and how many barriers are typically prescribed?

3. What lower threshold Jmin should be chosen for actionable patients to yield a practically

meaningful number of patients on a daily basis? Which barriers tend to be prescribed as

minimal barriers, and how should these be interpreted in this context?

4. What is the contribution of personalized resolution likelihoods?

5. How does the BtD approach compare to complete enumeration in terms of computational effi-

ciency? How can our approach be modified in settings with other (e.g., tree-based) predictive

models?

We conducted our analysis on the out-of-sample test sample, i.e., 47,540 observations (patient-

days) from 10,637 unique patients. We implemented the BtD algorithm in R and utilized Gurobi

8.1.1 as a mixed integer optimizer, with default parameters and a single thread, to solve the

SP(z0;x
c) MIP instances within the BtD algorithm. All the experiments were carried out on a

laptop with processor 3.1 GHz Dual-Core Intel Core i5, memory 8 GB 2133 MHz LPDDR3. In the

Supplemental Material, we also include two additional use cases: identifying bed-days attributable

to specific barriers and visualizing patient progression.

3.1. Efficacy of the Composite Objective Function

We begin by assessing how well the composite objective function J performs in capturing the

idealized definition of MIN. Such idealized barriers should satisfy two conditions simultaneously:

(I1) that they all must be resolved by the time of discharge and (I2) the patient must be discharged

within 24 hours after all of them are resolved. To test this, we performed the following analysis:

for each test set observation, we randomly selected a subset of up to five of the patient’s open

barriers and calculated the objective function value J corresponding to the modified feature vector

obtained by resolving the selected subset of barriers; then, retrospectively, we labeled each instance

as follows:

label =

{
1, if both conditions I1 and I2 were satisfied

0, otherwise.

Overall, in this experiment 7.2% of observations (95% confidence interval [6.97%,7.44%]) had

a label of 1. We checked whether higher values of J were correlated with the label 1 by plotting
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the ROC curve of J versus the labels and calculating the AUC. Overall, the AUC was 0.783

(95% CI [0.775,0.791]); within the Yes/Maybe/No subgroups, Yes patients had an AUC of 0.905

([0.891,0.913]), Maybe patients 0.887 ([0.877,0.896]), and No patients 0.766 ([0.756,0.776]). This

suggests that J is particularly effective at discriminating between patients’ labels within the Yes

and Maybe subsets of patients, which is critical given that the Maybe group was highlighted

earlier as the central group of patients for whom identifying barriers is of special interest. In

the Supplemental Material, we include detailed analysis on the performance of J with respect to

conditions I1 and I2 and as a function of the number of selected barriers.

3.2. Identifying actionable patients

To better evaluate the BtD algorithm and assess our hypothesis that Maybe patients account for

the majority of actionable patients, we solved the BtD algorithm for all 47,540 observations. The

corresponding results regarding the percent of patients who are actionable at different likelihood

thresholds Jmin ∈ {0,0.25,0.5,0.75} are shown in Figure 2 (2(a) shows percent actionable for a given

initial discharge score, while 2(b) shows the empirical cumulative density functions for actionable

patients above thresholds).

Feasibility: The percent of patients at a given discharge score who are feasible is shown with

Jmin = 0 in Figure 2(a). We observe that the percent of feasible patients generally decreases linearly

with increasing baseline discharge scores. As a given observation being feasible coincides with

the existence of at least one MIN (per the BtD algorithm), this behavior is consistent for our

expectations of how MIN would behave: for patients who are in their current state unlikely to

be discharged, there likely exist some barriers to their discharge which could raise their discharge

likelihood (while also being reasonably likely to be resolved, given that the patient is further

from discharge); at the same time, patients with increasingly higher scores are more likely to be

discharged in their current state, so it is less likely that there exists barriers which not only increase

the patient’s discharge likelihood, but importantly are also likely to be resolved. This is particularly

important given the patient heterogeneity noted earlier—not every barrier is always resolved by

discharge (and indeed, some barriers are resolved only in a minority of patients), and some barriers

only occur in specific patient subpopulations (which is particularly salient given that the data

includes surgical patients across all services).

Actionability at different thresholds: Not surprisingly, increasingly larger minimum thresh-

olds Jmin affect the percent of patients who are actionable. We also observe that the percent

actionable above threshold Jmin peaks at approximately an initial discharge score of Jmin across

the different choices shown. Overall, the qualitative behavior seen here suggests that the optimiza-

tion approach we have taken to identifying actionable barriers aligns with the clinical intuition we
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Figure 2 Percent of actionable patients at a given score and with given value of Jmin, where Jmin ∈

{0,0.25,0.50,0.75}. Two vertical lines for Maybe patient score cutoffs are shown; note that Jmin = 0

corresponds to feasible patients.
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of Jmin (initial scores grouped to second decimal)
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(b) Cumulative percent of actionable patients at a given discharge score and value of Jmin.

The cumulative percent of all patients at a given score is shown as a dashed line for reference.

used to approach this problem, namely, that the composite objective would capture the trade-off

between the likelihood of improving a patient’s discharge and the likelihood of being able to resolve

barriers to put the patient in that improved discharge state.

We also note that the changing thresholds Jmin highlight the inherent tradeoff between the

number of patients identified as actionable above such a threshold and how likely patients are to

be discharged with such barriers resolved. We return to this point in more detail in Section 3.3.

Proportion of Maybe patients: Figure 2(b) confirms our initial hypothesis: while Maybe

patients account for 29.5% of observations in the test set (Table 1), they represent a disproportion-
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ately large share of actionable patients across a range of thresholds. For example, at a threshold

of Jmin = 0.25, Maybe patients account for 67.3% of actionable patients, while at a threshold of

Jmin = 0.5, Maybe patients account for 81.3% of actionable patients. Not surprisingly, though, we

do see that for Jmin sufficiently large (in our case, Jmin > 0.64), Maybe patients are no longer the

majority of those identified as actionable (the same is true of Jmin sufficiently small, in our case

Jmin < 0.17).

Number of prescribed barriers: Among all feasible patients, the number of open barriers is

10.8 on average (median of 10, range of 1-38), while the number prescribed for such patients is 3.1

on average (median of 2, range 1-21). This suggests that the BtD algorithm is effective at reducing

the list of barriers for each patient to a more reasonable number (28.6% of the list of open barriers

on average, 25.0% on median, range of 3.7% to 100%). Consistent with this behavior, the number

of prescribed barriers differs noticeably across the patient groups: No patients are prescribed an

average of 3.6 barriers (median 3, range [1,21]), Maybe patients 1.2 barriers (1, [1,4]), and Yes

patients 1.0 barriers (1, [1,2]).

Finally, as the number of open barriers is negatively correlated with initial discharge score

(correlation coefficient of −0.386 for feasible patients), we expected that the number of prescribed

barriers would also be negatively correlated with initial discharge score; indeed, we found this to

be the case (correlation coefficient of −0.477).

3.3. Model performance—Thresholds for actionability and Barriers selected

Given an overall understanding of how actionability relates to a patient’s underlying discharge

likelihood, we now focus on addressing some specific questions:

• What choice of Jmin gives a reasonable number of actionable patients which is practically

feasible to review on a daily basis?

• Which barriers are typically prescribed? What is a clinical interpretation of these barriers?

• As observed earlier, Maybe and Yes patients are often prescribed a single barrier. How often

is this barrier the one with the highest personalized resolution likelihood?

Model performance across choices of Jmin: To assess the model performance, we consider

several key metrics:

(M1) the percentage of actionable observations for whom selected barriers were all resolved by the

time of discharge;

(M2) the percentage of observations meeting criterion (M1) who were discharged within 24 hours

after all selected barriers were resolved; and

(M3) the percentage of observations for which both (M1) and (M2) were satisfied.
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We evaluated these across various thresholds Jmin; the corresponding results are shown in Table

3. We also include several additional variables, such as values of the composite objective function

and the percent of actionable patients relative to all patients.

Table 3 Prescriptive model’s test-set performance at different choices of Jmin. The percent shown next to the

number actionable is relative to all test-set observations. Averages for J∗,J∗
1 , J

∗
2 , and “# Barriers” are based on

those values as computed using the BtD algorithm. Recall that J∗
1 corresponds to a discharge likelihood and J∗

2 to

a barrier resolution likelihood.

Jmin

# Actionable # Barriers Average value Metric (%)
above Jmin Open Prescribed J∗

1 J∗
2 J∗ M1 M2 M3

0.0 33024 (69.5%) 10.81 3.07 0.25 0.62 0.18 64.2 59.5 38.2
0.1 18562 (39.0%) 8.73 1.85 0.38 0.74 0.28 71.8 65.6 47.1
0.2 11364 (23.9%) 8.20 1.57 0.47 0.79 0.37 75.2 71.0 53.4
0.3 6909 (14.5%) 7.84 1.38 0.55 0.82 0.45 77.6 75.8 58.8
0.4 3962 (8.3%) 7.51 1.25 0.62 0.85 0.53 78.6 79.6 62.5
0.5 1983 (4.2%) 7.22 1.16 0.69 0.88 0.61 80.0 84.6 67.6
0.6 877 (1.8%) 7.06 1.10 0.76 0.90 0.69 79.5 86.8 69.0
0.7 315 (0.7%) 7.14 1.06 0.83 0.92 0.77 81.6 87.9 71.7
0.8 79 (0.2%) 8.10 1.08 0.89 0.94 0.84 89.9 87.3 78.5

As expected, we see that the percent of actionable patients who have all prescribed barriers

resolved and are discharged within 24 hours of their resolution (i.e., metric M3) increases as

the threshold for actionability Jmin is increased, highlighting the tradeoff between the number of

actionable patients identified and the percent of those patients for whom the presribed barriers

meet metric M3. In our setting, with an average daily surgical patient census of approximately

200 patients, we believe that a reasonably sized list of actionable patients would account for 3-5%

of patients (approximately 5-10 patients); therefore, Jmin = 0.5 would be a reasonable choice. One

potential use case for such a list would be for targeted review on a daily basis by a multidisciplinary

clinical team, identifying any process- and resource-related barriers that can be addressed and

prioritized.

Overall, 69.5% of all patients are feasible. We believe that infeasible patients are likely those at

an ambiguous stage in their care pathway, with some of the barriers they will encounter during

their hospitalization not even been triggered yet (e.g., placing a request for a post-hospital facility).

The reason we used the trigger-resolution framework to represent barriers was that introduction

(trigger) of a barrier in itself will likely reduce the discharge prediction score, but it will also make

possible a resolution whose contribution—if it occurs—to the prediction score will be higher than

the score reduction caused by the triggering of the barrier. Indeed, if we compare feasible and

infeasible patients, feasible patients tend to have more open barriers: overall an average of 10.81
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barriers versus 6.79. This difference is partly attributable to feasible patients having lower baseline

discharge scores, therefore we also looked at Yes/Maybe/No patients separately as well:

• No patients: feasible patients have 1.87 more barriers on average relative to infeasible patients

(11.62 versus 9.75, 95% CI [1.63,2.11]).

• Maybe patients: feasible patients have 1.18 more barriers on average (7.83 versus 6.65, 95%

CI [1.08,1.27]).

• Yes patients: feasible patients have 1.48 more barriers on average (7.20 versus 5.73, 95% CI

[1.22,1.73]).

To conclude the quantitative discussion of the model performance, it is important to compare the

values of the objective functions and their respective metrics. Per Table 3, we have the following:

1. The value J∗
2 corresponds to a barrier resolution likelihood and is therefore intended as a proxy

of metric M1. We see that on average, J∗
2 consistently overestimates M1 across all thresholds.

The cause of this is likely multifactorial in nature. Firstly, note that J∗
2 is defined as a prod-

uct of individual likelihoods, while M1 captures a joint resolution percent; however, barrier

resolution is likely not independent across barriers, and therefore the product of individual

estimates performs poorly. Interestingly, if we restrict our attention to actionable patients with

a single prescribed barrier, the average value of J∗
2 still overestimates M1. This suggests that,

even though the resolution likelihood models were calibrated on a barrier-by-barrier basis, the

optimization model has induced a form of selection bias such that the selected barrier has an

overly optimistic resolution estimate.

2. The average score J∗
1 , in contrast, consistently underestimates the 24-hour discharge percent-

age M2, and that discrepancy is to a larger degree than the one noted for M1 (hence J∗

is also underestimated). We suspect that this is likely due to the fact that, in progressing

towards discharge, a patient’s non-barrier features also change (for example, the feature of

time-since-admission has a significant effect on discharge likelihood, but this is not a barrier).

As developed, our BtD approach considers changes in discharge likelihood J1 based only on

changes in barrier-related features. Given this shortcoming, one possible solution would be

to consider other possible features changes in the formulation of SP(z0;x
c). For example, one

could build additional models to estimate how non-barrier features change with the resolution

of barriers. Alternatively, one could take a robust optimization approach where there is a bud-

get of allowable changes in non-barrier features. Another possibility is to modify the resolution

likelihood models to be time-dependent, e.g., estimating likelihood of barrier resolution within

24 (or 48) hours. These approaches to ensure that J1 provides a higher fidelity estimate of

discharge likelihood given feature resolution merit consideration in future work.
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Barrier prescription behavior: To facilitate a qualitative understanding of the BtD algo-

rithm, we also considered which barriers were prescribed by the model, especially in relation to

the prevalence of that barrier and the average resolution likelihood of that barrier. The results of

this analysis are shown in Figure 3 for the subset of patients who are actionable at Jmin = 0.5 (the

barriers in Table 2 are labeled for context).

Figure 3 Average barrier resolution likelihood and prescription percentage among patients who are actionable

above Jmin = 0.5. Each point is a barrier and its size corresponds to the percent of patients with that

barrier triggered. All percents are relative to feasible Maybe patients only (with resolution/prescription

percents relative to the subset of those with such a barrier). Two barriers are not shown (“On heparin”

and “Consult–Addiction Services”) as these are never open barriers in this population. Abbreviations:

PO=“medication taken by mouth”; IV=“intravenous”; PT=“physical therapy”; O2=“oxygen.”
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First of all, we note that barriers with low average resolution likelihood (below approximately

35%) are rarely prescribed as MIN. (An example of such a barrier is “PO Narcotics”, denoting

that the patient is taking oral narcotic medication.) Further, with the exception of three barriers,

the model almost exclusively prescribes a lower percent of that barrier than the average resolution

likelihood.

This figure also highlights the relationship between some of the barriers, and it also points to the

observational nature of the data. For example, let us consider two barriers related to post-discharge
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accommodations: “Facility acceptance” (indicating that the patient is awaiting acceptance in a

post-hospital facility, such as a skilled nursing facility, to which they will be transferred upon

discharge) and “PT Recommendation” (indicating that the patient is still awaiting the physical

therapy team to provide a recommendation on the appropriate post-discharge location for the

patient). Facility Acceptance is the second most highly prescribed barrier among all 96 (on an

absolute basis, prescribed to 17.5% of all actionable patients above Jmin = 0.5), highlighting the

critical importance of post-discharge facilities for a nontrivial number of patients (for those with

the barrier, it is prescribed 98.0% of the time).

In contrast, the PT Recommendation barrier is prescribed 14.5% of the time it is open for a

patient. We believe this discrepancy is likely due to the fact that the PT Recommendation barrier

is not being reliably documented as resolved by discharge (as, in reality, the patient likely did

receive such a team’s input before discharge), hence lower resolution likelihoods are estimated and,

as a result, it is less likely to be prescribed. Overall, this highlights the inherent challenge with

using EHR data, where documentation patterns and behavior evolve over time. Lastly, we believe

that Figure 3 could also serve as the basis for further discussion with clinical teams on the ground

to identify sources of the discrepancies between resolution versus prescription percentages.

Finally, we conclude this qualitative assessment by noting that we made the deliberate choice to

include both clinical and non-clinical barriers in our model. Examples of clinical barriers include

things like “O2 Device” (indicating a patient needs oxygen support), while “Facility Acceptance”

or “Awaiting MRI [Magnetic Resonance Imaging]” would be non-clinical, resource-focused barriers.

This choice was made early in the model development stages, and the primary impetus for that was

because, even if specific interventions might be targeted at non-clinical barriers (for example, by

facilitating additional MRI resources on a given day), the context of what clinical barriers remain

for a patient is critically important. For example, if a patient is prescribed both a clinical and a

non-clinical barrier, and their non-clinical barrier is resolved but the clinical barrier remains, the

patient is still not necessarily likely to be discharged. Therefore, we believe the approach we have

taken to identify (possibly multiple) barriers is critical to highlight for potential users how their

interventions might help a patient progress toward discharge.

Is the prescribed barrier the most likely to be resolved? To conclude our discussion, we

also checked whether the prescribed barriers were the ones with the highest resolution likelihood

for that patient. Overall, 86% of actionable patients (above threshold 0.5) have a single prescribed

barrier; among these patients, 88% are prescribed the barrier with the highest resolution likelihood

(10% the second most likely, and 2% the third or lower barrier by likelihood). This suggests that it

is necessary to consider both barrier resolution and its effect on discharge (as opposed to resolution
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alone) in any heuristic approach to solving BtD. (We return to this in our computational discussion

in Section 3.5). Lastly, we note that if we instead consider all feasible patients (i.e., Jmin = 0), then

the percent with a single barrier is 36% (and among these, the prescribed barrier is the most likely

77% of the time).

3.4. Contribution of Personalization

To better understand the value of personalization (based on individual resolution likelihood models

as developed in Section 2.3), we evaluated its performance relative to a simpler approach. Namely,

we replaced the personalized likelihoods with the baseline resolution likelihood for each barrier

(based on the percent resolved by discharge in the training sample); as such, for a given barrier,

we gave every observation with that barrier open the same estimated resolution likelihood. Using

these, we reran the BtD algorithm; to allow a fair comparison, we selected that value of Jbaseline
min so

that the number of actionable patients at this threshold was the same as the choice of Jpersonal
min = 0.5

in the original, personalized approach, i.e., 1983 patient observations. (The selected value was

Jbaseline
min = 0.4252.)

Table 4 Comparison (%) of the performance of BtD using personalized versus baseline likelihoods.

Metric
Personal-

Baseline
p

ized value

(M1): All prescribed barriers resolved 80.0% 73.3% < 0.001
(M2): Discharged within 24 hours after prescribed barrier

84.6% 83.0% 0.257
resolution, among those with criterion M1 met

(M3): Both M1 and M2 met 67.6% 60.8% < 0.001

In Table 4, we compare the two models with respect to the retrospective performance metrics

used earlier. We observe that personalized BtD significantly outperforms the baseline in terms of

the metrics M1 and M3, meaning a higher patients have their prescribed barriers resolved, and

a higher percent have both their barriers resolved and discharge shortly following that occurrence

(statistical comparison are shown per a Fisher exact test, where we treat the two sets as independent

samples). Importantly, we also see there is no appreciable difference in the likelihood of patients

to be discharged within 24 hours given that the prescribed barriers are resolved, suggesting that

the incremental improvement we see in the percent of patients meeting M3 (the most important

criterion in this setting) is specifically attributable to the personalization of resolution likelihood

(whereas M2 reflects the discharge likelihood model’s performance, which one would expect to be

similar).

One of the reasons we believe that personalization is important in this context is the underlying

patient heterogeneity noted earlier. What is a barrier that must be resolved in certain groups might

not have a similar behavior in other groups, and therefore using additional covariate information

is necessary to distinguish such variation in behavior observed in clinical practice.
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3.5. Computational Efficiency

We conclude our assessment of the performance of the BtD algorithm by considering its compu-

tational efficiency. An alternative approach would be to enumerate all possible combinations of

allowable changes in the feature vector, and choosing the combination that results in the best J

value. Table 5 shows the results of a comparison of the two approaches in terms of average com-

putational time per observation. As expected, we observe that the computational time required to

run complete enumeration increases exponentially (approximately doubles) as the number of open

barriers is increased by one, whereas the computational time required for BtD algorithm overall

does not display any scaling behavior in the number of open barriers. This illustrates the scalability

of the BtD algorithm for larger numbers of open barriers.

Table 5 Computational performance of BtD algorithm compared to complete enumeration for all test set

observations in terms of number of open barriers. Computation time is an average (in seconds) for complete

enumeration and the BtD algorithm.

# Open # Observations Average time
Barriers All Maybe Enumeration BtD

≤ 9 28022 11187 < 1 2.5
10 3569 1030 1.3 3.3
11 2956 732 2.6 3.4
12 2381 428 5.4 3.5
13 1998 258 11.4 3.4
14 1564 163 24.7 6.7
15 1334 94 56.9 3.8
16 1013 45 144.9 3.0
17 865 30 404.7 2.8
≥ 18 3838 57 > 1800 3.4

Resource-constrained settings: In applied settings where maintaining a commercial mixed-

integer optimization solver license is cost-prohibitive, we suspect that it would be possible to

improve the enumeration approach in several ways. For example, one could prune part of the search

tree based on the barrier resolution likelihoods (especially if one has a threshold Jmin already chosen

based on an offline analysis). Alternatively, it is possible that one might restrict attention to only

a fixed small number of possible barriers which, per the discussion in Section 3.2, in our setting

could reasonably be around three or four. Finally, we expect that heuristics based on estimating

the value of modifying a single barrier (in calculating J1 for all possible single-barrier resolutions)

would also work reasonably well, with the main caveat being that predictive models which capture

feature interactions are likely not as well approximated with such an approach. In the Supplemental

Material, we include a detailed assessment of how feasible enumeration is given pre-specified choices

of Jmin.
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Applicability to other model classes: We end our discussion of the computational results by

discussing two important points regarding the results observed in our setting. Firstly, many of the

barriers in our setting have a baseline resolution likelihood well below 100%. This suggests that, by

the nature of the composite objective J and the choice of some Jmin > 0 to define actionability, the

number of barriers chosen for actionable patients above this threshold will necessarily have a small

number of barriers selected. Therefore, we believe that in settings where the barrier resolutions

(in aggregate or on an individual-observation level) are higher overall, we expect the number of

barriers prescribed per the BtD approach will also be higher, in which case the use of MIO modeling

machinery is likely necessary. In our hospital-based application, we expect this to be the case as

data quality improves (with technological refinements over time), implying that barrier resolution

is more accurately recorded in patient records. (As noted in Section 3.3, this is likely contributing

to low resolution likelihoods for certain barriers.)

Finally, and most importantly, our approach can also be applied in settings where the underlying

predictive model J1 is not a feed-forward neural network. In particular, our approach requires

being able to (in a practically acceptable amount of computational time) solve the problem of

maximizing J1. Similar MIO-formulation machinery as developed by Fischetti and Jo (2018) and

Anderson et al. (2020a) has also been used in the settings where J1 is from different model classes.

Examples of this include the following:

• Tree-based-models (classification trees, random forest, boosted trees): see Mǐsić (2020) and

Biggs et al. (2022).

• Logistic regression: as logistic regression is a feed-forward neural network without any hidden

layers, this can be seen as a special case of our approach.

• Black-box models: there has been a variety of work in recent years on approximating black-box

models, especially in the area of explainable artificial intelligence (Guidotti et al. 2018). As

part of this, a variety of techniques have been developed to estimate simpler models (either

tree-based or neural-network-based) given a black-box model. Any such approximations could

then be used directly as inputs to our approach with J1 (in this case, the black box) replaced

by its proxy J̃1.

Note that more sophisticated model classes for J2 (than the regularized logistic regression used here)

can be easily incorporated into our approach with no increase in complexity (as these likelihoods

are inputs to the BtD algorithm). At the same time, it is possible to accommodate other choices

of composite J instead of the product, such as a convex combination of J1 and J2.

4. Conclusion

In this study, we described an operational problem that is encountered at hospitals on a daily basis

and which has a significant impact on inpatient capacity management. We highlighted that this
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problem is not merely a prediction problem, but rather a prescription problem since the outcome

(a patient’s discharge) is dependent on the interventions that may or may not occur, and therefore

requires a data-driven approach.

By adopting the notion of a barrier, defined as an aspect of the patient’s current status that

can potentially impact the patient’s discharge, we defined the problem as one of identifying a

subset of barriers whose resolution are both necessary and sufficient for discharge. More formally,

we formulated the problem of identifying minimal barriers as a prescriptive problem where the

objective is to maximize the product of (i) the likelihood that the patient is discharged within

24 hours given that the selected barriers are resolved, and (ii) the likelihood that all the selected

barriers are indeed resolved. To predict the discharge likelihood and the likelihood of a barrier’s

resolution before discharge, which are required to calculate the aforementioned objective function,

we trained machine learning models. We showed that the resulting prescriptive problem can be

modeled as a mixed integer non-linear program which we then solved using an iterative algorithm.

Our computational experiments on real data corroborate (i) the utility of the proposed objective

function in capturing the MIN, (ii) the effectiveness of the BtD algorithm in identifying the MIN,

(iii) the significant impact of using personalized resolution likelihoods instead of baseline resolution

likelihoods on the performance of the BtD algorithm, and finally (iv) the practical computational

efficiency of the proposed BtD algorithm. In future work, we believe it would be important to

consider the effect of such a model when implemented in practice as well modifications of our

approach which consider additional constraints. For example, some barriers in our model correspond

to those with a “global” capacity constraint (for example, the number of available post-discharge

facility beds or slots in an MRI machine in a given day). Adding such between-patient constraints

raises a variety of important methodological questions such as scalability of various decomposition

approaches.
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Table SM1 Overview of the data sources used. “Categorical” indicates that only one of the values in a given

list can be used for each patient, while several values can be used if the type is “Set.”

Source Description of data Examples Type

Demographics Patient’s age, sex, and marital status 60, Female, Married Categorical

Encounter Info

Admission source for the current hospitalization Physician referral, Outside facility Categorical
Patient class for the current hospitalization Inpatient, Surgery admit Categorical
Surgery type(s) that the patient has had Total knee replacement, Spinal fusion Set
Inpatient floor the patient is currently on Ellison7, Lunder6 Categorical
Surgical service currently taking care of the patient Orthopedics, Neurosurgery Categorical
Primary treatment team Team IDs Categorical
Attending physician Employee IDs Categorical

Flowsheets

Measurements of vital signs Temperature, Blood pressure Numeric
Bedside nurse assessments Pain score, fluid intake/output Numeric
PT/OT/SLP assessments Assisstive device, recommendation Set
CM assessments High risk assessment, Discharge barriers Set

Labs Lab measurements for a list of components White blood cell, Hemoglobin Numeric
LDAs Placement/removal of lines/drains/airways Urinary Catheter, Suction Drain Set
Medications Dose and route of the administration of medications Narcotics, Antiemetics Set

Orders

Placement and completion of physician consults Physiotherapy, Cardiology, Psychiatry Set
Types and the current status of Imaging studies MRI - Pending, XR - In progress Set
Dietary status of the patient Regular, Sips of water, No oral intake Set
Placement and completion of blood work orders Red Blood Cell, Plasma Set

Facility referrals Referral to and acceptance from outside facilities Name/type of facility, status of referral Set

Supplemental Material

This Supplemental Material contains the following additional tables, figures, and analysis for com-

pleteness:

1. features included in the data (see Table SM1);

2. information on performance of different classifier algorithms for discharge prediction (see Table

SM2);

3. calibration curves for the discharge prediction score (see Figure SM1);

4. pairwise comparison of test set AUC, percent of observations with a given barrier, and percent

resolved for that barrier;

5. details of the formulation of the problem of maximizing J2 subject to lower bounds on J1 as

a MIP by using the approach of Anderson et al. (2020b);

6. the performance of J as a function of the number of selected barriers;

7. discussion of two additional use cases for actionable barriers in identifying an estimate of the

number of bed-days attributable to a specific barrier and in visualizing patient progression;

8. further discussion of improvements to a full enumeration approach based on various choices

of Jmin; and

9. the full list of barriers after filtering (Table SM4).
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Table SM2 Performances of different classifier algorithms on the test sample

Classifier AUC Recall Precision

Classification Tree (CT) 0.814 0.545 0.540
Logistic Regression (LR) 0.866 0.616 0.607
Neural Network (NN) 0.882 0.622 0.629

5. Additional predictive modeling details
5.1. Out-of-sample prediction performance

For precision and recall calculations in Table SM2, we used the unbiased threshold score above

which a patient is predicted to be discharged and below which is predicted not to be discharged.

We defined the unbiased threshold as that which would equally balance model recall and precision

in the training set. Moreover, when this threshold is used to convert prediction scores to binary

classifications, the number of predicted discharges in a given subset is expected to be equal to the

number of actual discharges in that subset, hence the name “unbiased threshold.”

Figure SM1 Calibration curves for the discharge prediction scores on the three data sets. Predictions grouped

into 20 equally sized groups for each of the data sets.
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5.2. Resolution likelihood model performance

In Figure SM2, we show the performance of the resolution likelihood models on the test set. Here

the performance measure shown is AUC, and we consider the relationship between AUC and the

underlying percent of observations with each barrier as well as the percent of observations with

the barrier resolved (among those with that barrier). Each point corresponds to a barrier. Note
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Figure SM2 Resolution likelihood models—Pairwise comparison of test set AUC, percent of observations with

a given barrier, and percent resolved for that barrier. The diagonal shows histograms for each of

those three measures; the upper diagonal displays correlation coefficients; and the lower diagonal

shows scatter plots.
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that one barrier has test AUC strictly below 0.5 (although all training and validation AUCs were

strictly larger than 0.5, by design). In general, we see that there is a significant positive correlation

between AUC and the percent of observations, as noted in the main text.

5.3. Performance of J as function of number of selected barriers

In Section 4, we assessed the performance of J for a randomly selected subset of up to five barriers

(choosing from one through five with equal probability) to reflect a variety of scenarios including a

single barrier being selected up to five barriers. (If there were fewer than five barriers, we sampled

at most the number of open barriers.) To better understand how the performance of J varies

as a function of the number of barriers, we also consider when k open barriers selected, for k ∈

{1,2, . . . ,10}. In particular, for each k, we consider the subset of test set observations with at least

k open barriers; for each observation, we randomly select a subset of k of those barriers, and then

compute the corresponding value of J1, J2, and J , along with the label as defined in Section 4.

For each choice of k, we compare several metrics:

• Brier score (relative to the labeled outcome);

• AUC for J (relative to the labeled outcome);

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.24.23287694doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.24.23287694


36 Khaniyev et al.: Identifying minimal barriers to discharge

• AUC for J1 (relative to the discharged-within-one-day outcome, only on the subset of patients

with all selected barriers resolved); and

• AUC for J2 (relative to all-barriers-resolved outcome).

The corresponding results are shown in Figure SM3. Note that the Brier score for the labeled

outcome (whether patient has all selected barriers resolved and is discharged within one day of all

such barriers being resolved) decreases as the number of barriers increases. At the same time, the

overall AUC for J generally increases, going from 0.727 for k= 1 to 0.906 for k= 10. Interestingly,

the AUC for J1 is generally decreasing, while the AUC for J2 is increasing. One possible explanation

for the decrease in AUC for J1 is that with a larger number of selected barriers, more time is likely

required to pass before barrier resolution (and hence the discharge model, which does not account

for changes in non-barrier features, degrades in performance). Note that the increasing width of the

J1 confidence intervals is because this is calculated on an increasingly small subset of observations.

Figure SM3 Brier score and AUC metrics for composite objective as a function of the number of barriers selected

(95% CI are shown for each metric). The Brier score shown is for J (not J1 nor J2).
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6. MIP formulation approach

Here we show the details of formulating the problem of maximizing J2 subject to a lower bound

on J1 can be formulated as a linear mixed integer program (MIP), thereby making use of the

formulation approach taken in Anderson et al. (2020b). For expository purposes, we begin by

examining the structure of a single-hidden-layer neural network to illustrate how the prediction

score is calculated (the discharge prediction model as used in the main text has this structure).

Figure SM4 shows an example of a (feed-forward) neural network with 5 input nodes, 3 hidden

nodes and a single output node. In this mock example, x= (x1, x2, x3, x4, x5) is the input feature
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vector. The values aj1, aj2, aj3 are the coefficients of the jth feature in the first, second, and third

hidden nodes, respectively. Moreover, a01, a02, a03 are the biases added to the the first, second, and

third hidden nodes, respectively. The outputs of hidden nodes (y1, y2, y3) are calculated as follows:

yk = f
(
a0k +

∑5

j=1 ajkxj

)
= max

{
0, a0k +

∑5

j=1 ajkxj

}
. Similarly, b1, b2, b3 are the coefficients of

the first, second, and third hidden nodes in the output node, and b0 is the bias added to the output

node. The output prediction score z is calculated as follows:

z = g

(
b0 +

3∑
k=1

bkyk

)
=

(
1+ exp

(
−b0 +

3∑
k=1

bkyk

))−1

.

Figure SM4 Network structure and parameters for an example feedforward neural network classifier
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To formalize the structure illustrated in Figure SM4 and adapt it to our problem setting, we

partition the feature space into 4 components as described in Section 2 in the main text: x =

(x1, x2, ..., xp) = (s;d; t;r) = (s1, s2, ..., sps ;d; t1, t2, ..., tpb ; r1, r2, ..., rpb). In other words, we define 4

sets of indices S = {1,2, ..., ps},D = {ps + 1},T = {ps + 2, ..., ps + 1+ pb}, and R = {ps + 1+ pb +

1, ..., ps +1+2pb} that represent the set of indices of the static, days since admission, trigger and

resolution features, respectively, in our feature space. In Section 3.1 in the main text, the trained

neural network model had p= ps +1+2pb input nodes, r hidden nodes (on a single layer), and a

single output node to predict the discharge likelihood within 24 hours for a given feature vector

xc = (xc
1, x

c
2, . . . , x

c
p) of size p. The following are parameters of the prediction model:

a0k, ∀k ∈ [r] : Bias added to the kth hidden node

ajk, ∀j ∈ [p] and ∀k ∈ [r] : Coefficient of the jth feature in the kth hidden node

b0 : Bias added to the output node

bk, ∀k ∈ [r] : Coefficient of the kth hidden node in the output node

f(u) =max{0, u} : ReLU activation function for the hidden nodes

g(u) = (1+ exp(−u))−1
: Logistic activation function for the output node
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Next, we introduce three sets of decision variables to express the problem as a MIP:

xj, ∀j ∈R : indicating the new value of the (resolution) feature j

yk, ∀k ∈ [r] : indicating the output of the kth hidden node

uk, ∀k ∈ [r] : indicating whether the kth hidden node is active, i.e., has positive output

For a given feature vector and parameters, the output yk of the kth hidden layer can be written as

follows:

yk =max{0, a0k + a1kx
c
1 + a2kx

c
2 + ...+ apkx

c
p}, ∀k ∈ [r] (1)

which can be expressed linearly with the following sets of constraints and auxiliary binary variables

uk.

yk ≥ a0k + a1kx
c
1 + a2kx

c
2 + ...+ apkx

c
p, ∀k ∈ [r] (2a)

yk ≤ a0k + a1kx
c
1 + a2kx

c
2 + ...+ apkx

c
p +M(1−uk), ∀k ∈ [r] (2b)

yk ≤Muk, ∀k ∈ [r] (2c)

yk ≥ 0, uk ∈ {0,1}, ∀k ∈ [r] (2d)

(Here, M is an appropriately calibrated constant.) Similarly, the prediction score z, which is the

output of the output layer, can be written as

z =
1

1+exp(−(b0 + b1y1 + b2y2 + ...+ bryr))

Note that if we would like this modified score to be greater than a pre-determined threshold z0,

then this can be written as a linear constraint:

b1y1 + b2y2 + ...+ bryr ≥ log

(
z0

1− z0

)
− b0.

Finally, we incorporate the restrictions on the allowed changes to the feature vector. Specifically,

• xj ∈ {0,1},∀j ∈R: we are only allowed to change the barrier resolution features from 0 to 1

• xR(j) ≤ xc
T (j),∀j ∈ [pb]: only a currently open barrier can be resolved,

• xR(j) ≥ xc
R(j),∀j ∈ [pb]: a barrier that is already resolved cannot be reverted back to being

unresolved

where R(j) and T (j) indicate the jth element of the index set R and T , respectively.

Note that the current features xc are fixed parameters in our subproblem. Similarly, the person-

alized resolution log-likelihoods log(Lj) are parameters pre-calculated from the barrier resolution

prediction models for each barrier. Finally, the coefficients of the neural network model a= (ajk),

b= (bk) are also the fixed parameters in the subproblem. Given a threshold discharge prediction
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score z0, the following is the MIP formulation for the aforementioned subproblem, hereinafter

referred to as SP(z0;x
c):

[SP(z0;x
c)] max

∑
j∈[pb]

log(Lj)xR(j) (3a)

s.t. yk−
∑
j∈R

ajkxj ≥
∑

j∈S∪D∪T

ajkx
c
j + a0k ∀k ∈ [r] (3b)

yk−
∑
j∈R

ajkxj +Muk ≤
∑

j∈S∪D∪T

ajkx
c
j + a0k +M ∀k ∈ [r] (3c)

yk−Muk ≤ 0 ∀k ∈ [r] (3d)
r∑

k=1

bkyk ≥ log

(
z0

1− z0

)
− b0 (3e)

xR(j) ≤ xc
T (j) ∀j ∈ [pb] (3f)

xR(j) ≥ xc
R(j) ∀j ∈ [pb] (3g)

yk ≥ 0 ∀k ∈ [r] (3h)

uk ∈ {0,1} ∀k ∈ [r] (3i)

xj ∈ {0,1} ∀j ∈R (3j)

In the above formulation, constraints (3b)-(3d) linearize the ReLU activation function, i.e., yk =

max{0, a0k+
∑

j∈S∪D∪T ajkx
c
j +
∑

j∈R ajkxj}. Constraint (3e) imposes the restriction that the mod-

ified score has to be above the pre-determined threshold z0. Constraints (3f) impose the condition

that a barrier cannot be resolved if it is not triggered in the first place and (3g) impose that a

barrier cannot be reverted back to being “unresolved” if it is currently resolved. Finally (3h)-(3j)

define the types and bounds of the decision variables.

Note that the formulation contains 2r + pb variables and 4r + 2pb + 1 constraints. While the

formulation explicitly includes variables xj even for barriers j that are not triggered, a simple

preprocessing step can eliminate these (as they will equal zero in any feasible solution).

7. Additional use cases
7.1. Attributable bed-days

Identifying, in a scalable and transparent manner, which barriers prevent patients from being

discharged is a challenging problem in hospital operations, particularly given the number of barriers

present and the need to attribute such delays to patient-specific needs. Here we consider how our

approach provides estimates of bed-days directly attributable to a barrier, thereby highlighting the

opportunity available by addressing specific barriers.

In particular, we consider the subset S (among all test observations) of those which meet the

following criteria: a single barrier is prescribed, and the patient is not discharged within 24 hours.
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Table SM3 Attribution estimates (for the test set) across all barriers with estimate at least 20 bed-days. We

restrict our attention to only observations where the patient is not discharged within 24 hours.

Barrier b
# Observations where

Âttrib(b)b is the only
prescribed barrier

Awaits post-hospital facility acceptance 2508 400.7
Irregular diet 1475 239.5
Awaits Physical Therapy’s

784 95.1
post-hospital recommendation

Chest tube 314 87.0
Urinary catheter 422 73.8
Oxygen device need 583 69.4
Gastrostomy tube 277 49.6
Intravenous narcotics 483 38.7
Antiemetic medications 317 25.3

Among this subset, we define an estimate of delays attributable to barrier b, measured in

bed-days, as

ÂttribS(b) :=
∑

(xc,x∗)∈S,
b is resolved

barrier

(J1(x
∗;xc)−J1(x

c;xc)) ,

where the observation (xc,x∗)∈ S corresponds to an observation with feature vector xc and x∗ is the

corresponding optimal solution return by the BtD algorithm. The difference J1(x
∗;xc)−J1(x

c;xc)

accounts for the improvement in the patient’s 24-hour discharge score given the resolution of the

prescribed barrier.

The corresponding estimated attributions are shown in Table SM3 for all barriers with esti-

mates above 20 bed-days in the test sample. Not surprisingly, the barrier of “awaiting post-hospital

facility acceptance” (indicating there are active requests to place the patient into a post-hospital

location such as rehab or a skilled nursing facility) accounts for the largest attributable number of

bed-days (representing 0.8% of the total bed-days in the test set). We suspect that this is a signifi-

cant underestimate, highlighting the underlying challenges in attributing delays in care to specific

barriers. For that reason, we believe this area remains ripe for further analytical investigation and

modeling.

7.2. Understanding patient progression

Here we highlight another way to use our modeling framework, in this case considering how a patient

evolves in terms of their actionability and discharge likelihood throughout their hospitalization.

More precisely, we consider two dimensions: a patient’s Yes/Maybe/No category; and the number

of prescribed barriers (for simplicity, grouped into four categories, {0,1,2,3+}, where 0 denotes

the patient is not prescribed any barriers).
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For every patient, we observe how the patient’s status changes from day to day. For example, a

patient may be hospitalized with length-of-stay one day with the following sequence of states:

Day 0:No (2 prescribed) −→ Day 1:Yes (1 prescribed) −→ Discharged.

Based on the frequencies observed in the test set, we have a corresponding transition matrix with

estimated probabilities of transitioning from one state to the next, shown in Figure SM5 with each

row corresponding to a patient’s state on day d and the columns their state on day d+1.

Figure SM5 Transition probabilities from various states determined by frequencies in the test set. Each row

corresponds to an initial state, and the columns correspond to the patient’s state on the following

day. States are displayed in the format “Yes/Maybe/No group (# prescribed barriers).” Dashed

lines are shown for visual reference in order to group states in Yes/Maybe/No groups. “(Discharge)”

is treated as an absorbing state. The initial (day zero) state percentages are shown on the left for

reference.
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This graphical representation provides an easy way for non-technical users to understand how

patients evolve with respect to prescribed barriers during their stay. For example:

• We see that Yes patients frequently discharge from their current state, with the second most

frequent being a transition to “Yes (0 prescribed).”

• For No patients with three or more prescribed barriers, we also observe that they are most

likely to stay in that state the following day (58% probability).
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• For Maybe patients, the most likely subsequent state is “Discharged” whenever 0, 1, or

2 barriers are prescribed, where it is “Yes (0 prescribed)” when 3 or more are prescribed.

Further, when Maybe patients stay in a Maybe state on the subsequent day it tends to be

one with the same number or fewer prescribed barriers.

The initial starting frequencies also match intuition: the most frequent state on day zero is “No

(3+ prescribed)” (at 36.8%), while the second most frequent is “Yes (0 prescribed),” highlighting

the heterogeneous patient population under consideration.

8. Improvements to complete enumeration

Because of variation in the underlying resolution likelihood scores, it is typically not necessary to

enumerate all subsets of a given patient’s open barriers in order to compute the optimal value J∗,

so long as one has chosen a value of Jmin sufficiently large. To illustrate this point, let us consider

an observation (patient-day) with b open barriers with resolution likelihoods L1, . . . ,Lb ∈ [0,1].

Instead of considering all 2b possible subsets of open barriers to compute J∗, we can instead

provide an upper bound on the size of subsets that need to be considered if one is only interested

interested in identifying observations with J∗ > Jmin, where Jmin is fixed a priori. To do so, let

L(1) ≥L(2) ≥ · · · ≥L(b) denote the sorted values of L1, . . . ,Lb; then one must only consider subsets

of the b barriers up to size k̄Jmin
defined as

k̄Jmin
:=max

{
k : 0≤ k≤ b,

k∏
i=1

L(i) >Jmin

}
.

(If L(1) ≤ Jmin, we define this quantity as 0.) This is a valid upper bound because any subset of

k > k̄Jmin
barriers necessarily has J2 ≤ Jmin and hence J ≤ Jmin.

To illustrate how k̄Jmin
behaves as a function of the number of open barriers b, we show its average

value (over the test set observations) in Figure SM4. Not surprisingly, if Jmin = 0, then k̄0 = b

whenever a patient has b open barriers (since the likelihoods are always strictly positive). For the

choice of Jmin = 0.5 which is advocated for in the main text, we see that k̄0.5 is appreciably smaller

than the number of open barriers on average; for example, for patients with 20 open barriers, the

average value of k̄0.5 is around 4 barriers. Note that the behavior observed in this plot (and for

k̄Jmin
more generally) is highly dependent upon the underlying resolution likelihoods. We noted

earlier that the resolution likelihoods in our setting are commonly well below 1, suggesting that

this simple adjustment to complete enumeration can be effective.

To further assess this claim, we also evaluated how k̄Jmin
evolves as a function of Jmin; the

corresponding results are shown in Figure SM5. For the choice of Jmin = 0.5, we see that the average

value of k̄0.5 across all test set observations is approximately 2.5 barriers, while the maximum is 14

barriers. If one uses this choice of k̄ to enumerate all possible subsets of at most k̄ barriers, then
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Figure SM4 Average value of k̄Jmin for Jmin ∈ {0,0.25,0.5, .0.75} as a function of the number of open barriers.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35
Number of open barriers

A
ve

ra
ge

 v
al

ue
 o

f k
J m

in
Jmin

0

0.25

0.5

0.75

the number of subsets is on the order of 220 ≈ 106 on average. Each subset requires computing the

value of J1 based on changes to that subset of barriers, and this is easy to do. Therefore, an

enumerative approach is feasible in our setting for the choice Jmin = 0.5. (The important

caveat, of course, is this relies on having performed a full analysis already which identified the

choice of Jmin.)
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Table SM4 Final list of all 96 barriers included in the prescriptive model

Barrier Barrier

Addiction Services consult is needed GI Tube in place
Anesthesiology consult is needed Negative Pressure Wound Therapy in place
Cardiology consult is needed Open Surgical Wound in place
Endocrinology consult is needed Penrose Drain in place
Gastroenterology consult is needed PICC line in place
General Surgery consult is needed Suction Drain in place
Infectious Diseases consult is needed Urinary Catheter in place
Internal Medicine consult is needed On Antiemetic medication
Nephrology consult is needed On Antipsychotic medication
Neurology consult is needed On Colonoscopy Prep medication
Nutrition Services consult is needed On Diuretic medication
Oncology consult is needed On Heparin medication
Pain Management consult is needed On IV Antibiotic medication
Physical Medicine Rehab consult is needed On IV Narcotic medication
Psychiatry consult is needed On Nebulized medication
Social Work consult is needed On PO Narcotic medication
Irregular diet On Steroids
Pending Cath Lab On Tamsulosin
Pending Echocardiogram On Warfarin
Abnormal blood pressure Anaerobic microbiology test is pending
Abnormal cardiac rhythm Blood microbiology test is pending
Cognition: Unable to follow command CSF microbiology test is pending
Emesis Occurred Fluid (Not CSF) microbiology test is pending
Level of consciousness: Not alert Fluid Culture Smear microbiology test is pending
Oxygen device in place Fungal microbiology test is pending
Orientation level: Disoriented Tissue microbiology test is pending
High pain Urine microbiology test is pending
Not passing flatus Wound microbiology test is pending
Irregular pulse Red Blood Cells bloodwork is pending
Irregular respiration Plasma bloodwork is pending
Speech problems Platelets bloodwork is pending
No stool occurrence PT evaluation: has activitiy problems
No urine occurrence PT evaluation: needs ambulation assistance
MRI study is needed PT evalution: needs sit to stand level of assistance
X-Ray study is needed PT evaluation: has soft restraint on left wrist
CT study is needed PT evaluation: has soft restraint on right wrist
Ultrasound study is needed PT evaluation: stand to sit device used
Other imaging study is needed PT evaluation: needs stand to sit level of assistance
High Creatinine level PT evalution: needs supine to sit level of assistance
High Glucose level Final PT dispo recommendation is pending
Low Glucose level Final OT dispo recommendation is pending
High INR value SLP evaluation: Clinical Swallow Pharyngeal Phase
High Potassium level SLP evaluation: Clinical Swallow Response
High Lactate level SLP evaluation: Swallowing recommendation
Low Sodium level SLP evaluation: Medication recommendation
High White Blood Cells count Final SLP dispo recommendation is pending
Biliary Drain in place Acceptance for post-discharge Facility bed is pending
Chest Tube in place Acceptance for post-discharge Home Services is pending
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Figure SM5 Behavior of k̄Jmin as a function of Jmin and corresponding number of computations required using

this upper bound. Mean, 99th percentile (shown as “99%ile”), and max are across all test set

observations.
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(b) Number of calculations of J1 required (based on upper bound k̄Jmin); note the logarithmic

scale.
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