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Figure 3: We generate, visualize, and evaluate explanations for TXGNN Predictions. a. We produce a sparse set biological
relations to explain a drug-disease prediction by masking less informative relations in the neighborhood of the biological knowledge
graph. b. DrugExplorer supports domain scientists in interpreting and interacting with model predictions and explanations. The ‘Path
Explanation’ panel displays those biological relations that have been identified as critical for TXGNN’s predictions about therapeutic
use.c. We compare DrugExplorer with a no-explanation baseline in terms of user answer accuracy, exploration time, user confidence,
and user agreement on 4 usability questions. Error bars indicate the 95% confidence intervals. Agree scores are placed to the right,
disagree to the left.
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Figure 4: Understanding and evaluating the novel predictions made by TXGNN. a. The 5 most related diseases for Tonsillitis
and their positions in the disease embedding space. We find the target disease is distant from the related diseases in the embedding
manifold, suggesting TXGNN leverages a domain prior-guided selective aggregation scheme to enrich the target disease embedding.
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Online Methods
The Methods are structured as follows: 1) description of therapeutics-centered knowledge graph

(Section 1), 2) description of machine learning approach (Section 2), and 3) outline of the experi-

mental setup, benchmarking and evaluation (Section 3).

1 Therapeutics-centered knowledge graph
The knowledge graph is heterogeneous, with 10 types of nodes and 29 types of undirected edges.

It contains 123,527 nodes and 8,063,026 edges. Tables 3 and 4 show a breakdown of nodes by

node type and edges by edge type, respectively. The knowledge graph and all auxiliary data files

are available via Harvard Dataverse at https://doi.org/10.7910/DVN/IXA7BM.

1.1 Primary data resources

The knowledge graph is compiled based on 17 primary knowledge bases that cover 10 types of

biomedical entities and provide broad coverage of human disease, already-available drugs, and

novel drugs in development. We briefly overview biological information retrieved from the knowl-

edge bases, with details provided in Chandak et al.12: Bgee. Bgee39 contains gene expression

patterns across multiple animal species. Processing involved keeping only gold-quality calls and

ensuring the anatomical entities were coded using the UBERON ontology. To extract only highly

expressed genes in the anatomical entity, we filtered the data to keep data with an expression rank

of less than 25,000. The processed data contains 1,786,311 anatomy-protein associations where

gene expression was present or absent. Comparative Toxicogenomics Database. The Compar-

ative Toxicogenomics Database (CTD)40 focuses on environmental exposures’ impact on human

health. The processed data contains 180,976 associations between exposures and proteins, dis-

eases, other exposures, biological processes, molecular functions, and cellular components. Dis-

GeNET. DisGeNET41 is a resource about the relationships between genes and human disease that

experts have curated. The raw data contains 84,038 associations of genes with diseases and pheno-

types. DrugBank. DrugBank42 is a resource that contains pharmaceutical knowledge. Processing

involved using the beautiful soup package to extract synergistic drug interactions. The processed

data contains 2,682,157 associations. We also retrieved information about drug targets, enzymes,

carriers, and transporters. The processed data contains 26,118 drug-protein interactions. Drug

Central. Drug Central43 curates information about approved drug indications and contraindica-

tions. The processed data contains 26,698 indication edges, 8,642 contraindication edges, and
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1,917 off-label use edges. Entrez Gene. Entrez Gene44 is a resource maintained by the NCBI that

contains vast amounts of gene-specific information. Processing involved using the GOATOOLS

package45 to extract relations between genes and Gene Ontology terms. The processed data in-

cludes 297,917 associations of genes with biological processes, molecular functions, and cellular

components. Gene Ontology. The Gene Ontology46 network describes molecular functions, cel-

lular components, and biological processes. Processing involved using the GOATOOLS package45

to extract information for gene ontology terms and relations between go terms. The processed

data contains 71,305 hierarchical associations between biological processes, molecular functions,

and cellular components. Human Phenotype Ontology. The Human Phenotype Ontology47 pro-

vides information on phenotypic abnormalities found in diseases. Processing involved parsing

the ontology file to extract phenotype terms in the ontology, parent-child relationships, and cross-

references to other ontologies. The processed data contains disease-phenotype, protein-phenotype,

and phenotype-phenotype edges. We also obtained expertly curated annotations. The processed

data includes 218,128 curated associations between diseases and phenotypes. Mondo Disease

Ontology. Since the Mondo Disease Ontology48 harmonizes diseases from a wide range of ontolo-

gies, including OMIM, SNOMED CT, ICD, and MedDRA, it was our preferred ontology for defin-

ing diseases. The processed data contains 64,388 disease-disease edges. Orphanet. Orphanet49 is

a database that gathers knowledge about rare diseases. The Orphanet portal has curated information

about definitions, prevalence, management and treatment, epidemiology, and clinical description

for 9348 rare diseases. Physical protein-protein interactions. Protein-protein interactions are

composed of experimentally-verified interactions between proteins. The interactions we consider

are diverse, including signaling, regulatory, metabolic-pathway, kinase-substrate, and protein com-

plex interactions, which are unweighted and undirected. We use the human PPI network compiled

by Menche et al.1 as the starting resource. This resource integrates several protein-protein inter-

action databases, including TRANSFAC for regulatory interactions50, MINT and IntAct for yeast

to hybrid binary interactions51, 52, and CORUM for protein complex interactions53. Additionally,

we retrieve protein-protein interaction information from BioGRID54 and STRING55 databases. We

also consider the human reference interactome (HuRI) generated by Luck et al.56, where we use the

HI-union, a combination of HuRI and several related efforts to systematically screen for protein-

protein interactions. The processed data contains 642,150 edges. Reactome. Reactome57 is an

open-source, curated database for pathways. The processed data contains 5,070 pathway-pathway

and 85,292 protein-pathway edges. Side Effect Resource. The Side Effect Resource (SIDER)58

23

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.19.23287458doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.19.23287458
http://creativecommons.org/licenses/by/4.0/


contains data about adverse drug reactions. We retrieved side-effect data and SIDER’s drug to

Anatomical Therapeutic Chemical (ATC) classification mapping. Processing involved extracting

all side effects where the MedDRA term was coded at the ”PT” or preferred term level and then

mapping drugs from STITCH ID to ATC ID. The processed data 202,736 contains drug-phenotype

associations. UBERON. UBERON59 is an ontology containing human anatomy information. Pro-

cessing involved extracting information about anatomy nodes and the relationships between them.

The processed data includes 28,064 hierarchical relationships between anatomy nodes.

1.2 Building therapeutics-centered knowledge graph

We selected ontologies for each node type, harmonized primary data resources into a standardized

format and resolved overlap across ontologies, and specified display names for relation/edge types

to aid in the visualization of the knowledge graph by DrugExplorer and user studies.

Data standardization and ontologies. To harmonize primary data resources, we mapped them

to common ontologies12. The node types ‘drug’, ‘disease’, ‘anatomy’, and ‘pathway’ are encoded

as terms in DrugBank, Mondo, UBERON, and Reactome. Genes and proteins are treated as a

single node type, ‘gene/protein’, and identified by Entrez Gene IDs. The node types ‘biological

process’, ‘molecular function’, and ‘cellular component’ are defined using Gene Ontology terms.

Disease phenotypes extracted from HPO and drug side effects extracted from SIDER are collapsed

into a single node type, ‘effect/phenotype’, encoded using HPO IDs. Finally, ‘exposure’ nodes

are defined using the ExposureStressorID field, which contains MeSH identifiers provided by the

Comparative Toxicogenomics Database. Here, ‘gene/protein’ nodes are also referred to as protein

nodes, and ‘effect/phenotype’ nodes are referred to as phenotype nodes interchangeably.

There was considerable overlap between phenotype and disease nodes across primary data

resources. Overlapping nodes are effect/phenotype nodes in the Human Phenotype Ontology with

the same ID number as disease nodes in Mondo Disease Ontology. They can be mapped from the

Human Phenotype Ontology to Mondo using cross-references found in the Mondo. To resolve the

overlap between phenotype nodes (Human Phenotype Ontology) and disease nodes (Mondo Dis-

ease Ontology), these overlapping phenotype nodes were converted to disease nodes by aligning

edges across datasets as outlined in Chandak et al.12.

Defining display relation names. To support the visualization of TXGNN’s predictions, we added

a ‘display relation’ field, a descriptive version of the ‘relation’ field. When visualizing explana-

tory meta paths, the user sees two node types and a connecting relation name. For example, a
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user would see a ‘drug’ connected to another ‘drug’ by the ‘drug drug’ relation. Since the relation

name becomes repetitive here, we introduced more meaningful descriptions through this display

relation field. Some notable examples include converting ‘drug drug’ to ‘synergistic interaction’,

‘anatomy protein present’ to ‘expression present’, and ‘disease phenotype negative’ to ‘pheno-

type absent’. The display relation field does not map to the relation field one-one. For example,

drug-protein relations in the knowledge graph can be displayed as ‘target’, ‘enzyme’, ‘transporter’,

or ‘carrier’ depending on their specification in DrugBank. In the reverse, disease-disease and

anatomy-anatomy relations have the display name ‘is a’ to indicate hierarchical relations.

Harmonizing graph structure and topology of therapeutics-centered knowledge graph. We

merged the harmonized datasets into a heterogeneous knowledge graph and extracted its largest

connected component using the approach outlined in Chandak et al.12. Since the knowledge graph

is designed for therapeutic use prediction, we wanted to ensure that disease nodes in the graph were

meaningful representations of diseases by collapsing disease nodes with nearly identical names

into a single disease node. To this end, we adopted an approach previously validated12 to group

disease nodes with nearly identical names. First, disease groups were identified using automated

string matching across disease names. This was achieved by selecting a starting disease via the

ending-matching criteria and using the starting disease to find matches.

Matches included any diseases with the same initial phrase as the main disease name after

deleting the ending word and any disease that contained all the words in the main disease name with

no additional words, regardless of word order. Second, the intermediate disease groupings were

tightened using ClinicalBERT60 embedding similarities between disease names. The similarity be-

tween disease names was defined as the cosine distance between their ClinicalBERT embeddings.

Finally, after applying an empirically chosen cutoff of similarity ≥ 0.98, we manually approved

the suggested disease matches and assigned names to the new groups. After grouping, 22,205

diseases in the Mondo Disease Ontology were collapsed into 17,080 grouped diseases.

2 Geometric deep learning approach

Notation. We are given a heterogeneous knowledge graph (KG) G = (V , E , TR) with nodes in the

vertex set vi ∈ V , edges ei,j = (vi, r, vj) in the edge set E , where r ∈ TR indicates the relation

type, vi is called the head/source node and vj is called the tail/target node. Each node also belongs

to a node type set TV . Each node also has an initial embedding, which we denote as h(0)
i .
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Problem definition. Given a disease i and drug j, we want to predict the likelihood of the drug

being (1) indicated for the disease or (2) contraindicated for the disease. The goal is to inject

factual knowledge from the KG into AI application to imitate important skills possessed by human

experts, i.e., reasoning and understanding when forming hypotheses and making predictions about

disease treatments.

2.1 Overview of TXGNN approach

TXGNN is a deep learning approach for mechanistic predictions in drug discovery based on molec-

ular networks perturbed in disease and targeted by therapeutics. TXGNN is composed of four

modules: (1) a heterogeneous graph neural network-based encoder to obtain biologically mean-

ingful network representation for each biomedical entity; (2) a disease similarity-based metric

learning decoder to leverage auxiliary information to enrich the representation of diseases that lack

molecular characterization; (3) an all-relation stochastic pre-training followed by a drug-disease

centric full-graph fine-tuning strategy; (4) a graph explainability module to retain a sparse set of

edges that are crucial for prediction as a post-training step. Next, we expand each module in detail.

2.2 Heterogeneous graph neural network encoder

Given a knowledge graph, we aim to learn a numerical vector (i.e., network embedding) for each

node such that it captures biomedical knowledge encapsulated in the neighboring relational struc-

tures. This is achieved by transforming initial node embeddings through several layers of local

graph-based non-linear function transformations to generate embeddings18, 61. These functions are

optimized iteratively, given a loss function to gradually minimize the error of making poor ther-

apeutic use predictions. Upon convergence, optimized functions generate an optimal set of node

embeddings.

Step 1: Initialization. We denote the input node embedding Xi for each node i, which is initialized

using Xavier uniform initialization62. For every layer l of message-passing, there are the following

three stages:

Step 2: Propagating relation-specific neural messages. For every relation type, first calculates

a transformation of node embedding from the previous layer h(l−1), where the first layer h(0) =

X. This is achieved via applying a relation-specific weight matrix W
(l)
r,M on the previous layer
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embedding:

m
(l)
r,i = W

(l)
r,Mh

(l−1)
i (1)

Step 3: Aggregating local network neighborhoods. For each node vi, we aggregate on the

incoming messages {m(l)
r,j|j ∈ Nr(i)} from neighboring nodes of each relation r denoted asNr(i)

by taking the average of these messages:

m̃(l)
r,i =

1

|Nr(i)|
∑

j∈Nr(i)

m
(l)
r,j (2)

Step 4: Updating network embeddings. We then combine the node embedding from the last

layer and the aggregated messages from all relations to obtain the new node embedding:

h
(l)
i = h

(l−1)
i +

∑
r∈TR

m̃(l)
r,i (3)

After L layers of propagation, we arrive at our encoded node embeddings hi for each node i.

2.3 Predicting drug-disease relationships

Given the disease embedding and the drug embedding, we can predict the interaction between

a disease-drug pair. As we have three relation types to predict for each disease-drug pair, we

use a trainable weight vector wr for each relation type. We then use DistMult63 to calculate the

interaction likelihood for that relation. Formally, for disease i, drug j, and relation r, we calculate

the predicted likelihood p:

pi,j,r =
1

1 + exp(−sum(hi ·wr · hj))
. (4)

2.4 Similarity Disease Search to Enrich Molecularly Uncharacterized Disease Embedding

Diseases receive various degrees of research, given their prevalence, complexity, and so on. For

example, we know very little about the molecular underpinnings of many rare diseases64, 65. Nev-

ertheless, these diseases usually present the most promising therapeutic opportunities66. Due to

the lack of understanding of these diseases, machine learning predictions have become more im-

portant than ever. However, the limited research on these diseases is reflected by the scarcity of
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relevant nodes and edges around these diseases in our biological knowledge graph. Because of

this sparsity, the graph embedding tends to be lower quality. For example, if a disease has zero

connections in the KG (i.e., no existing knowledge), then the disease embedding will be the ran-

dom initialization. Empirically, we see that prevailing GNN approaches have drastically lower

predictive performance on our disease-centric splits to simulate this realistic property of diseases

compared to random splits (Figure 1g).

We hypothesize that the obtained network embedding for these diseases is not meaningful

due to this limited prior in the KG. Thus, a model must subsidize and augment the network em-

bedding for these molecularly uncharacterized diseases. Our key insight is that human physiology

is a connected system where diseases are similar across dimensions (e.g., lung cancer is similar to

brain cancer in the dimension of cancer diseases, while lung cancer is similar to asthma in the di-

mension of lung diseases). Therefore, if we could borrow useful information from a set of similar

diseases that are relatively well-characterized in the KG through the model, we could augment the

embedding of the candidate disease and improve the prediction.

To do that, we propose a three-step procedure: (1) a disease signature vector that captures

the intricate disease similarities; (2) an aggregation mechanism that integrates the different similar

diseases into a robust auxiliary embedding that can subsidize original disease embedding; (3) a

gating mechanism to control the effect between the original disease embedding and the auxiliary

disease embedding since many well-characterized diseases have sufficient embeddings and do not

need subsidies. We discuss each of the three steps in detail below.

Network-based Disease Signature Profiling. The overall goal for this module is to obtain a

signature vector pi for every disease i. There are numerous ways to calculate the similarity between

two diseases. As disease representations generated by the graph neural network alone are not

sufficient to characterize the candidate disease, they ideally should not be directly used to calculate

similarity. Instead, we resort to graph theoretical techniques that are rooted in the field of network

science5. We consider the following three types of signature functions:

• Protein signatures (PS): The mechanism of actions for small molecule drugs is to act upon pro-

tein targets in the disease pathway67. Thus, the ideal disease signature should preserve similarity

in the protein target space. If two diseases have similar proteins in their corresponding disease

pathways, they are more likely to have a similar treatment mechanism1, 68. This key observation

motivates the protein signature69. We have a bit vector for each disease where each bit corre-
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sponds to a specific protein. A bit is flipped to one if the bit corresponds to a protein in the

disease pathway. Formally, for disease i, the protein signature is defined as:

pPS
i = [ p1 · · · p|VP| ], (5)

where

pj =

1 if j ∈ N P
i

0 otherwise,
(6)

andN P
i is the set of proteins that lie in the 1-hop neighborhood of disease i and |VP| the number

of total available proteins. To calculate similarity between two diseases i, j, we use dot product:

simPS(i, j) = pPS
i · pPS

j = |N P
i ∩N P

j |. (7)

The similarity directly measures the number of intersecting proteins in the disease pathway of

i, j. If the similarity is high, we know these two diseases have a larger number of intersecting

diseases, which increases the probability of similar treatment mechanisms.

• All-node-types signatures (AT): Human knowledge about disease pathways are vastly incom-

plete. Thus, some diseases may not have complete protein pathways in the knowledge graph,

which leads to biased protein signatures. Additional biological knowledge about diseases could

potentially benefit. In the knowledge graph, other node types connect to diseases, including

effect/phenotype, exposure, and disease. Since the local neighborhood can define some charac-

teristics of diseases, we can extend the principle of protein signature, such that if two diseases

share the same nodes in these additional node types, they have similar biological underpinnings.

We call these all-node-types signatures. Formally, for disease i, the protein signature is defined

as:

pAT
i = [ p1 · · · p|VP ep1 · · · ep|VEP| ex1 · · · ex|VEX| ep1 · · · ep|VEP| d1 · · · d|VD| ], (8)

where

pj =

1 if j ∈ N P
i

0 otherwise
, epj =

1 if j ∈ N EP
i

0 otherwise
, exj =

1 if j ∈ N EX
i

0 otherwise
dj =

1 if j ∈ ND
i

0 otherwise
(9)
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and N EP
i ,N EX

i ,ND
i is the set of effect/phenotype, exposure, diseases nodes lie in the 1-hop

neighborhood of disease i and |VEP|, |VEX|, |VD| the number of total available effect/phenotype,

exposure, diseases respectively. We also adopt the dot product as the similarity measure, which

means the similarity is the sum of all shared nodes across the four node types:

simAT(i, j) = pAT
i · pAT

j = |N P
i ∩N P

j |+ |N EP
i ∩N EP

j |+ |N EX
i ∩N EX

j |+ |ND
i ∩ND

j |. (10)

• Diffusion signatures (DS): The above two signatures rely on the first-hop neighbor of the dis-

eases, while higher-hop neighbors may contain useful molecular characterization. Diffusion

signature simulates many random walks, where each random walk is a path of length h starting

from the disease i: w = vi
ei,1−−→ v1 · · · vh−1

eh−1,h−−−→ vh
70. The set of visited nodes in the k-th ran-

dom walk from disease node i is denoted asWk
i . ∩kWk

i represents the total set of visited nodes

across all walks, and we can calculate the normalized visitation probability for visited node j as:

fj =

∑
k

∑
1Wk

i =j∑
k |Wk

i |
(11)

These nodes correspond to a multi-hop snapshot of molecular interactions centering around the

diseases, and the visitation probability corresponds to the influence level. Given this probability

score, we can obtain the diffusion signature for disease node i:

pDS
i = [ f1 · · · f|VP| ]. (12)

For diffusion signature, we still use the dot product:

simDS(i, j) = pDS
i · pDS

j =

|VP|∑
u

(∑
k

∑
1Wk

i =u

)
·
(∑

k

∑
1Wk

j =u

)
(
∑

k |Wk
i |)2

∼
|VP|∑
u

(∑
k

∑
1Wk

i =u

)
·
(∑

k

∑
1Wk

j =u

)
.

(13)

Note the denominator (
∑

k |Wk
i |)2 = (|k| ∗ h)2 is a constant. Intuitively, the similarity between

diseases i and j is higher when two diseases visit more shared nodes at a higher frequency.

Given the selected signature for diseases and calculated similarities among the diseases, for
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a query disease, we can then obtain k most similar diseases for a query disease i:

Dsim,i = argmaxkj∈VDsim(i, j) (14)

Disease-disease metric learning. Given the set of similar diseases, we aim to obtain an embedding

that fuses different similarity dimensions into a single embedding sufficient to enhance the query

disease that might be sparsely annotated. We use a weighted scheme, where the similarity score

weights each disease as follows:

hsimi =
∑
j∈Dsim

sim(i, j)∑
k∈Dsim

sim(i, k)
∗ hj. (15)

Embedding gating. The final step is to update the original disease embedding hi with the disease-

disease metric learning embedding hsimi through a gating mechanism. The gating mechanism

consists of a scalar c ∈ [0, 1] that balances between these two types of embeddings. Note that this

requires special treatment because for a disease well-characterized in the knowledge graph, we do

not need the disease-disease metric learning embedding, and it potentially can even bias the final

embedding. The disease-disease metric learning embedding is most useful for uncharacterized

diseases since the original disease embedding is insufficient to characterize molecular mechanisms.

Note that the learnable attention mechanism to select whether or not to attend original/augmented

embedding does not work well because the training examples are usually the most characterized,

which makes the attention weight assign high importance to the original embeddings and leaves the

subsidy embedding unused. Instead, we propose a heuristic algorithm that assigns weight based

on the node degree for the drug-disease relation type that is under calculation: |N r
i |. The higher

the degree, the more well-characterized the disease is, and the less weight should be assigned to

the disease-disease metric learning embedding and vice-versa. Also, this scalar should have a very

high value when the node degree is minimal (0 or 1) and decreases quickly when the node degree

increases. To approximate this effect, we use an inflated exponential distribution density function

with λ = 0.7:

ci = 0.7 ∗ exp(−0.7 ∗ |N r
i |) + 0.2 (16)

We observe the result is not sensitive to λ (Supplementary Figure 6). Finally, we use parameter
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search and find optimal λ = 0.7. Then, we can finally obtain an augmented disease embedding:

ĥi = ci ∗ hsimi + (1− ci) ∗ hi (17)

We then use this augmented disease embedding to feed into the DistMult decoder63 described in

Section 2.3.

2.5 Training TXGNN deep graph models

Objective function. The training objective is to accurately predict whether or not a relation holds

given two entities in the knowledge graph. This can be formulated as a binary classification task

for each relation. The positive samples consist of all pairs (i, j) with diverse relation types r ∈ TR.

We denote this as D+ and the label yi,r,j = 1. Similarly, for each pair, we generate negative

counterparts through sampling described in Section 3, denoted as D−. For each pair i, j and its

relation type r, the model predicts the likelihood pi,j,r and the training loss is calculated via binary

cross entropy loss:

L =
∑

(i,r,j)∈D+∪D−

yi,r,j ∗ log (pi,r,j) + (1− yi,r,j) ∗ log (1− pi,r,j) (18)

Previous work has focused on knowledge graph completion, leading them to optimize over the

entire set of relations in the knowledge graph71. However, since we are only interested in drug-

disease relations, training on all relation types could move the model capacity toward capturing

knowledge we are not interested in. Conversely, since complicated biological mechanisms drive

drug-disease relations, the vast array of biomedical relations in the knowledge graph presents a

unique information source that holistically describes biological systems. Thus, the challenge is to

ultimately do well on a small set of relations while also transferring knowledge positively from the

larger relation set.

To solve this challenge, TXGNN uses a pre-training strategy. During pre-training, TXGNN

is trained to predict relations across the entire set of relation types in the KG using stochastic mini-

batching. This process allows TXGNN to distill biomedical knowledge into enriched node embed-

dings. Next, during fine-tuning, TXGNN zooms in and trains only on the drug-disease relations

to obtain more granular drug-disease-specific embeddings that optimize for the best therapeutic

outcomes.
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Pre-training. TXGNN is first pre-trained on millions of biomedical entity pairs across the entire

set of relations. As there are millions of edges, full-graph training is computationally infeasible.

Thus, we use stochastic mini-batching to train only on a set of pairs in each training step. Each

epoch goes through all pairs of data in the training knowledge graph. During pre-training, degree-

adjusted disease augmentation is turned off since it is unavailable for other node types. All relations

are treated equally. The weights of the trained encoder model are then used to initialize the encoder

model weights during fine-tuning. Note that the weight in the decoder DistMult wr is reinitialized

before fine-tuning to discourage the effect of negative transfer.

Fine-tuning. After pre-training, we have an initialization that captures general biological knowl-

edge. Next, we focus on optimizing drug-disease relation prediction. To do that, we only use

the samples of all drug-disease pairs (i, j) with relation types r ∈ {indication, contraindication,

rev indication, rev contraindication}. The rest of the relations are discarded in the training objec-

tive but are included in the knowledge graph for messaging the passing of drug and disease nodes.

During fine-tuning, the degree-adjusted inter-disease embedding is turned on.

The complete TXGNN model is pre-trained and fine-tuned in an end-to-end manner. The

best-performing model on the validation set is then used for performance evaluation on the test set

and downstream machine-learning analyses.

2.6 Explaining model predictions

Distilling model predictions into mechanisms of molecular networks perturbed in disease

and targeted by therapeutics. A machine learning model can provide accurate disease treatment

predictions. However, for domain scientists’ adoption, prediction alone is not sufficient. Thus, a

model is expected to generate why it outputs this prediction in a form familiar to domain experts’

decision-making. In the case of treatment prediction, an ideal form of explanation is to simulate

how drug developers approach drug-disease relation — that is, to understand how a drug perturbs

the local biological system such that it creates a therapeutic effect on the disease pathway. As

TXGNN leverages the large-scale biological knowledge graph, we can probe into the local neigh-

borhood around a query drug-disease node and pinpoint the exact mechanism contributing to the

prediction. However, as a biological network is complex, making meaningful explanations requires

a model to prune most uninformative edges and extract a sparse version of the local neighborhood.

This can be formulated as a graph explainability problem where we try to identify a sparse set

of edges where the model can make a faithful prediction using these edges28. To achieve it, we
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develop a post-training graph explainability module, adapted from GraphMask approach27, that

can drop spurious edges from the dataset and retain a sparse set of edges that contribute most to-

wards the prediction. Next, we describe the mathematical formulation of GraphMask as used by

TXGNN.

Local explanation subgraphs through pruning superfluous biomedical relations. Given a

trained disease treatment prediction model, for each target node j and one of the neighbor source

node i with edge ei,j at layer l, we have intermediate messages m(l)
r,i, m

(l)
r,j given a relation r. Given

these two embeddings, we concatenate them and feed them into a relation-wise single-layer neural

network parameterized by W
(l)
g,r to predict the likelihood of masking the message from source node

i when we compute the target node j embedding, followed by a gate consisting of a sigmoid layer

to squeeze the likelihood into 0 to 1 and an indicator function to decide whether or not to drop the

edge:

z
(l)
i,j,r = 1[R>0.5]

(
sigmoid

(
W(l)

g,r

(
m

(l)
r,i‖m(l)

r,i

)))
, (19)

such that z(l)i,j,r ∈ 0, 1. In practice, we add a location bias of 3 to the sigmoid function at initial-

ization. This ensures that for initialized inputs, the biased sigmoid outputs are close to 1, meaning

that the gates are open at initialization, and the model can adaptively close the gates to mask edges

in the subgraph. This step is crucial as random initialization starts by dropping random edges. The

gap between the original and updated predictions is big, so the model minimizes the gap instead of

balancing the two objectives. Next, instead of simply removing the message when the gate outputs

0, the message is replaced with a learnable baseline vector b(l)
r for each relation r and layer l. Thus,

the updated message from source node i to target node j becomes:

m̂
(l)
i,r = z

(l)
i,j,r ·m(l)

i,r + (1− z(l)i,j,r) · b(l)
r (20)

Then, we can proceed with the standard message aggregation and update steps to compute

the updated node embedding (Section 2.2), feed to inter-disease augmentation (Section 2.4), and

generate the updated predictions p̂ between a drug and a disease (Section 2.3). The GraphMask

gate weights are optimized with two objectives. The first objective is faithfulness, where the up-

dated predictions after masking are encouraged to be the same as the original prediction outcome.

The second objective is to promote the model to mask as much as possible. These two objectives

present a trade-off since larger amounts of masking would lead to a more significant gap between
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updated/original predictions. This can be formulated as constrained optimization using Lagrange

relaxation, where we strive to maximize the Lagrange multiplier λ for constraint while minimizing

the main objective. Formally, we use the loss function below:

max
λ

min
Wg

L∑
k=1

∑
(i,j,r)∈D+∪D−

1[R 6=0]z
(k)
i,j,r + λ

(
‖p̂i,j,r − pi,j,r‖22 − β

)
, (21)

where β is the margin between the updated and original prediction. After training, we can remove

edges (i, j, r) that have z(k)i,j,r = 0 and use the retained edges as the explanations. We can also

use the value calculated before the indicator function to measure the level of contributions to the

prediction and can be used as adjustments of more granular differences.

Necessary adaptations of GraphMask approach for biomedical knowledge graphs. We mod-

ify GraphMask27 in the following manner to generate meaningful local explanation subgraphs of

the knowledge graph. (1) Instead of a complex gate that outputs scores close to 0/1, we adopt a

smooth sigmoid gate where predictions are uniform across 0 to 1. This is important because we

find hard concrete map edges to 1 as long as they affect the model prediction. However, this still

keeps many edges that preclude us from making acceptable medical explanations. The sigmoid

gate instead allows us to distinguish the intensity of contributions and provides a flexible frame-

work. By setting a threshold, we remove large amounts of positive edges and only retain ones

crucial for the model prediction. (2) Second, while GraphMask has a single learnable weight for

every edge in the dataset, we adopt a separate weight for each relation. Since embeddings across

relations are different, the model assigns uniformly high scores for all edges of a given relation type

despite edges varying in relevance. Using relation-specific weights allows the model to capture the

importance scores of individual edges.

3 Experimental setup and implementation details
Next, we outline the experimental setup, including information on performance evaluation and

dataset splits. We also provide details on the practical implementation of TXGNN deep graph

models.

3.1 Creating dataset splits for rigorous performance evaluation

Our dataset presents well-studied information and includes the vast majority of existing treatments.

As a result, it is easy to predict treatments for diseases with various pre-existing treatments. How-
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ever, for zero-shot prediction of therapeutic use, we need to make good predictions on conditions

with few or no current treatments available. The classical random split of edges of the knowledge

graph into training and testing sets would not simulate this application. In the random split, for

diseases with many known indications, the model would view some of these drug-disease edges

in training and thus easily predict therapeutic use based on drug similarity. However, this would

prevent the model from assimilating meaningful biological knowledge. Therefore, we consider the

following dataset splits into training and test sets:

• Disease area splits: Many diseases of therapeutic interest have no existing treatments and lack

significant biological knowledge. To evaluate whether TXGNN would be robust to predicting

drug-disease relationships for such diseases, we develop data splits that simulate well-studied

diseases as molecularly uncharacterized diseases. We cannot directly test on molecularly un-

characterized diseases, such as rare diseases, because the treatments are too few to build a con-

fident machine learning model. We select five disease groups: cell proliferation, mental health,

cardiovascular diseases, anemia, and adrenal gland diseases, and then extract groups for these

diseases from the Disease Ontology hierarchy such that group includes the disease and all its

children. Since these well-studied diseases have many drug-disease relationships, we can easily

evaluate the model’s performance during the simulation.

For each disease, we create a separate data split as follows. First, all the drug-disease edges

connected to the diseases in the group are moved to the test set. As a result, TXGNN has no

information about existing indications and contraindications use edges for the chosen disease

group during training. This simulates the lack of existing treatments encountered with molec-

ularly uncharacterized diseases. Next, we remove a significant fraction (5% of the knowledge

graph size) of the local 1-hop subgraph neighborhood for the disease group. Again, this simulates

the limited biological understanding of molecularly uncharacterized diseases. Dataset statistics

of each disease area split is provided in Table 2.

• Systematic dataset splits: The deployed machine learning model should excel at predicting

diseases without known treatments. Predicting new treatments for diseases that already have

treatments is easier than predicting diseases without treatments. This is because information

about existing treatments can directly illuminate the molecular mechanism, and drug similarity

can help infer new treatments. Thus, to robustly test our model, we design this split to systemat-

ically study prediction on novel unseen diseases. To do that, we first randomly split the entire set
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of diseases. Then, we take all drug-disease relations associated with the testing set of diseases to

the test set such that there are no known treatments during training and the testing set consists of

novel diseases. The testing set has around 100 different diseases in each randomly seeded run.

• Disease-centric dataset splits: We adopt a disease-centric evaluation to simulate realistic usage

of drug candidate prioritization. First, for each disease in the test set, we pair it with all other

drugs in the KG, except the drug-disease relations in the training set. Then, we make predictions

for all pairs and rank based on the likelihood of interaction. We then retrieve the topK drugs and

compute the recall (i.e., how much drug and disease in the testing set are in the top K). Finally,

we build a baseline of random screening where we randomly sample top K drugs from the drug

set and compute the recall.

3.2 Modeling molecular and clinical relationships

In graphs, each edge typically has a direction and points from the source to the target node. How-

ever, in our biological knowledge graph, edges are bidirectional. For example, a drug A indicated

for disease B is represented in TXGNN by a tuple (A, indication, B). Similarly, disease B can be

treated by drug A, corresponding to a tuple (B, rev indication, A). For homogeneous relation type

(e.g., protein-protein interactions) where the head and tail node belongs to the same node types,

there is no additional reverse relation type as the reverse edges are collapsed into the original re-

lation type. Thus, we add these reverse relation types to the knowledge graph, following standard

practice. For the sake of notation, when the reverse relation has a different relation type from the

original type r, we denote the reverse relation type as rc.

3.3 Negative sampling for training TXGNN models

As we only have positive data, negative data are constructed via sampling. The sampling from

the unobserved simulates the realistic constraint where most possible drugs do not interact with

the disease. For each relation type, we fix the source nodes and permute the target nodes through

either random sampling from the set of nodes associated with this relation type’s target nodes

or a weighted sampling based on the degree of the target nodes. As we conduct reverse rela-

tion type construction, the source node type would also be shuffled and included in the negative

samples when we do sampling for the reverse relation type. This concept of negative sampling

based on shuffling target nodes is crucial. For example, suppose we want to study drugs A that

can treat disease B, then we narrow down to the relation (B, rev indication, A) instead of the
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(A, indication, B).

3.4 Hyperparameter tuning

We conduct hyperparameter tuning using Hyperband on validation set micro AUROC using com-

plex disease split following two stages. The first is to optimize the parameters for pre-training

and fix fine-tuning parameters, where we conduct a sweep of grid search with a learning rate of

{1e − 4, 5e − 4, 1e − 3}, batch size of {1024, 2048}, and epoch size of {1, 2, 3}. Next, we fix

the pre-training parameters and do a grid search for fine-tuning parameters with the hidden size of

{64, 128, 256, 512}, input size of {64, 128, 256, 512}, output size of {64, 128, 256, 512}, number

of inter-disease prototypes of {3, 5, 10, 20, 50} and learning rate of {1e − 4, 5e − 4, 1e − 3}. We

obtain a final set of hyperparameters with a pre-training learning rate of 1e− 3, batch size of 1024,

epoch size of 2, the fine-tuning learning rate of 5e−4, hidden size of 512, input size of 512, output

size of 512, number of prototypes 3.

3.5 Implementation details

The TXGNN is implemented using DGL72 and PyTorch73 Python deep learning frameworks. We

use Pandas74, Numpy75 for data processing and computing; scikit-learn76 for evaluation metrics;

seaborn77, matplotlib78, UMAP79 for visualization; Weights and Bias (https://www.wandb.ai) for

training monitoring and hyperparameter tuning. We train the model with one NVIDIA Tesla V100

GPU in a server. TXGNN Explorer is implemented in JavaScript using React.js80, D3.js81, and Ant

Design82. The graph data is managed using Neo4j database83. TXGNN Explorer communicates

with TXGNN through a Python web server built with Flask84.

3.6 Usability study of TXGNN with medical experts

We designed and developed TXGNN Explorer following a user-centric design study process30,

which compared three visual presentations of GNN explanations from users’ perspectives and mo-

tivated the implementation of path-based explanations based on user feedback. We evaluated the

usability of TXGNN Explorer by comparing it with a non-explanation baseline that shows drug

predictions and corresponding confidence scores. Twelve medical experts (7 males, 5 females,

avg. age=34.25) were recruited for the usability study through personal contacts, Slack channels,

and email lists in collaborating institutions. We conducted the evaluation on Zoom due to COVID-

19-related restrictions. Each participant logged in to the user study system (Supplementary Figure

S5) using their computers and shared their screens with the interviewer. The order of predictions
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and the order of two conditions (TXGNN Explorer or baseline) were randomized and counterbal-

anced across participants. For each drug assessment task, the participants were asked to 1) decide

whether this drug prediction is correct (i.e., the drug can potentially be used to treat the disease)

and 2) give a confidence score for their decision using a 5-point Likert scale (1=not confident at

all, 5=completely confident). The study system automatically recorded the completion time for

assessing each prediction. After assessing all predictions, participants provided subjective ratings

for the two conditions in terms of Trust, Helpfulness, Understandability, and Willingness to use

via a 5-point Likert scale (1=strongly disagree, 5=strongly agree).

3.7 Evaluations within a large healthcare system

We leveraged patient data from the Mount Sinai Health System’s electronic health records (EHR)

in New York City, U.S., to assess patterns from predictions in clinical practice. All clinical data

were deidentified, and the Mount Sinai Institutional Review Board approved the study. The cohort

consisted of over 10 million patients and was filtered for patients over 18 years of age with at least

one drug and at least one diagnosis on record, leaving 1,272,085 patients. This cohort was 40.1

percent male, and the average age was 48.6 years (SD: 18.6 years). Table 5 shows the dataset’s

racial breakdown.

All disease and medication data were captured using the Observational Medical Outcomes

Partnership (OMOP)85, 86 standard data model. We produce predictions for the 1,363 diseases with

indications by training the full knowledge graph with only 5% of randomly selected drug-disease

pairs as a validation set for early stopping. This experiment does not evaluate zero-shot perfor-

mance for all 17,080 diseases since the model has more confidence in conditions with known

indications. Disease names in the TXGNN prediction dataset were matched to SNOMED or ICD-

10 codes and finally mapped to OMOP concepts in the Mount Sinai data system. We included

only diseases with at least one patient diagnosis in the dataset, leaving 480 conditions. Medica-

tion names in the TXGNN prediction were matched to DrugBank ID, which was then mapped to

RxNorm IDs and OMOP concepts. We included only medications with at least one patient order

in the dataset, leaving 1,290 medications. Next, we included drug-disease pairs for which at least

one patient was listed with both the drug and the disease, leaving 1,236 drugs and 470 diseases.

For each drug-disease pair, we created a contingency table. Using the SciPy87 library’s Fisher

exact function, we computed 2-sided odds ratios and p-values for each pair. Finally, we used the

statsmodels88 Python library’s multi-test function to apply a two-sided Bonferonni correction on

39

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.19.23287458doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.19.23287458
http://creativecommons.org/licenses/by/4.0/


the previously generated p-values. Finally, we noted statistically significant drug-disease pairs as

those with p < 0.005.
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Drug name Active ingredient Disease Approval FDA Number Orphan TXGNN Percentile

Vabysmo Faricimab Macular degeneration 01/28/2022 BLA761235 No 0.938 2.25%
Welireg Belzutifan von Hippel-Lindau disease 08/13/2021 NDA215383 Yes 0.720 4.11%
Mounjaro Tirzepatide Type 2 diabetes mellitus 05/13/2022 NDA215866 No 0.286 12.50%
Ztalmy Ganaxolone CDKL5 disorder 03/18/2022 NDA215904 Yes 0.335 18.73%
Leqvio Inclisiran sodium Familial hypercholesterolemia 12/22/2021 NDA214012 No 0.301 19.32%
Tezspire Tezepelumab-ekko Asthma 12/17/2021 BLA761224 No 0.233 32.41%
Vtama Tapinarof Psoriasis 05/23/2022 NDA215272 No 0.261 32.70%
Adbry Tralokinumab Atopic dermatitis 12/27/2021 BLA761180 No 0.040 50.37%
Vonjo Pacritinib citrate Myelofibrosis 02/28/2022 NDA208712 Yes 0.011 63.14%
Livtencity Maribavir Cytomegalovirus infection 11/23/2021 NDA215596 Yes 0.033 66.37%

Table 1: Evaluation of novel TxGNN predictions against recently developed therapies. Out of 7,957 therapeutic candidates, TxGNN
ranked recent FDA-approved drugs high.

Disease area Number of diseases Number of indications Number of Contraindications

Adrenal gland 7 41 374
Anemia 19 88 752
Cardiovascular diseases 113 453 4,242
Diseases of cell proliferation 213 1022 1079
Mental health diseases 60 355 1,567

Table 2: Statistics on disease-area-based dataset splits used to evaluate the zero-shot prediction of therapeutic use. Given all
diseases in a given disease area, all indications and contraindications were removed from the dataset used to train machine learning
models. Additionally, a large fraction (95%) of the connections between biomedical entities to these diseases were removed from
the therapeutics-centered knowledge graph. Disease-area splits were curated to evaluate model performance on diseases with limited
molecular understanding and no existing treatments.

Node Type Count Percent (%)

Biological process 28,642 22.1
Protein 27,671 21.4
Disease 17,080 13.2
Phenotype 15,311 11.8
Anatomy 14,035 10.8
Molecular function 11,169 8.6
Drug 7,957 6.2
Cellular component 4,176 3.2
Pathway 2,516 1.9
Exposure 818 0.6

Total number of nodes 129,375 100.0

Table 3: Statistics on nodes in the therapeutics-centered knowledge graph.
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Relation Count Percent (%)

Anatomy – Protein (present) 3,036,406 37.5
Drug – Drug 2,672,628 33.0
Protein – Protein 642,150 7.9
Disease – Phenotype (positive) 300,634 3.7
Biological process – Protein 289,610 3.6
Cellular component – Protein 166,804 2.1
Disease – Protein 160,822 2.0
Molecular function – Protein 139,060 1.7
Drug – Phenotype 129,568 1.6
Biological process – Biological process 105,772 1.3
Pathway – Protein 85,292 1.1
Disease – Disease 64,388 0.8
Drug – Disease (contraindication) 61,350 0.8
Drug – Protein 51,306 0.6
Anatomy – Protein (absent) 39,774 0.5
Phenotype – Phenotype 37,472 0.5
Anatomy – Anatomy 28,064 0.3
Molecular function – Molecular function 27,148 0.3
Drug – Disease (indication) 18,776 0.2
Cellular component – Cellular component 9,690 0.1
Phenotype – Protein 6,660 0.1
Drug – Disease (off-label use) 5,136 0.1
Pathway – Pathway 5,070 0.1
Exposure – Disease 4,608 0.1
Exposure – Exposure 4,140 0.1
Exposure – Biological process 3,250 <0.1
Exposure – Protein 2,424 <0.1
Disease – Phenotype (negative) 2,386 <0.1
Exposure – Molecular function 90 <0.1
Exposure – Cellular component 20 <0.1

Total number of edges 8,100,498 100.0

Table 4: Statistics on edges in the therapeutics-centered knowledge graph.
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Racial group Count Percent (%)

Asian 60,041 4.7
Black 162,102 12.7
White 534,305 42.0
Unknown 241,998 19.0
Other 273,639 21.5

Total number of patients 1,272,085 100.0

Table 5: Demographics of the electronic health record dataset at Mount Sinai Health System in New York City used to validate
TXGNN’s hypotheses on therapeutic use prediction.
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