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Abstract 1 

Background: Air pollution has been recognized as an untraditional risk factor for myocardial 2 

infarction (MI). However, the MI risk attributable to long-term exposure to fine particulate matter 3 

(PM2.5) is unclear, especially in younger populations, and few studies represented the general 4 

population.  5 

Methods: We applied the difference-in-differences approach to estimate the relationship between 6 

annual PM2.5 exposure and hospitalizations for MI among U.S. residents and further identified 7 

potential susceptible subpopulations. All hospital admissions for MI in ten U.S. states over the 8 

period 2002-2016 were obtained from the Healthcare Cost and Utilization Project State Inpatient 9 

Database.  10 

Results: In total, 1,914,684 MI hospital admissions from 8,106 ZIP codes in ten states from 2002 11 

to 2016 were included in this study. We observed a 1.35% (95% CI: 1.11-1.59%) increase in MI 12 

hospitalization rate for 1 μg/m3 increase in annual PM2.5 exposure. The estimate was robust to 13 

adjustment for surface pressure, relative humidity and co-pollutants. In the population with 14 

exposure at or below 12 μg/m3, there was a larger increment of 2.17% (95% CI: 1.79-2.56%) in 15 

hospitalization rate associated with 1 μg/m3 increase in PM2.5. Young people (0-34 years) and 16 

elderly people (≥75 years) were the two most susceptible age groups. Residents living in more 17 

densely populated or poorer areas and individuals with comorbidities were observed to be at a 18 

greater risk.  19 

Conclusions: This study indicates long-term residential exposure to PM2.5 could lead to increased 20 

risk of MI among U.S. general population. The association persists below current standards.  21 

Keywords: Long-term PM2.5 exposure; Difference-in-differences; Myocardial infarction; 22 

Hospitalizations 23 
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Clinical Perspective:  24 

What is new? 25 

• Long-term exposure to PM2.5 increased the risk of myocardial infarction in the general U.S. 26 

population.  27 

• Young individuals aged 0-34 years had the highest relative risk from long-term exposure 28 

to PM2.5, and elderly people aged ≥75 years were the second most susceptible to the effects. 29 

• Individuals with iron deficiency anemia, psychosis, and renal failure were more susceptible 30 

to the long-term effects of PM2.5 on MI.  31 

What are the clinical implications?  32 

• Long-term PM2.5 exposure is one of the important modifiable environmental risk factors 33 

for myocardial infarction, therefore, air pollution control and behavioral interventions 34 

should be taken to prevent the occurrence of myocardial infarction.  35 

 36 

 37 

 38 

 39 

1. Introduction 40 

Myocardial infarction (MI) is responsible for years of life lost and reduced life expectancy 41 

across the globe (Ojha and Dhamoon, 2022). Over the last few decades, the morbidity and 42 

mortality burden of MI has declined in developed countries due to improved healthcare systems 43 

and preventive actions (Camacho et al., 2022). However, an increasing incidence of MI over time 44 

has been reported in younger populations with its underlying reasons unclarified (Arora et al., 2019; 45 

Yang et al., 2020).  46 



 

 

3 

Over 90% of the risk for acute MI is accounted for by modifiable risk factors (Chadwick 47 

Jayaraj et al., 2019). Air pollution is an important driver of MI with a population attributable 48 

fraction of 5-7%, (Nawrot et al., 2011). This is similar to well-recognized behavioral factors (e.g., 49 

physical exertion, alcohol, and coffee). To date, the epidemiological evidence on the relationship 50 

between long-term exposure to ambient fine particulate matter ≤2.5 μm in aerodynamic diameter 51 

(PM2.5) and MI remains inconclusive. Some studies suggested a positive association (Hartiala et 52 

al., 2016; Madrigano et al., 2013), whereas other research did not observe a significant risk 53 

associated with PM2.5. According to a recent review article, the risk of incident MI could be 54 

increased by 8% (95% CI: -1-18%) per 10-μg/m3 increase in long-term PM2.5 exposure, but the 55 

association is evidently weaker as compared to other cardiovascular end points (Alexeeff et al., 56 

2021). In addition, most of the studies used data from cohorts that were not representative of the 57 

general population and mostly involving the participants over middle age, such as the 58 

EuroTARGET cohort (Gandini et al., 2018) and the Nurses’ Health Study cohort (Puett et al., 59 

2009). Seldom has the effect modification by age been explored in the general population, which, 60 

however, is important for understanding the role of air pollution in MI occurrence at earlier ages 61 

and potentially different risk profiles among age groups.  62 

Furthermore, concerns are raised in terms of the lack of causal interpretability in the 63 

existing literature. In contrast to randomized controlled trials (RCTs) that balance covariates across 64 

treatment classes via randomization, observational studies are the most powerful method available 65 

to study the health effect of air pollution, since randomization to exposure is not possible. Standard 66 

observational studies control for potential confounders in the outcome regression, but are often 67 

criticized for the potential for omitted confounders. Several alternative causal modeling 68 

approaches have been applied in air pollution epidemiology to attempt to mimic randomized trials 69 
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(Reich et al., 2021). The generalized propensity score is one example for investigating the health 70 

effects of continuous pollution exposure. It can remove the confounding bias by measured 71 

covariates and give population marginal effect estimates by balancing the covariates among 72 

different exposure levels (Schwartz et al., 2021; Wei et al., 2020). Nevertheless, the propensity 73 

score method is not able to control for the unmeasured confounders. The difference-in-differences 74 

(DID) is a classical quasi-experimental estimator in econometrics designed to control for 75 

unmeasured variables (Ashenfelter and Card, 1985; McEwan, 2010). To date, several studies have 76 

applied the DID approach to evaluate the effects of time-varying PM2.5 exposure and industrial air 77 

pollution on mortality (Leogrande et al., 2019; J. Schwartz et al., 2021; Wang et al., 2016; Yitshak-78 

Sade et al., 2019). This modeling design only examines variations in exposure and outcome within 79 

geographic locations (in our case ZIP codes), thereby removing any confounding by measured or 80 

unmeasured confounders that differ between ZIP codes. It controls for unmeasured confounders 81 

that vary over time similarly in all ZIP codes using indicator variables for each calendar year. 82 

Measured covariates are controlled for as usual. Therefore, the model framework provides a robust 83 

tool to add control for many unmeasured confounders to traditional observational epidemiology. 84 

Using the DID modeling approach, we investigated the effects of annual ambient PM2.5 on 85 

the hospital admission rate for MI in residents of all ages across ten states of the United States 86 

during 2002-2016. Hospitalization data were accessed from the Health Cost and Utilization Project 87 

State Inpatient Databases. Furthermore, we examined whether age could modify the relationships. 88 

We also explored the effect modification by community socioeconomic status (SES) indicators 89 

and individual comorbidities.  90 

2. Methods 91 

2.1. Assessment of air pollution 92 
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Daily predictions of ambient fine particulate matter (PM2.5), nitrogen dioxide (NO2), and 93 

ozone (O3) were derived from an ensemble of machine learning algorithms using geographically 94 

weighted regression at a resolution of 1 km × 1 km in the contiguous United States. The prediction 95 

model involved critical environmental measures from air monitoring data, meteorological 96 

conditions, chemical transport model simulations, land-use features, and satellite remote sensing 97 

data of aerosol optical depth, and the model was validated with a 10-fold cross-validation (Di et 98 

al., 2020, 2019). We computed the exposure for each ZIP code and each year by averaging the grid 99 

cell predictions whose centroids were inside the ZIP code polygons or assigning the nearest grid 100 

cell predictions for the ZIP codes that do not have polygon representations, and then linked the 101 

exposure data to participants based on their residential ZIP code and admission year. To explore 102 

the potential lag effects of air pollution on MI hospitalizations, we used moving averages of air 103 

pollution data in the admission year and one year before.  104 

2.2. Outcome measurement 105 

The inpatient care records used in this study were obtained from the Healthcare Cost and 106 

Utilization Program (HCUP) State Inpatient Database (SID) (HCUP Databases, 2021; Qiu et al., 107 

2023, 2022; Steiner et al., 2002). The database has a 97% completeness of all U.S. community 108 

hospital discharges. More details about the inpatient databases and data availability are provided 109 

in the Supplement.  110 

We analyzed the hospital admission data in the following listed states and years: Arizona 111 

(AZ), Michigan (MI), North Carolina (NC), New York (NY), Rhode Island (RI), Washington 112 

(WA), New Jersey (NJ) from 2002 to 2016, Maryland (MD, 2009-2016), Georgia (GA, 2010-113 

2016), and Wisconsin (WI, 2012-2016). The inconsistent inclusion of the study years across these 114 

states was based on data availability from the States. The hospitalizations for principal diagnosis 115 
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of MI were identified with reference to the International Classification of Diseases (ICD) codes 116 

(ICD-9: 410; ICD-10: I21).  117 

2.3. Covariates 118 

Demographic information for each participant comprising age, sex, race, admission year, 119 

state, and ZIP code of residence for that year were obtained from the SIDs. Other covariates 120 

included in the models were selected based on our prior knowledge, such as ambient seasonal 121 

temperature, and area-level SES and behavioral factors. The SES data at the ZIP code tabulation-122 

area level (ZCTA) were downloaded from the U.S. Census for 2002 Summary File 3 and 2011 123 

Summary File 1 (Bureau, U. S. C., 2011, 2002). They were interpolated annually between census 124 

years, and further extrapolated using the American Community Surveys after 2010 (Bureau, U. S. 125 

C., 2020). They included the percent of female residents, percent of black residents, median 126 

household income, percent of residents having high school education or less, and population 127 

density. The percent of residents over the age of 65 years living in poverty was additionally used 128 

as a proxy for SES. We defined the ZIP codes where the percent of persons ≥65 years old living 129 

in poverty was within the lowest 25th percentile among all areas (i.e., <7%) as low-level poverty 130 

areas and other ZIP codes as poorer areas. We also linked in the county-level yearly percentage of 131 

residents who ever smoked and mean body mass index (BMI) from the Centers for Disease Control 132 

and Prevention (CDC) Behavioral Risk Factor Surveillance System (BRFSS) (Bureau, U. S. C., 133 

2020), which were converted to ZCTA-level based on the county and updated annually. Ambient 134 

daily surface temperature and daily average surface pressure at a 12 km × 12 km resolution were 135 

obtained from the National Aeronautics and Space Administration’s Land Data Assimilation 136 

System (NLDAS-2). In light of the seasonal effect of temperature on cardiovascular health (Shi et 137 

al., 2015; Stewart et al., 2017), we generated two metrics of temperature, i.e., the average 138 
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temperature in the warm months (April-September) and the average temperature in the cold 139 

months (October-March). The ambient annual average level of daily maximum relative humidity 140 

at a 4 km × 4 km resolution was obtained from the gridMET dataset (Abatzoglou, 2013). 141 

Temperature, surface pressure, and relative humidity data were later aggregated to ZIP codes and 142 

years.  143 

2.4. Comorbidity data 144 

In this study, we considered several coexisting medical conditions that are likely to impact 145 

the vulnerability of MI patients exposed to PM2.5 in the secondary analysis, which included: 146 

hypertension (Yang et al., 2022), diabetes mellitus (DM), chronic obstructive pulmonary disease 147 

(COPD) (Croft et al., 2022; Rich et al., 2010; Wynands et al., 2022), renal failure (Bo et al., 2021), 148 

iron deficiency anemias (IDA) (Pereira and Sarnak, 2003), obesity (Weichenthal et al., 2014), 149 

peripheral vascular disorders (PVD) (Bauersachs et al., 2019; Gwon et al., 2021), depression 150 

(Gładka et al., 2018), other neurological disorders (Shi et al., 2020), and psychoses (Larsen and 151 

Christenfeld, 2009; Qiu et al., 2023, 2022). The comorbidity data was assigned to the MI inpatients 152 

using the AHRQ comorbidity software and stored in the Disease Severity Measures file as a part 153 

of SIDs. The comorbidity data are available from 2005 to 2015. The identification of comorbidities 154 

is based on International Classification of Diseases, 9th revision, Clinical Modification (ICD-9-155 

CM) diagnoses and the Diagnosis-Related Group (DRG) in effect on the discharge date.  156 

2.5. Statistical analysis 157 

We used the DID approach to estimate the relationship between long-term exposure to 158 

ambient PM2.5 and the incidence of hospital admissions for MI. The analysis was limited to the 159 

ZIP code-year combinations with a population of more than 100 to reduce the noise from low-160 

population areas and increase the analytical power (Qiu et al., 2022). First, we calculated the 161 
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annual aggregated counts of hospital admissions for MI for each ZIP code, year, and age group (0-162 

34, 35-54, 55-64, 65-74, ≥75 years). We fitted a quasi-Poisson regression to account for the 163 

overdispersion of MI hospitalization counts. The equation is given below:  164 

ln#𝐸(𝑌!,#,$)( = 𝛽% + 𝛽&𝑃𝑀'.)	!,# + 𝛽'𝑍! + 𝛽+𝑈# + 𝛽,𝐼$ + 𝛽)𝑊!,# + ln	(𝑃!,#,$) 165 

where 𝑌!,#,$ represents the aggregated count of hospitalizations for MI in ZIP code z, year 166 

t and age group k; 𝑃𝑀'.)	!,# represents the mean ambient PM2.5 concentration for the same stratum 167 

of ZIP code z and year t; 𝑍! is a dummy variable for ZIP code which captures all time-invariant or 168 

slowly changing variables that vary across ZIP code areas, measured or unmeasured; 𝑈#  is a 169 

dummy variable for year t which represents the time-varying variables whose temporal variation 170 

is similar across ZIP code areas; 𝐼$  is a dummy variable for age groups; 𝑊!,#  represents the 171 

variables that may vary differently over time across ZIP code areas; ln	(𝑃!,#,$) is an offset term 172 

that represents the natural log of the population in ZIP code z, year t and age group k.  173 

The essence of the DID method is to account for all differences across ZIP codes using 174 

indicator variables, and only examine the within ZIP code variation in exposure and outcome. This 175 

controls for all slowly changing covariates, measured or unmeasured, that vary across ZIP codes. 176 

Omitted confounders that vary similarly over time across ZIP codes are controlled using indicator 177 

variables for year. Time-varying confounders that vary over time differently across ZIP codes must 178 

be measured and controlled as usual. More statistical details can be found elsewhere (Wang et al., 179 

2016).  180 

In our DID model, the spatial confounding was controlled for by fitting individual 181 

intercepts for each ZIP code. The time trends were controlled by using an indicator for each year. , 182 

We controlled for time-varying estimates of average warm-season and cold-season temperatures, 183 

percentage of female residents, percentage of black residents, median household income, percent 184 
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of education level under high school, population density, percentage of residents who ever smoked, 185 

percentage aged ³65 years old living in poverty, and mean BMI in this paper. We assumed no 186 

other covariates that are both correlated with exposure and outcome can change differentially over 187 

time across ZIP codes were left out other than these adjusted variables. In the ecological design, 188 

the individual-level risk factors that displayed temporal variabilities were unrelated to the exposure 189 

and therefore would not confound the association. Therefore, the estimates given by the model can 190 

reflect the changes in MI morbidity attributable to the changes in ambient PM2.5.  191 

To test the robustness of the effect estimate, we further controlled for surface pressure and 192 

relative humidity, respectively. We also constructed two- and multi-pollutant models to control for 193 

potential confounding by NO2, and O3. Moreover, we explored the variation in the effect estimates 194 

across age subgroups by including an interaction term for an indicator of age subgroups and the 195 

PM2.5 term. We additionally examined the potential effect modification by some typical area-level 196 

SES indicators that could illustrate the degree of urbanity, i.e., poverty level, medium household 197 

income, population density, and education level.  198 

We performed two secondary analyses. First, we restricted the analysis to the residents who 199 

lived in the areas with annual exposure consistently at or below the annual standard of 12 µg/m3 200 

set by National Ambient Air Quality Standards (NAAQS) over the study period. For the above 201 

analysis, the percent change in hospitalization rate for MI and their 95% confidence intervals (CIs) 202 

per μg/m3 increase in long-term average PM2.5 level were reported. Second, we employed the case-203 

only analysis to examine whether the following individual-level comorbidities could be effect 204 

modifiers: hypertension, DM, COPD, renal failure, IDA, obesity, PVD, depression, other 205 

neurological disorders, and psychoses. The case-only method was suggested by Armstrong (2003) 206 

to study modification by effectively time-invariant individual factors in research of time-varying 207 
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environmental factors to identify the susceptible groups. For each comorbidity type, we performed 208 

a logistic regression model of the ambient PM2.5 on the comorbidity status adjusted for the time 209 

trend among the MI inpatients. The exposure-modifier interaction odds ratio (OR) and 95% CIs 210 

were reported.  211 

All analyses were performed using R software version 4.1.2. A two-sided p-value <0.05 212 

was considered statistically significant.  213 

3. Results 214 

3.1. Characteristics of community conditions and MI hospitalizations 215 

In total, we included 1,914,684 hospital admissions for MI from 8,106 ZIP codes (with a 216 

population over 100) in 10 U.S. states from 2002 to 2016. The air pollution, temperature, 217 

demographic and SES characteristics averaged over the study period in these ZIP codes are 218 

presented in Table 1. Over the study period, the average long-term annual PM2.5 concentration 219 

was 8.9±2.6 μg/m3 among all the ZIP code areas. The average temperatures in the warm season 220 

and in the cold season were 19.0±3.7 and 4.7±4.8 °C, respectively. On average, female residents, 221 

ever smokers, or residents who received high school education or less accounted for about half of 222 

the ZIP code-level population. In addition, there was evidence of spatial heterogeneity in several 223 

community-level demographic and SES covariates. For example, the population density differed 224 

substantially across ZIP codes with its 10th and 90th percentiles of 9 and 2,062 persons/mi2, 225 

respectively. The 10th and 90th percentiles in the percentage of the low-education population (≤high 226 

school) ranged between 25.2% and 63.6%.  227 

Table 2 shows the total and age subgroup-specific number of hospitalizations for MI and 228 

the corresponding average hospital admission rate among the included ZIP codes during the study 229 

period. Among all 1,914,684 MI cases, the highest hospital admission rate was occurring in 230 
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patients aged at least 75 years old, which accounted for 35.98% of total MI hospitalizations. The 231 

proportions of MI hospital admissions in 45-54, 55-64, and 65-74 age groups were lower than that 232 

in the oldest group, being 14.20, 21.92, and 22.51%, respectively. In contrast, the age group aged 233 

0-34 years old only included 0.79% of total hospitalizations for MI. The annual admission rate in 234 

the general population across all ZIP code areas shows an increasing pattern with age group: The 235 

highest ZIP code-level annual hospitalization rate for MI of 10.62‰ was observed in the oldest 236 

age group (≥75 years), while lower hospitalization rates were seen in younger age groups.  237 

3.2. Main effects of long-term PM2.5 exposures on MI risk 238 

Table 3 shows the estimated effects of PM2.5 on MI risk in the general population using 239 

different models. If the model assumptions are met, these are causal estimates. Overall, we 240 

observed a 1.35% (95% CI: 1.11-1.59%) increase in the hospitalization rate for every 1-μg/m3 241 

increase in PM2.5 exposure. The estimate was stable after further adjusting for surface pressure or 242 

relative humidity. In the model further adjusted for NO2 or O3, the adverse effects of PM2.5 on the 243 

risk of MI were slightly attenuated, which corresponded to 1.23% (95% CI: 0.99-1.47%) and 1.18% 244 

(95% CI: 0.94-1.42%) increase in hospital admission rate associated with 1 μg/m3 increase in PM2.5, 245 

respectively. In the model adjusted for NO2 and O3 simultaneously, the effect estimate was similar 246 

and remained significant. Moreover, we also restricted the main analysis to the ZIP codes where 247 

the annual PM2.5 exposures were always below 12 μg/m3 over the study period. A higher increment 248 

of 2.17% (95% CI: 1.79-2.56%) in hospitalization rate for MI was observed per 1-μg/m3 increase 249 

in the low-level PM2.5 exposures.  250 

3.3. Heterogeneity of susceptibilities among age subgroups 251 

Figure 1 and Table S1 show the variation in estimates for annual PM2.5 and hospitalization 252 

for MI across six age subgroups. In detail, the subgroups aged 0-34 and ≥75 years appeared to have 253 
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the highest relative risks for chronic exposures to PM2.5. For every 1-μg/m3 increase in annual 254 

PM2.5, there was a 2.40% (95% CI: 1.62-3.20%) and a 1.94% (95% CI: 1.69-2.20%) increase in 255 

the hospitalization rate in 0-34 years and ≥75 age subgroups, respectively. Every 1-μg/m3 increase 256 

in PM2.5 was associated with an increment of 1.32% (95% CI: 0.93-1.70%) in the hospitalization 257 

rate for MI among the subpopulation aged 35-44 years old. In contrast, the lowest relative risks for 258 

PM2.5 were observed in the subpopulations with ages 45-54, 55-64, and 65-74 years.  259 

3.4 Effect modifications by area-level SES covariates 260 

Figure 2 and Table S2 illustrate the potential effect modification by several area-level SES 261 

covariates on the relationship between PM2.5 and the risk of MI. We found significant effect 262 

modification by area-level poverty (p interaction=0.0497). Specifically, the population living in the 263 

poorer areas was more susceptible to long-term PM2.5 exposures as compared to those living in 264 

lower-poverty areas. In addition, population density significantly modified the association (p 265 

interaction<0.0001). The result suggests that people living in more populated geographical areas 266 

tended to have a higher risk of MI attributed to long-term PM2.5 exposures. However, the 267 

association was not modified by either median household income (p interaction=0.5190) or education 268 

level (p interaction=0.6640), despite a tendency of the higher risk occurring in the population with 269 

lower median household income and lower education level.  270 

3.5. Effect modifications by individual comorbidities  271 

We also investigated whether the association between long-term PM2.5 and hospitalizations 272 

for MI could differ by individual-level comorbidities using the data from 2005 to 2015. The results 273 

of the case-only analysis are shown in Figure 3 and Table S3. The risk of MI due to chronic 274 

exposures to PM2.5 was significantly higher in individuals with most of the common comorbidities 275 

than in those without it: hypertension, DM, COPD, renal failure, IDA, obesity, PVD, other 276 
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neurological disorders, and psychoses. The strongest modifying effect was observed in individuals 277 

with comorbid IDA (p interaction<0.0001). The odds of hospitalizations for MI was increased by 5.6% 278 

(95% CI: 5.3-5.8%) for each 1-μg/m3 increase in PM2.5 associated with comorbid psychoses. 279 

However, we found that having depression may decrease the susceptibility to PM2.5 exposures 280 

(OR=0.995; 95% CI: 0.991-0.998).  281 

4. Discussion 282 

In this study, we used hospital inpatient records from HCUP SIDs covering all admissions 283 

in ten states in the U.S. and performed a DID analysis to estimate the relationship between long-284 

term exposure to ambient PM2.5 and the risk of hospitalizations for MI. In the entire population, 285 

we found that the incidence of MI would increase by 1.35% (95% CI: 1.11-1.59%) for every 1-286 

μg/m3 increase in long-term residential PM2.5 exposure. The effect was robust to adjustment for 287 

surface pressure, relative humidity and co-pollutants (i.e., NO2 and/or O3). Effects remained and 288 

were stronger when limited to locations that never exceeded U.S. EPA’s air quality standards, were 289 

larger in poorer neighborhoods, and were increased in persons with chronic conditions most of 290 

which are more common in minorities. A key aspect of this analysis is that the population studied 291 

is the total population of those states, and not the selected sample of most cohort studies. This 292 

makes the findings more generally applicable and the coefficients more useful for calculating 293 

attributable risks. The findings that people with iron deficiency anemia, psychosis, and renal 294 

failure were more susceptible to the effects of PM2.5 on MI are novel, and the other effect 295 

modification (hypertension, diabetes, COPD) findings add to a thin literature.  296 

Less attention has been paid to the long-term effects of PM2.5 as compared to their acute 297 

effects (Cai et al., 2016; Zhu et al., 2021); however, an additional 10% risk is estimated for long-298 

term exposure than for short-term exposures to PM2.5, partially due to deteriorated cardiometabolic 299 
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conditions over time (Rajagopalan et al., 2018). Therefore, our research supplements the limited 300 

evidence in this regard. The risk of hospitalization for MI was slightly attenuated when NO2 and/or 301 

O3 were accounted for as confounding factors. It is important to note that NO2 and O3 are 302 

associated with certain components of PM2.5. In particular, NO2 is associated with secondary 303 

organic particles and O3 with secondary inorganic (sulfate and nitrate) particles. Hence controlling 304 

for them may remove the effects of important PM components. Indeed a personal exposure study 305 

reported that ambient NO2 and O3 were not associated with personal exposure to NO2 and O3 but 306 

were associated with personal exposure to PM2.5 (Valli, 2001). This suggests that three pollutant 307 

models risk biasing downward the PM2.5 effect as the gases may not be confounders. This change 308 

may also be due to the potential positive association for NO2 with MI (Roswall et al., 2017). The 309 

possible confounding by O3 might be explained by its potential to amplify cardiovascular effects 310 

(Malik et al., 2019; Weichenthal et al., 2017), which, however, remains unclear because of its 311 

complex dynamics and interaction with other typical air pollutants that may vary with seasons (Ito 312 

et al., 2007; Mustafić et al., 2012).  313 

Moreover, we observed that the increased risk was stronger at or below annual PM2.5 314 

concentrations of 12 μg/m3 which is an indication of a curvilinear concentration-response function 315 

(CRF). Such a CRF has been noted previously. For example, Vodonos et al. (2018) in a meta-316 

analysis of 54 cohort studies reported a similar shape in the association of both all-cause mortality 317 

and cardiovascular mortality. The Global Exposure Mortality Model study reported a similar 318 

finding, with a steeper slope for ischemic heart disease mortality below 12 µg/m3 (Burnett et al., 319 

2018). Possible reasons for such a pattern include adaptation, different chemical compositions of 320 

particles in locations with lower exposure, a different ratio of surface area to mass in higher 321 

concentration locations where particles tend to be larger due to agglomeration, etc. Overall, our 322 
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results highlight that there is a significant health threat even under low-level long-term exposures 323 

and that pollution control measures should be prioritized to protect public health.  324 

Our main finding is in accordance with some recent evidence. For example, Danesh Yazdi 325 

et al. (2019) observed a 2.6% (95% CI: 2.4-2.8%) increase in the hazard of first hospital admission 326 

for MI associated with each 1 μg/m³ increase in average annual PM2.5 concentration among 327 

Medicare participants over 65 years or older in seven southeastern states in the U.S. A study 328 

targeted the entire adult population in Ontario, Canada reported an ~3% increase in the risk of MI 329 

incidence per μg/m3 increase in long-term exposure to PM2.5 (Chen et al., 2020). Among 118,229 330 

individuals in a large-scale and population-based Chinese cohort, an increment of 10 μg/m³ 331 

increase in PM2.5 was associated with a higher risk of acute MI (HR=1.28; 95% CI, 1.19-1.39) (Li 332 

et al., 2020). Hystad et al. (2020) found that a hazard ratio of 1.03 (95% CI: 1.00-1.05) per 10 333 

μg/m³ increase in long-term ambient PM2.5 and a population-attributable fraction of 8.4% (95% 334 

CI: 0.0-15.4%) for MI in the Prospective Urban and Rural Epidemiology cohort comprising 335 

157,436 adults from 21 countries. Nevertheless, some researchers reported null associations of 336 

long-term PM2.5 with MI (Cesaroni et al., 2014; Lipsett et al., 2011; Miller et al., 2007). The 337 

nationwide Danish Nurse Cohort Study reported a higher risk of fatal MI induced by PM2.5, but 338 

did not suggest any association with overall incident MI (Cramer et al., 2020). Aside from the 339 

statistical approaches and study period, the differential magnitudes of the effect among the studies 340 

may be due to differences in demographic structure, prevailing concentrations, since the 341 

association appears curvilinear but linear models were fit, physiological characteristics (e.g., 342 

medical history, comorbidities), or SES factors (e.g., poverty, healthcare accessibility) of the study 343 

population. Diverse sources and constituents of ambient PM2.5 across different regions can also 344 

explain the difference in the toxicity and the triggering of MI (Rich et al., 2013).  345 
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Multiple pathways by which PM2.5 can affect the myocardium have been heavily 346 

elaborated, which are linked to oxidative stress, endothelial dysfunction, systemic immunity 347 

response, systemic inflammatory response, and autonomic nervous system injuries (Langrish et al., 348 

2012; Rajagopalan et al., 2018; Wang et al., 2013; Wang et al., 2016; Zhao et al., 2013); these 349 

physiological responses could further contribute to the development of atherosclerosis, the widely 350 

believed main trigger and underlying disease process of MI onset (Palasubramaniam et al., 2019). 351 

MI progression could be accelerated by disturbed cardiac mitochondrial function and dynamics 352 

followed by impaired redox metabolism and inflammation in the lung due to chronic exposure to 353 

PM2.5 inhalation (Marchini et al., 2022). More pathological evidence of specific molecular 354 

signaling pathways is also emerging. For example, toxicological experiments revealed that the 355 

down-regulation of microRNA-205 induced by PM2.5 could stimulate myocardial inflammation 356 

and cardiac dysfunction (Feng et al., 2020). Hu et al. (2021) demonstrated that NLRP3 357 

inflammasome activation is responsible for PM2.5-induced endothelial cell dysfunction. These 358 

uncovered biological mechanisms well support our findings.  359 

We provide novel evidence into the health disparities across age groups in terms of the 360 

relationship under investigation. Our evidence of high sensitivity in the oldest age group is in line 361 

with prior studies (Bai et al., 2019; Li et al., 2020). It could result from reduced physiological, 362 

metabolic and compensatory processes, as well as the heavier health burden of cardiopulmonary 363 

disorders in the elderly (Shumake et al., 2013). It might be also attributed to declined antioxidant 364 

defense ability of the respiratory tract lining fluid in the elderly population (Kelly et al., 2003). We 365 

also found a surprisingly high susceptibility in young individuals, which has been seldom explored 366 

or discussed before. A similar finding was suggested in a Canadian study where the researchers 367 

observed a strong association of MI incidence in relation to PM2.5 between 35-44 years-old adults 368 
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and 75-85 years-old adults (Bai et al., 2019). In comparison, we extended the scope to a large 369 

sample size of multiple age groups and found that the susceptibility in individuals aged 0-34 years 370 

was higher than that in the middle-aged groups and slightly higher than that in those aged ≥75. It 371 

is important to note that the baseline risk in the younger individuals was two orders of magnitude 372 

lower than in the oldest category, so a high relative risk is still a small attributable risk. These 373 

findings might be partially due to the longer time spent outdoors by younger people than by elder 374 

people. It’s also possible that a potentially immature immune system in adolescents may increase 375 

their vulnerability (Frcpc et al., 2006). More importantly, while the traditional risk factors for MI 376 

such as underlying atherosclerosis are less common in younger populations, their unique risk 377 

profile is linked to behavioral and psychosocial factors (e.g., recreational drug use) which may add 378 

to the risk of cardiovascular events (Gulati et al., 2020). Abundant evidence concludes cocaine use 379 

is a strong risk factor for MI (DeFilippis et al., 2018; Phillips et al., 2009; Schwartz et al., 2010). 380 

These risk factors may convey susceptibility to these individuals to the inflammatory response 381 

induced by PM2.5. On the other hand, if cocaine usage is correlated with PM2.5 exposure, it may be 382 

a confounder.  383 

In addition, we observed that population living in poorer areas or densely populated areas 384 

may be more susceptible to the risk of MI attributed to chronic exposures to PM2.5. The evidence 385 

of differential susceptibility to exposure in low-income areas, combined with the already 386 

established higher exposure levels and poorer healthcare accessibility in socioeconomically 387 

disadvantaged areas (Colmer et al., 2020; Wang et al., 2017) identifies this as a key environmental 388 

justice issue. Although increased susceptibility to PM2.5-related health impacts accompanied by 389 

SES disadvantage has been well recognized (Bravo et al., 2016; Chi et al., 2016; Xu et al., 2020), 390 

the effect modification by neighboring SES factors in the association of MI risk with long-term 391 
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PM2.5 exposures is little discussed, and present conclusions on this topic are mixed. Several studies 392 

did not identify significant differences across levels of neighborhood-level sociodemographic 393 

characteristics (Hystad et al., 2020; Madrigano et al., 2013; Weaver et al., 2019). In contrast, the 394 

evidence of effect modification by annual household income was suggested in long-term adult 395 

residents of Ontario (Bai et al., 2019), which differed from our study. Our present finding can 396 

provide a novel understanding of potential susceptible subpopulations and facilitate clarification 397 

of social drivers for substantial geographic disparities in MI across the U.S. (Camacho et al., 2022; 398 

Yu et al., 2021).  399 

In line with prior epidemiological studies, we identified a statistically elevated risk of MI 400 

associated with long-term PM2.5 exposure among patients with diabetes than those without 401 

(Cramer et al., 2020; Hart et al., 2015; McGuinn et al., 2016). We also found that hypertension, 402 

COPD, renal failure, IDA, obesity, PVD, and unfavorable neurological conditions may increase 403 

the vulnerability to the risk of MI in relation to PM2.5, which has not been widely appreciated or 404 

documented in the past. Higher insulin resistance and oxidative stress may enhance the alteration 405 

of ventricular repolarization and systemic inflammation triggered by PM2.5 and thus exacerbate 406 

myocardial vulnerability to arrhythmias (Schneider et al., 2010), which might provide a possible 407 

explanation for our conclusion. The strongest effect of IDA may be due to stimulated oxidative 408 

stress, decreased blood supply, myocardial hypoxia, and the close interplay of the outcomes 409 

(Inserte et al., 2021; Padda et al., 2021). Additionally, we assume the intake of psychotropic 410 

medications may exacerbate the susceptibility since they are known to cause undesirable 411 

cardiometabolic effects (Abosi et al., 2018; Mohamed et al., 2019). A much lower chance of 412 

adherence to cardiovascular disease medication and healthcare-seeking behaviors to prevent 413 

physical illness among many psychiatric patients (especially those with severe mental illness) 414 
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might also contribute to an increased risk of MI events (Druss et al., 2001; Newcomer and 415 

Hennekens, 2007). However, comorbid depression, which showed a protective effect, remains 416 

unclear. Further investigations on the specific impacts and mechanisms of comorbidities are 417 

warranted.  418 

There are multiple strengths in the present study. To begin with, we used high coverage 419 

(97%) medical records across multiple U.S. states over a long period, which enabled the statistical 420 

power to be sufficient and expanded the generalizability of our findings. Furthermore, in the DID 421 

modeling framework, we eliminated confounding by variables that change slowly over time and 422 

minimized the confounding by the variables that showed parallel variations in time across area 423 

units, thus overcoming the limitations of data availability by design. We also fully adjusted for 424 

multiple area-level demographic, SES, and behavioral covariates to relax the assumptions. 425 

Additionally, in light of underappreciated cardiovascular risk among younger individuals, we 426 

performed the analysis with fine divisions of age and revealed the strong susceptibility in young 427 

people. Additionally, we determined multiple common individual comorbid conditions as potential 428 

susceptibility factors. With this investigation, we aimed to raise the public health concern towards 429 

sensitive groups and implement more targeted preventative measures both in pollution control and 430 

healthcare services.  431 

However, some limitations should also be acknowledged. First, despite high resolution of 432 

the air pollution predictions, the PM2.5 estimates only represent the ambient exposure level within 433 

a specific ZIP code area and year but were not based on personal exposures which are influenced 434 

by activity patterns, air exchange rates, second-hand tobacco smoke, and other factors that lead to 435 

them differing, often substantially, from neighborhood exposure. However, Weisskopf and 436 

Webster (2017) have pointed out that personal exposure is correlated with many potential 437 
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confounders (e.g. stress while driving) that are not associated with outdoor concentration, and 438 

hence outdoor exposures can act as instrumental variables for the personal exposure. Further, the 439 

National Human Activity Pattern Survey in the U.S. reported that U.S. adults spent 69% of their 440 

time at home and 8% of the time immediately outside their home (Klepeis et al., 2001), making it 441 

reasonable to use neighborhood ambient pollution to capture their exposure to ambient pollution. 442 

Nevertheless, our model clearly does not capture personal exposure. While there is likely a 443 

considerable difference between the personal exposure of individuals living in a neighborhood and 444 

the ambient concentration in that neighborhood, the difference between the personal and ambient 445 

is likely to be mostly Berksonian exposure error since it represents individual variation around a 446 

group mean. As such, it should not produce much bias in the effect estimates in an epidemiology 447 

study. A recent simulation study showed that even in the presence of substantial Berksonian 448 

exposure error, little bias would be found in an epidemiology study (Wei et al., 2022). Second, the 449 

DID approach should be better understood as a more robust approach to confounding control that 450 

addresses some omitted confounders rather than as an approach that addresses all of them. 451 

However, since we used indicator variables for every ZIP code, our analysis is only examining 452 

year-to-year exposure within ZIP code, and hence ZIP code differences between e.g. high and low 453 

SES ZIP codes are controlled by design. Within ZIP code, we have controlled for time-varying 454 

SES variables, but we acknowledge we were not able to control for all. For example, we did not 455 

have data on occupation. However, since the DID approach eliminates any contrasts between ZIP 456 

codes, and the exposure assigned to all individuals within a ZIP code is the same, it is unlikely that 457 

such factors could be associated with exposure. Third, differential exposure histories and other 458 

risk factors such as diets across areas are overlooked because of the unknown human migration 459 

patterns in this study, which may have resulted in a wrong recognition of the true cause of MI 460 
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hospitalizations. Finally, we aggregated the hospital admissions by strata defined by ZIP code, 461 

year, and age, therefore, potentially low numbers in some age subpopulation in less populated 462 

geographical areas could add noise to the analysis.  463 

5. Conclusions 464 

In this study, we found that long-term exposures to ambient PM2.5 increased the risk of MI 465 

hospitalization. The relationship remained significant after controlling for surface pressure, 466 

relative humidity and concurrent exposures to NO2 and O3. A more pronounced adverse 467 

association was observed at or below the annual PM2.5 limit enacted by NAQQS. In addition, we 468 

observed higher susceptibility to the PM2.5-related MI risk among young people and elderly people, 469 

residents living in poorer or highly populated areas, and individuals with a comorbid burden. Our 470 

study highlights the roles of air pollution being one important environmental risk factor for MI, 471 

gives insights into the underlying susceptible subpopulations, and informs the future strategies to 472 

control air pollution and mitigate related health disparities.  473 
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Table 1. Distribution of ZIP code-level annual PM2.5 and covariates from 2002 through 2016. 495 

ZIP code-level covariates* Mean (SD) Percentile 

  10th 25th 50th 75th 90th 

Annual PM2.5 (μg/m3) 8.9 (2.6) 5.4 7.2 8.9 10.5 12.4 

Annual NO2 (ppb) 17.6 (10.0) 7.4 10.1 14.8 23.3 31.9 

Annual O3 (ppb) 39.0 (3.9) 34.7 37.3 38.9 40.5 44.0 

Warm season temperature 

(°C) 
19.0 (3.7) 15.0 16.3 18.1 21.6 23.9 

Cold season temperature (°C) 4.7 (4.8) -0.8 0.9 4.3 7.8 11.1 

Surface pressure (Pa) 95,668 (2,980) 94,187 94,267 94,330 98,118 100,097 

Relative humidity (%) 84.8 (10.6) 74.9 83.8 87.6 90.4 92.9 

Percent female (%) 50.3 (3.6) 47.7 49.4 50.6 51.8 53.0 
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Percent black (%) 9.9 (17.1) 0.2 0.5 2.2 10.5 31.6 

Median household income ($) 
54,044 

(23,198) 
32,364 39,049 48,130 63,069 83,717 

Percent ≥65 below poverty 13.2 (8.5) 4.33 7.06 11.53 17.06 24.17 

Population density 

(persons/mi2) 
1,109 (3,866) 9 23 96 753 2,062 

Percent education ≤high 

school 
46.0 (14.6) 25.2 35.9 47.7 56.9 63.6 

Ever smokers (%) 48.0 (7.5) 39.0 43.3 47.6 52.5 57.4 

Mean BMI (kg/m2) 27.6 (1.1) 26.3 26.9 27.5 28.2 29.0 

* Air pollutant concentration data were the moving averages of the year and the previous year. 496 

 497 

 498 

Table 2. Summary of total and age-specific hospitalizations for MI from 2002 through 2016.  499 

 Number of hospitalizations (%)* 
Annual rate of 

hospitalization (‰)** 

Total 1,914,684 1.40 

Age (years)  

0-34 15,215 (0.79) 0.03 

35-44 87,893 (4.59) 0.68 

45-54 271,937 (14.20) 1.91 

55-64 419,733 (21.92) 3.55 

65-74 431,071 (22.51) 5.70 
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≥75 688,835 (35.98) 10.62 

*The number of hospitalizations for MI was represented in N (%).  500 

**The annual rate of hospitalization was averaged across ZIP code areas.  501 

 502 

Table 3. Percent change in hospitalization rate for MI per 1-μg/m3 increase in long-term 503 

exposure to PM2.5 in the main model, in models adjusted for surface pressure (SP) or relative 504 

humidity (RH), in models adjusted for NO2 and/or O3, and in the low-level exposure analysis.  505 

Models 

Percent change in MI 

hospitalization rate (95% 

CI) 

Main model 1.35 (1.11, 1.59) 

Adjusted for SP 1.34 (1.10, 1.58) 

Adjusted for RH 1.35 (1.10, 1.59) 

Adjusted for NO2 1.23 (0.99, 1.47) 

Adjusted for O3 1.18 (0.94, 1.42) 

Adjusted for NO2 and O3 1.18 (0.94, 1.43) 

Low-level exposures to 

PM2.5* 
2.17 (1.79, 2.56) 

*The analysis for low-level exposures to PM2.5 was restricted to the areas where the population 506 

was continuously exposed to PM2.5 concentrations at or below 12 μg/m3 over 2002-2016.  507 

 508 

 509 
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 510 

Figure 1. Percent change in hospitalization rate for MI per 1-μg/m3 increase in long-term 511 

exposure to PM2.5 across different age subgroups.  512 

 513 

 514 

 515 

Figure 2. Percent change in hospitalization rate for MI per 1-μg/m3 increase in long-term exposure 516 

to PM2.5 at the different percentiles of potential SES modifiers.  517 
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* indicates the statistical significance of the modifier (p interaction<0.05). For the percent of residents 518 

≥65 years old living in poverty, the data below the 25th percentile (i.e., <7% percent; defined as 519 

low-level poverty areas) compared to the data at or above the 25th percentile (i.e., ≥7% percent; 520 

defined as poorer areas). For median household income, population density, and percent education 521 

level ≤high school, the effects of PM2.5 were compared between the 10th and 90th of the modifier 522 

level.  523 

 524 

 525 

 526 

Figure 3. Interaction Odds Ratio (OR) for hospitalization for MI per μg/m3 increase in long-term 527 

exposure to PM2.5 comparing individuals with and without comorbidities.  528 

DM, diabetes mellitus; COPD, chronic obstructive pulmonary disease; IDA, iron deficiency 529 

anemia; PVD, peripheral vascular disorders.  530 
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datasets for multiple states, the data are aimed to facilitate health services research and improve 914 

health care delivery. The SIDs in HCUP data contain the inpatient discharge records from 915 

community hospitals in 49 participating states, which account for about 97% of all U.S. community 916 

hospital discharges. The coverage of SIDs reaches all patients regardless of payer, including 917 

individuals covered by Medicare, Medicaid, or private insurance, and those uninsured.  918 
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In the present study, we included the SIDs for the following ten states that were allowed 919 

by our current funding budget for research use from HCUP: Arizona (AZ), Michigan (MI), North 920 

Carolina (NC), New York (NY), Rhode Island (RI), Washington (WA), New Jersey (NJ), 921 

Maryland (MD), Georgia (GA), and Wisconsin (WI). For GA, we only have access to the data 922 

after 2010. For WI, we only have access to the data after 2012. For MD, residential address ZIP 923 

code information is only available after 2008 and admission year information is only available 924 

after 2009. For the other included states, we have the complete records from 2002 to 2016.  925 

 926 

 927 

Table S1. Percent change in hospitalization rate for MI per 1-μg/m3 increase in long-term 928 

exposure to PM2.5 across different age groups.  929 

Age (years) % Change (95% CI) 

p for trend* <0.001 

0-34 2.40 (1.62, 3.20) 

35-44 1.32 (0.93, 1.70) 

45-54 0.87 (0.59, 1.16) 

55-64 0.95 (0.68, 1.22) 

65-74 1.01 (0.75, 1.28) 

≥75 1.94 (1.69, 2.20) 

*p for age trend was estimated from the adjusted model using age as a continuous term.  930 

 931 

 932 
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Table S2. Percent change in hospitalization rate for MI per 1-μg/m3 increase in long-term 933 

exposure to PM2.5 across different levels of SES factors.  934 

SES factors 10th percentile 90th percentile p for interaction 

Poverty 1.16 (0.86, 1.46) 1.42 (1.17, 1.67) 0.0497 

Household income 1.31 (1.04, 1.57) 1.44 (1.07, 1.80) 0.5190 

Population density 1.07 (0.82, 1.32) 1.19 (0.95, 1.43) <0.0001 

High school or less 1.30 (0.97, 1.63) 1.37 (1.10, 1.65) 0.6640 

 935 

 936 

 937 

Table S3. Interaction Odds Ratio (OR) for hospitalization for MI per 1-μg/m3 increase in long-938 

term exposure to PM2.5 comparing individuals with and without comorbidities.  939 

Comorbidity Cases (%)* OR (95% CI) p 

Hypertension 1067896 (69.4) 1.037 (1.036, 1.039) <0.001 

DM 448683 (29.2) 1.039 (1.037, 1.041) <0.001 

COPD 324202 (21.1) 1.004 (1.002, 1.006) <0.001 

Renal failure 290739 (18.9) 1.042 (1.039, 1.040) <0.001 

IDA 238974 (15.5) 1.056 (1.053, 1.058) <0.001 

Obesity 193034 (12.5) 1.007 (1.004, 1.011) <0.001 

PVD 169422 (11.0) 1.014 (1.011, 1.016) <0.001 

Depression 105388 (6.8) 0.995 (0.991, 0.998) <0.001 

Other neurological disorders 93109 (6.1) 1.017 (1.041, 1.055) <0.001 

Psychoses 31566 (2.1) 1.048 (1.041, 1.054) <0.001 
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* The proportion was calculated as the case count divided by the MI hospitalizations from 2005 940 

to 2015. DM, diabetes mellitus; COPD, chronic obstructive pulmonary disease; IDA, iron 941 

deficiency anemia; PVD, peripheral vascular disorders.  942 


