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Abstract— Traditional machine learning (ML) approaches
learn to recognize patterns in the data but fail to go beyond
observing associations. Such data-driven methods can lack
generalizability when the data is outside the independent and
identically distributed (i.i.d) setting. Using causal inference can
aid data-driven techniques to go beyond learning spurious
associations and frame the data-generating process in a causal
lens. We can combine domain expertise and traditional ML
techniques to answer causal questions on the data. Hypothetical
questions on alternate realities can also be answered with such
a framework. In this paper, we estimate the causal effect of
Pre-Exposure Prophylaxis (PrEP) on mortality in COVID-19
patients from an observational dataset of over 120,000 patients.
With the help of medical experts, we hypothesize a causal
graph that identifies the causal and non-causal associations,
including the list of potential confounding variables. We use
estimation techniques such as linear regression, matching, and
machine learning (meta-learners) to estimate the causal effect.
On average, our estimates show that taking PrEP can result in
a 2.1% decrease in the death rate or a total of around 2,540
patients’ lives saved in the studied population.

I. INTRODUCTION
Causal inference refers to the process of determining the

causal relationship between an effect on some outcome. The
goal is to estimate causal effects given observed variables and
control for any potential sources of bias that can affect this
estimate [1]. There are plenty of fields that can benefit from
causal analysis, like medicine, economic policy evaluation,
and digital marketing, to name a few. Its power lies in
the ability to go beyond identifying spurious correlations in
observational data and asking more fundamental questions
on how the data is structured and the mechanisms that
generate it. Machine learning techniques such as supervised
and unsupervised learning often assume that training data
is independent and identically distributed (i.i.d). One of the
main reasons for the success of these algorithms relies on
the fact that they can capture complicated associations in
the observed data accurately. However, one major challenge
for these methods is that they need to be able to oper-
ate effectively when domain shifts occur. Moreover, they
fail to account for interventions in the data. Such data-
driven methods try to achieve generalizability to unseen
examples by training on copious amounts of samples. For
example, state-of-the-art convolutional neural networks are
trained on millions of images to detect objects accurately.
However, generalizing outside the i.i.d regime in the real
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world, where distributions are constantly altered, requires
such algorithms to go beyond identifying mere associations
in the data. They need to understand the data-generating
mechanisms involved between the variables and capture their
relationships in a causal way [2], [3], [4], which can be
done through structural causal models (SCM) or models
representing causal relationships between variables. Causal
Machine Learning (CausalML) has gained much traction in
the research community. It is a framework where traditional
machine learning techniques can utilize the causal structure
of the observed data [5].

The use of causal inference in medicine is driven by
estimating the average treatment effect (ATE) of a par-
ticular intervention in a population. Specifically, learning
the optimal treatment policy for a single patient is one
of the promising goals of applying such techniques. The
gold standard for estimating such causal effects in a clinical
setting is a Randomized Controlled Trial (RCT). However,
such data is often expensive, time-consuming to collect, and
may sometimes even be unethical, like measuring the effect
of smoking on lung cancer. Therefore, there is a need to
estimate these causal effects from observational data alone
[6]. Causal inference can help us achieve this if we specify
the relationship between observed variables in a causal graph.
Transformation of observational data into a causal graph
requires thorough identification of variables, such as con-
founders, mediators, and colliders, which have the potential
to create non-causal pathways and bias our estimates [7].
This transformation necessitates a strong understanding and
expertise in the relevant domain.

Given the ongoing COVID-19 pandemic and its impacts, it
is crucial to investigate potential treatment options that could
be used alongside existing interventions such as vaccines to
minimize the risk of long-term symptoms. A medical study
[8] has suggested that PrEP (Pre-Exposure Prophylaxis),
which was traditionally used to prevent HIV transmission
in at-risk populations [9], [10], could be a promising avenue
to explore. With the help of causal inference, it is possible
to rigorously and rapidly assess the causal impact of PrEP
on specific COVID-19-related outcomes while using obser-
vational data. If the results obtained from the causal analysis
are satisfactory, it can justify the need for an RCT to further
validate this claim.

In this paper, we investigate the causal effect of PrEP
on mortality in COVID-19 patients from the University of
California COVID Research Dataset (UC-CORDS) [11]. Our
contributions are multifold as a case study for applying
causality to real-world medical data. Our team of medical



experts, utilizing their extensive knowledge and experience,
facilitates the initial identification of a set of variables that
are pertinent to both the administration of PrEP treatment
and mortality. Subsequently, we construct a causal graph
that clearly defines the relationship between these observed
variables. We then employ a range of estimation algorithms
to calculate the individual and average treatment effects for
our dataset. The results of our causal analysis provide valu-
able insights into the efficacy of PrEP in COVID-19-positive
patients, allowing us to draw well-informed conclusions.

II. BACKGROUND

A. PrEP for COVID-19

According to the United States Department of Health &
Human Services, there are currently 38.4 million people
across the globe living with HIV, with an estimated 1.5
million individuals acquiring HIV in 2021. In the U.S., ap-
proximately 1.2 million people have HIV, with an estimated
13% unaware of the infection, and HIV infections continue to
affect racial, ethnic, and sexual minorities disproportionately
[12]. Recent efforts to reduce transmission of HIV include
highly active antiretroviral therapy (HAART) among those
living with HIV and the use of pre-exposure prophylaxis
(PrEP) among those at risk.

Data show that the use of HAART and PrEP significantly
reduces, if not eliminates, the potential to transmit the
virus through sexual activity or injection drug use [9], [10].
Among those with HIV, these medications suppress viral
replication. Several HAART regimens are available for those
with HIV, and three medication regimens are approved for
use as PrEP. With the urgency of the COVID-19 pandemic,
data from multiple studies suggested that the presence of
chronic conditions increases the likelihood of developing
severe COVID-19 disease and death [13]. HIV and being im-
munocompromised were identified as potential comorbidities
that could lead to worse outcomes from COVID-19.

Prior work has speculated that PrEP or HAART could ben-
efit those who contract SARS-CoV-2, which causes COVID-
19. Fernandes et al. [8] identified that the use of PrEP was
associated with lower self-reporting of COVID-19-related
symptoms. However, a study by Ayerdi [14] failed to find
a benefit to PrEP in mitigating symptoms. Therefore, the
purpose of this study was to identify if the use of HAART
or PrEP affected mortality from COVID-19.

B. Causal Inference Background

The goal of causal inference is to estimate the causal effect
of a treatment on an outcome while controlling for certain
observed variables that can bias this effect. More specifically,
we want to measure treatment X’s average treatment effect
(ATE) on outcome Y on a population while adjusting for a
set of covariates Z.

The first step in estimating these effects is constructing
a Directed Acyclic Graph (DAG) that captures the causal
relationships between the observed variables. Construction
of this graph requires relevant domain expertise. Once this

graph is constructed, the next step is identifying the causal ef-
fects. Identifying this effect requires making some untestable
assumptions in an observational setting. The most important
one is the ignorability assumption which states that there are
no unmeasured confounders [1]. Confounders and colliders
are two sources of bias in a causal graph and can affect the
estimate if not handled carefully. Some of the relevant terms
for causal inference are described in detail below:

1) Confounder: A confounder is a variable that affects
both the treatment and the outcome. For example, age is
a confounder for the association between smoking and
lung cancer risk because age affects both the probability of
smoking and the risk of getting lung cancer. In the figure
below, Z is a confounder because it is a common cause
of both X and Y. Controlling for Z “blocks” the spurious
non-causal path between X and Y. Hence, confounders
should be controlled for in any causal analysis.

X Z Y

2) Mediator: A mediator is a variable through which
a treatment causes an outcome. For example, the amount
of tar deposited in the lungs as a result of smoking is a
mediator of the effect of smoking on lung cancer. In the
figure below, Z is a mediator because it mediates the effect
of X on Y. Controlling for Z “blocks” the non-causal path
between X and Y. Controlling for mediators is feasible if it
also blocks confounding variables.

X Z Y

3) Collider: A collider is a variable that is caused by at
least two other variables. For example, if the quality of life
is affected by smoking cessation (treatment) and lung cancer
(outcome), this variable would be a collider. Controlling for
quality of life will cause a spurious non-causal association
between smoking cessation and lung cancer [7]. In the figure
below, Z is a collider because it is a child of both X and Y.
Controlling for Z “unblocks” the non-causal path between
X and Y. Hence, colliders should NOT be controlled for in
most cases. Controlling colliders is feasible if their parents
are controlled too.

X Z Y

4) Backdoor Criterion: To measure the direct effect of
X on Y, we have to ensure that we are eliminating these
spurious correlations, which is done by ensuring all the non-
causal paths from X to Y are blocked off. After identifying
these variables, we can apply the “backdoor criterion” which
states that “given an ordered pair of variables (X,Y) in a DAG
G, a set of variables Z satisfies the backdoor criterion relative
to (X,Y) if no node in Z is a descendent of X, and Z blocks
every path between X and Y that contains an arrow into X”
[15]. Simply put, it keeps the direct causal path from X to



Y while blocking off all non-causal spurious paths. If the
backdoor criterion is satisfied, we can compute the causal
effect of X on Y by the following formula:

P (Y |do(X)) =
∑
z

P (Y |X,Z)P (Z) (1)

5) Structural Causal Model: We can also represent our
causal diagrams in the form of a structural causal model
(SCM), which describes the state of the variables and how
they relate to the distribution of our dataset. Mathematically
speaking, an SCM defines the relationship between a set
of endogenous or observed variables (V) and exogenous or
unobserved variables (U) through a set of functions (F). Each
SCM is associated with DAG G where each node in G is a
variable in U or V, and each edge is a function in F.

6) Counterfactuals: The treatment effect for each patient
under study is the difference between two potential out-
comes. One outcome is if the unit is exposed to the treatment,
and the other is if they are not. The fundamental problem of
causal inference is that we can only measure one potential
outcome for each patient. As a result, counterfactuals or what
would have happened had the patient received the opposite
treatment are what causal estimation techniques need to
compute. By using a set of assumptions, these estimation
techniques can compute the unobservable counterfactual out-
come.

III. METHODS

This section describes how we applied causal inference to
our specific case study.

A. Dataset

The UC-CORDS Dataset [11] consists of comprehensive
de-identified health data collected across all facilities in the
University of California (UC) Health system. It comprises
data from patients admitted to 19 professional schools, five
academic medical centers, and 12 hospitals. It contains
records of more than 700,000 patients and provides a wide
range of information, including medical history, medications,
and lab tests of admitted patients. However, in this study,
we only considered a limited set of factors that had a direct
impact on both taking PrEP medication and mortality.

In order to perform our causal estimation, it was nec-
essary to divide the patients into two distinct and non-
overlapping groups, the treatment group and the control
group. Both groups consisted of individuals who had tested
positive for COVID-19. The treatment group was comprised
of patients who had received PrEP medication, while the
control group consisted of patients without a history of taking
this medication. The corresponding ICD-10 codes for lab
tests, demographic information, pre-existing conditions, and
medications were used to extract relevant data from our EHR
dataset. This resulted in a total of slightly less than 121,000
patients and 1,550 patients within the treatment group alone.

B. Causal Graph

Our team of medical experts provided assistance in iden-
tifying a list of relevant observable variables. Our proposed
DAG is presented in Figure 1. Given that the treatment
group was primarily composed of white males over the age
of 40, it was deemed crucial to include variables such as
race, gender, and age due to their potential confounding
effects. Additionally, information regarding the individual’s
HIV diagnosis, the number of COVID-19 infections, and the
number of vaccinations received were also incorporated due
to their impact on mortality.

Fig. 1: Proposed causal graph with all observed variables

C. Adjusting for Bias

In our causal graph, the direct confounding variables we
need to control for are a patient’s HIV diagnosis and age
because both of these variables affect the likelihood of taking
PrEP and mortality. Additionally, controlling for colliders
like “COVID-19 Exposure” and “Vaccine Exposure” will
bias our causal estimate if not handled appropriately and
hence should be removed from the analysis. It is important
to note that we also need to control gender and race because
they directly affect PrEP and indirectly affect death through
COVID-19 exposure and vaccine exposure. This is due to
the fact that these two exposure variables serve as mediators
for both pathways, from race to death and from gender to
death. Thus, it is necessary to control for gender and race in
order to prevent their direct impact on PrEP and their indirect
effect on death through the mediators.

Figure 2 shows the resulting graph after adjusting for
these biases. Equation 2 shows the backdoor criterion for
our specific problem. Here, PrEP is the treatment, death is
the outcome, and Z is the set of all confounders we need to
adjust.

P (Death|do(PrEP )) =
∑
z

P (Death|PrEP,Z)P (Z)

(2)

Z ∈ {Gender,Race,HIV,Age}



Fig. 2: Proposed causal graph after adjusting for bias

D. Structural Causal Model (SCM)

Given below is the corresponding SCM to our causal
graph:

We do not have any exogenous variables (U) that are con-
founders in our model, so it is represented as an empty set.
Since COVID-19 and vaccine exposures are both colliders,
there is no need to estimate f1 and f2. Moreover, f3 will
be replaced by a single value (0 or 1) when estimating the
causal effect. The only function we will need to estimate is
f4.

E. Causal Estimation

The estimation of causal effects consists of a family
of statistical methods. Since we assume we observe all
confounders, we can use estimation methods under uncon-
foundedness, which include matching, reweighting methods
like Inverse Probability Weighting (IPW), and meta-learner
methods like S-, T-, X-, and R-learners [16], [17], [18].

• Matching: Matching is a technique to pair up similar ob-
servations from the treatment group and control group;
thus, the unconfounded assumption could be satisfied,
and methods such as nearest neighbors could be applied
for matching when the appropriate distance metric is
defined.

• Inverse Probability Weighting: One downside of the
matching method is that it tends only to use some of
the data since unmatched observations are discarded.
Inverse probability weighting addresses this problem by
assigning weights (the probability of receiving treat-
ment)to every observation, and the weights can be
generated using methods such as logistic regression.

• Meta-learner: Meta learners deploy off-the-shelf ma-
chine learning predictive models for estimation with
flexible selections of machine learning models. S-leaner

uses a single model to predict treatment effect, while
T-learner splits the data and uses one model for each
treatment. X-learner builds on top of the T-learner by
adding an inverse probability weighting procedure.

IV. RESULTS AND DISCUSSION

We compute the average treatment effect (ATE), average
treatment effect on the control group (ATC) and treatment
group (ATT) from five estimators: ordinary least squares
regression (OLS), matching, and three meta-learners (S, T,
X-Learners). The meta-learners use a light gradient boosting
regressor to compute the counterfactual outcomes for each
patient.

Table I presents our causal estimates using the above es-
timators. The first half of the table computes these estimates
using all the observed variables, including the colliders. The
second half of the table computes them after controlling just
the confounders. The numbers in this table are represented
as a fraction of the population. For example, an estimate of
|0.02| translates to 2% of the studied population.

TABLE I: Causal Estimates of taking PrEP on Mortality

Estimators OLS Matching S-Learner T-Learner X-Learner
All observed variables

ATE -0.022 -0.027 -0.010 -0.018 -0.020
ATC -0.022 -0.027 -0.010 -0.018 -0.020
ATT -0.018 -0.007 -0.004 -0.007 -0.008

Only confounders
ATE -0.022 -0.025 -0.015 -0.021 -0.023
ATC -0.022 -0.025 -0.015 -0.021 -0.023
ATT -0.020 -0.010 -0.006 -0.008 -0.008

We can observe that the treatment effects are all negative,
meaning there is a reduced mortality risk in taking PrEP
medication for COVID-19-positive patients. The ATE scores
estimated the difference in treatment effects when everyone
in the population received the treatment versus when no
one in the population received the treatment. The ATC and
ATT scores assess this difference in only the control group
and treatment groups, respectively. All three scores for most
estimators have a higher magnitude when we only control
for confounders. Controlling for all observable variables,
including colliders, underestimates the actual causal estimate.
Across all estimators, an analysis of the ATE scores esti-
mated from considering only confounders demonstrates a
2.1% decrease in the mortality rate when PrEP is taken as
a treatment. This equates to approximately 2,540 patients,
when applied to a substantial patient population of 121,000
individuals in our study. Furthermore, when averaging the
ATE scores estimated from all observable variables, the
results indicate a 1.9% decrease in the mortality rate, roughly
equivalent to 2,300 patients, which represents a decrease
of approximately 240 patients compared to the estimate
obtained from considering only confounders.

It is crucial to note that, on average, the ATT scores are
lower than the ATE and ATC scores. There could be other
unquantifiable factors, such as socio-economic status and
timely access to healthcare, that may contribute to patients



who take PrEP being at a reduced risk for mortality. To
mitigate this potential bias, a potential future direction could
be to utilize instrumental variables as a means of eliminating
such bias. [19].

V. CONCLUSIONS

To the best of our knowledge, this is the first study
to use causal modeling to measure the effects of PrEP
on mortality in COVID-19-positive patients. We showed
that taking PrEP results in a 2.1% decrease in the death
rate, on average, in COVID-19 patients. The use of causal
modeling can help us avoid the pitfall of controlling every
observable variable, such as in “kitchen-sink” regression, and
focus on observing only relevant variables like confounders,
mediators, and colliders. Moreover, we can also compute
counterfactuals to measure individual treatment effects for
every patient and determine a personalized treatment policy.
Our efforts included the integration of domain expertise in
the generation of our causal graphs. In our future endeavors,
we aim to investigate the use of instrumental variables and
conduct sensitivity analysis in order to properly account for
unmeasured confounding factors.
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