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Abstract 30 

Neuropsychiatric and substance use disorders (NPSUD) have a complex etiology that includes 31 

environmental and polygenic risk factors with significant cross-trait rG. Genome Wide Association 32 

Studies (GWAS) of NPSUD yield numerous association signals. However, for most of these 33 

regions, we do not yet have a firm understanding of either the specific risk variants or the effects 34 

of these variants. Post-GWAS methods allow researchers to use GWAS summary statistics and 35 

functional genomics data to infer the likely molecular mediators (transcript, protein and 36 

methylation abundances) for the effect of variants on disorders. One group of post-GWAS 37 

approaches is commonly referred to as transcriptome/proteome/methylome wide association 38 

studies, which are abbreviated as T/P/MWAS (or collectively as XWAS). Since these approaches 39 

use biological mediators, the multiple testing burden is reduced to the number of genes (~20,000) 40 

instead of millions GWAS SNPs leading to increased signal detection. In this work, our aim is to 41 

uncover likely risk genes for NPSUD by performing XWAS analyses in two tissues – blood and 42 

brain. Firstly, XWAS using the Summary-data based Mendelian Randomization (SMR), which 43 

takes GWAS summary statistics, reference xQTL data and a reference LD panel as inputs, was 44 

conducted to identify putative causal risk genes. Second, given the large comorbidities among 45 

NPSUD and the shared cis-xQTLs between blood and brain, we improved XWAS signal detection 46 

in NPSUD for underpowered analyses by performing joint concordance analyses between XWAS 47 

results i) across the two tissues and ii) across NPSUD. All XWAS signals i) were adjusted for 48 

HEIDI (non-causality) p-values and ii) used to test for pathway enrichment. The results suggest 49 

that there were widely shared gene/protein signals within the Major Histocompatibility (MHC) 50 

region on chromosome 6 (BTN3A2 and C4A) and elsewhere in the genome (RERE, FURIN, 51 

ZDHHC5 and NEK4).  The identification of putative molecular genes and pathways underlying 52 

risk may offer new targets for therapeutic development. Some of our analyses' more immediate 53 

actionable signals might relate to vitamins, i.e., i) in KYAT3 (a part of the kynurenine pathway 54 

with vitamin B6 as a cofactor) for post-traumatic stress disorder and ii) omega-3 and vitamin D 55 

pathways for bipolar disorder. 56 

 57 

 58 

  59 
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1. Introduction 60 

 61 

Genome-wide association studies (GWAS) have identified numerous loci associated with 62 

neuropsychiatric and substance use disorders (NPSUD), supporting the high polygenicity of 63 

NPSUD. Furthermore, NPSUD’s risk loci have not been fully discovered (Owen and Williams, 64 

2021). For instance, the largest GWAS for schizophrenia (SCZ) found 287 independent loci and 65 

estimates that the common variants explain only 24% of the phenotypic variance (Trubetskoy et 66 

al., 2022). Similarly, other NPSUD GWAS yield large numbers of genome-wide significant 67 

signals (Howard et al., 2019; Nievergelt et al., 2019; Sanchez-Roige et al., 2019; Mullins et al., 68 

2021) capturing a statistically significant but small proportion of the phenotypic variance. Since 69 

most genome-wide significant signals reside in non-protein coding genomic regions (Edwards et 70 

al., 2013), the interpretation of these GWAS findings are not straightforward. Performing post-71 

GWAS analyses, that infer associations between genes or molecular pathways and traits, could 72 

significantly advance our understanding of these GWAS signals.  73 

 74 

Associated variants are thought to influence risk through altered gene regulation, for example, via 75 

epigenetic changes, yielding changes in RNA levels or protein abundance. Molecular quantitative 76 

loci mapping studies empirically support this assumption.  They found that expression quantitative 77 

trait loci (eQTL) (Ongen et al., 2017), protein QTL (pQTL) (Robins et al., 2021) and methylation 78 

QTL (mQTL) (Hannon et al., 2016) colocalize with disease-associated loci. However, while there 79 

are many well-powered GWAS scans in NPSUD (Pardiñas et al., 2018; Demontis et al., 2019; 80 

Grove et al., 2019; Howard et al., 2019; Nievergelt et al., 2019; Watson et al., 2019; Johnson et 81 

al., 2020; Polimanti et al., 2020; Mullins et al., 2021; Trubetskoy et al., 2022), none of these studies 82 

directly assayed the transcriptome, proteome or methylome for their cohorts.  83 

 84 

However, researchers found ways around this assessment limitation in GWAS cohorts. They 85 

formed large reference molecular e/p/mQTL (henceforth denoted as xQTL) datasets readily 86 

available for blood and brain (Sun et al., 2018; van der Wijst et al., 2020; Ferkingstad et al., 2021; 87 

Võsa et al., 2021; Yang et al., 2021a; Zhang et al., 2021). Researchers have developed methods to 88 

integrate these molecular xQTL data and GWAS summary statistics to impute the association 89 

between phenotypes and molecular mediators (transcriptome, proteome and methylome). Such 90 

analyses are widely referred to as transcriptome-wide association studies (TWAS), proteome-wide 91 
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association studies (PWAS) and methylome-wide association studies (MWAS) (Gamazon et al., 92 

2015; Gusev et al., 2016; Zhu et al., 2016; Barbeira et al., 2018, 2019; Hu et al., 2019; Nagpal et 93 

al., 2019; Bae et al., 2021) – henceforth collectively referred to as XWAS. Moreover, since they 94 

directly model relevant biological mediators, these approaches could identify putatively causal 95 

genes but they fail to eliminate pleiotropy (Wainberg et al., 2019). Until recently, XWAS analyses 96 

of NPSUD were mostly TWAS (Zhu et al., 2016; Niu et al., 2019; Hammerschlag et al., 2020; 97 

Kapoor et al., 2021). However, PWAS is also increasing in number with the expanding pQTL 98 

reference data in brain (Wingo et al., 2021, 2022). Besides eQTL and pQTL, mQTL has also been 99 

investigated as a risk factor (Perzel Mandell et al., 2021; Shen et al., 2022). Recently, MWAS also 100 

yielded significant genes for NPSUD (Sugawara et al., 2018; Aberg et al., 2020; Howard et al., 101 

2022). 102 

 103 

Changes in gross anatomical and cell type specific phenotypes have been observed for NPSUD 104 

and associated risk alleles via in vitro and postmortem studies (Brennand et al., 2012; Schrode et 105 

al., 2019; Zhang et al., 2020). Functional genomic profiles differ by cell type (Marstrand and 106 

Storey, 2014; Buenrostro et al., 2015) and cell type composition differs across brain regions (Wang 107 

et al., 2018). In addition, different neuronal cell types have different functional profiles and 108 

different distributions across regions (Kelley et al., 2018). Genetic variants contributing to the 109 

heritability of certain NPSUD were enriched in cis-regulatory elements that are specific to 110 

GABAergic and glutamatergic neurons (Sanchez-Priego et al., 2022). Thus, integrating cell type 111 

specific xQTL with GWAS findings is very promising. However, due to expense and other factors, 112 

sample sizes for functional profiles in specific cell types across brain regions are still small 113 

(Spaethling et al., 2017; Bryois et al., 2022) and limited in detection power. Consequently, most 114 

functional genomics data available to support xQTL mapping studies come from bulk brain tissue 115 

(Consortium, 2020) rather than single cell (Bryois et al., 2022) or sorted cell types (Aygün et al., 116 

2021), and despite their limited cellular resolution, the use of bulk tissue and meta-analysis across 117 

tissues are currently still more powerful.  118 

 119 

To conduct XWAS, two common approaches, TWAS (Gusev et al., 2016) and PrediXcan 120 

(Gamazon et al., 2015) have been used, with both requiring pre-computing of SNP weights from 121 

xQTL data sets. To avoid LD confounding, these XWAS tools also require a subsequent fine 122 
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mapping step – e.g., TWAS-FOCUS (Mancuso et al., 2019). In contrast, Mendelian 123 

Randomization (MR) based methods (Zhu et al., 2016; Yuan et al., 2020; Zhou et al., 2020) do not 124 

need the pre-computation of SNP weights and test for inference in a two-step regression 125 

framework. Among MR based XWAS methods, summary data-based Mendelian Randomization 126 

(SMR) is among the most commonly used method (Zhu et al., 2016). It has the advantage of 127 

providing users with a heterogeneity in independent test (HEIDI) to filter out non-causal loci that 128 

may be just in linkage with causal signals.  129 

 130 

There is widespread comorbidity among NPSUD (Plana-Ripoll et al., 2019). This is in part due to 131 

shared genetic risk factors (Lee et al., 2019), e.g., as detected by genetic correlation (rG) in cross-132 

trait analyses (THE BRAINSTORM CONSORTIUM et al., 2018). Consequently, it is possible 133 

that there could be many shared XWAS signals among NPSUD. This supports the joint analysis 134 

of NPSUD to potentially increase detection power, especially for underpowered disorders (Turley 135 

et al., 2018; Gleason et al., 2020; Taraszka et al., 2022). Additionally, there is significant 136 

concordance of cis-eQTL and cis-mQTL effects between blood and brain (Qi et al., 2018) and 137 

more than 70% of pQTL are shared between blood and brain (Yang et al., 2021a). Moreover, the 138 

direction of effect across most tissues for shared eQTLs is the same (THE GTEX CONSORTIUM 139 

et al., 2015). Consequently, given the high comorbidities between traits and xQTL concordance 140 

between tissues, a joint analysis of the XWAS results from all traits and tissues would likely help 141 

to uncover novel signals, especially for relatively underpowered NPSUD and tissues (e.g., brain).   142 

 143 

In this study, SMR was used to perform blood and brain XWAS of NPSUD to identify potential 144 

molecular mediators among major psychiatric disorders. To increase signal detection in 145 

underpowered disorders and tissue (brain), comorbidities among NPSUD and tissue xQTL 146 

concordances were leveraged in the joint trait/tissue concordance analysis. Subsequent analyses of 147 

XWAS signals were used to identify putative risk loci and pathways, shedding light on the etiology 148 

of NPSUD.  149 

 150 

 151 

2. Materials and Methods  152 

2.1 Statistical Method 153 
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We performed univariate XWAS analyses for nine NPSUD [Attention Deficit and Hyperactivity 154 

Disorder (ADHD), Autism Spectrum Disorder (ASD), Alcohol Use Disorder (AUD), Bipolar 155 

Disorder (BIP), Cannabis Use Disorder (CUD), Major Depressive Disorder (MDD), Opioid 156 

Use/Dependence Disorder (OD), Post-Traumatic Stress Disorder (PTSD) and Schizophrenia 157 

(SCZ)] (Table 1) for three paradigms (TWAS, PWAS and MWAS) and two tissues (blood and 158 

brain). For this purpose, we used SMR (v.1.03) (Zhu et al., 2016) to infer the association between 159 

the transcriptome/proteome/methylome and NPSUD. We performed SMR analysis for GWAS of 160 

NPSUD (Table 1) using external xQTL reference data sets (Table 2). To prioritize genes and 161 

perform pathway analyses, we adjusted probe (RNA/protein/CpG) SMR p-value (𝑃𝑆𝑀𝑅) for HEIDI 162 

test p-value (𝑃𝐻𝐸𝐼𝐷𝐼), by combining the two p-values into a single one by requiring that i) 𝑃𝑆𝑀𝑅  is 163 

not penalized when 𝑃𝐻𝐸𝐼𝐷𝐼 is above 0.01 and ii) 𝑃𝑆𝑀𝑅 was penalized by the amount 𝑃𝐻𝐸𝐼𝐷𝐼 falls 164 

below 0.01. Consequently, we adjusted 𝑃𝑆𝑀𝑅 to 𝑃′𝑆𝑀𝑅 =
𝑃𝑆𝑀𝑅

min (
𝑃𝐻𝐸𝐼𝐷𝐼
0.01

,1)
. We used this approach 165 

instead of filtering by 𝑃𝐻𝐸𝐼𝐷𝐼 < 0.01 because a misalignment between the GWAS cohort 166 

population and the European LD reference panel used by SMR might yield very low 𝑃𝐻𝐸𝐼𝐷𝐼, e.g., 167 

the well-known C4A in our SCZ TWAS (𝑃𝐻𝐸𝐼𝐷𝐼 = 5.94𝑥10
−4) Subsequently, to extend the 168 

inference to pathways, we performed a gene set enrichment analysis for suggestive (𝑃′𝑆𝑀𝑅 <169 

1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑏𝑒𝑠
) signals (Figure 1).   170 

 171 

2.2 Parameters for SMR-based XWAS analyses  172 

SMR analyses was performed for only cis-xQTLs (SNPs with p-value < 5x10-8 within 2 Mbp of 173 

the probe). We also used the default maximum (20) and minimum (3) number of xQTLs selected 174 

for the HEIDI test. We set the significance threshold as < 1.57x10-3 for xQTL p-values and the 175 

mismatch of minimum allele frequency among input files as < 15%. For HEIDI test, SNPs with 176 

LD > 0.9 and < 0.05 with top associated xQTL SNP were pruned. In case-control studies, we log-177 

transformed the odds ratio as suggested by the SMR analysis guidelines 178 

(https://yanglab.westlake.edu.cn/software/smr/#SMR&HEIDIanalysis, accessed on August 3, 179 

2022).  180 
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  181 

Figure 1. Flowchart of SMR XWAS analyses paired in both blood and brain tissues. To penalize 182 

for heterogeneity (non-causality), we employed an adjusted probe p-value [𝑃′𝑆𝑀𝑅 = 183 

𝑃𝑆𝑀𝑅/min(𝑃𝐻𝐸𝐼𝐷𝐼/0.01,1)]. For gene set enrichment analysis, we used the suggestive signals 184 

(expected to occur once per scan by chance). Primo method was used to conduct multi-trait 185 

analysis and Functional Mapping and Annotation (FUMA) was used for gene set enrichment 186 

analysis.  187 

 188 

2.3. Neuropsychiatric and substance use disorders GWAS  189 

All summary statistics except for AUD (Table 1) were downloaded from the Psychiatric Genomics 190 

Consortium (PGC web portal (https://www.med.unc.edu/pgc/download-results/, accessed on 191 

December 15 2023). For AUD GWAS summary statistics, we had access to the data granted 192 

through NIH from the Million Veteran Program (MVP) (dbGaP Study 193 

Accession: phs001672.v6.p1). For SMR analysis, GWAS summary statistics were processed into 194 

the SMR-ready file format.  The positions for all variants and genes in the input files (LD reference 195 

panel, GWAS summary statistics, and xQTL summary statistics files) for the SMR analysis are 196 

based on the GRCh37/hg19 reference genome.  197 

 198 

Table 1. Summary statistics of eight major PGC GWAS and MVP AUD GWAS. 199 
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 200 

 201 

2.4. Molecular xQTL reference data sets 202 

Neuro Psychiatric and 

substance use 

disorders 

GWAS significant 

markers*/total 

markers 
 

Study Number of cases 

and controls / 

ancestry 

Attention deficit and 

hyperactivity disorder 

(ADHD) 

317 / 8,094,095 (Demontis et al., 

2019) 

19,099 - 34,194 / EUR 

Autism spectrum 

disorder (ASD) 

93 / 7,822,833 (Grove et al., 2019) 18,381 - 27,969 / EUR 

Alcohol use disorder 

(AUD) 

588 / 6,895,251 (Kranzler et al., 

2019) 

34,658 -167,346 / EUR 

Bipolar disorder (BIP) 3,205 / 7,608,184 (Mullins et al., 

2021) 

41,917 - 371,549** / 

EUR 

Cannabis use disorder 

(CUD) 

29 / 7,735,104 (Johnson et al., 

2020) 

17,193 - 357,987 / 

EUR 

Major depressive 

disorder 

(MDD) 

4,625 / 7,286,335 (Howard et al., 

2019) 

411,965 - 1,285,068 / 

EUR 

Opioid use/dependence 

disorder 

(OD) 

0 / 4,571,339 (Polimanti et al., 

2020) 

4,503 - 32,500 / EUR 

Post-traumatic stress 

disorder (PTSD) 

3,434 / 3,875,929 (Nievergelt et al., 

2019) 

30,000 - 170,000 / 

EUR 

Schizophrenia 

(SCZ) 

22,344 / 7,585,077 (Trubetskoy et al., 

2022) 

33,640 - 43,456 / 

mostly EUR 

* Unpruned (based on LD) variants with  

** Case group includes bipolar or unipolar and control groups include individuals without any 

such diagnosis. 

EUR: European  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2023. ; https://doi.org/10.1101/2023.03.15.23287330doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.15.23287330


For our analyses, to get the highest signal detection, we selected the largest publicly available 203 

blood and brain xQTL datasets (Table 2). When pQTL summary statistics from reference data 204 

were not available (blood and brain pQTL) in the SMR-required input binary file format (i.e., 205 

.besd), we processed them into this .besd format. Below, we provided some of the most relevant 206 

details for these data sets. (A list of URLs for each data set is available in Supplementary Table 1, 207 

and for more details, please see the extended summary information in the Supplementary material)  208 

  209 

2.4.1 eQTL reference datasets 210 

For TWAS, we obtained the blood eQTL data from eQTLGen (Võsa et al., 2021) and brain eQTL 211 

from BrainMeta v2 (Qi et al., 2022) (Table 2). eQTLgen consortium meta-analyzed 31,684 212 

samples from 37 different study cohorts. Genotyping and gene expression levels were assayed 213 

mainly from whole blood (34 out of 37) and part peripheral blood mononuclear cells (3 out of 37). 214 

Most cohorts (25 out of 37) were population-based. The following eQTLGen studies included 215 

individuals of non-European ancestry (e.g., the Singapore Systems Immunology cohort - n = 115; 216 

Morocco – n = 175; Bangladeshi Vitamin E and Selenium Trial – n = 1,404). eQTLgen inferred 217 

cis-eQTL effects for 16,987 expression Genes (eGenes). BrainMeta (version 2) is a meta-analysis 218 

of brain eQTL mapping studies from seven independent cohorts (Qi et al., 2022). The study 219 

consists of 2,443 unrelated individuals of European ancestry. BrainMeta v2 detected 1,962,114 220 

eQTL SNPs for16,744 eGenes.  221 

 222 

2.4.2 pQTL reference datasets 223 

For PWAS, we used the blood pQTL data from deCODE (Ferkingstad et al., 2021) and brain pQTL 224 

from Wingo et al. (Wingo et al., 2022) (Table.2). The deCODE proteome study consisted of 35,559 225 

individuals from Iceland. Blood plasma samples were assayed for 4,907 probes [Slow Off-226 

rate Modified Aptamer Scan (SOMAScan) (Gold et al., 2010, 2012) assay version 4 aptamers], 227 

which correspond to 4,719 unique proteins.  228 

 229 

The brain pQTL study sampled three regions of the brain: prefrontal cortex, dorsolateral prefrontal 230 

cortex and parahippocampal gyrus (Wingo et al., 2022) in 722 samples. It used isobaric tandem 231 

mass tag method to assay proteins and 9,363 of them met the quality control criteria. While the 232 
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sample size of brain pQTL reference data is relatively small, this was the largest publicly available 233 

such study at the time of completion for the analyses. 234 

 235 

2.4.3 mQTL reference datasets 236 

For MWAS analyses, we used the blood (McRae et al., 2018; Wu et al., 2018) and brain mQTL 237 

data sets (Qi et al., 2018) (Table.2), which are publicly available for download from SMR web 238 

portal (https://yanglab.westlake.edu.cn/software/smr/#DataResource, accessed on January 28 239 

2023). The mQTL data for the brain is a meta-analysis of the mQTL mapping results from three 240 

major studies (Hannon et al., 2016; Jaffe et al., 2016; Ng et al., 2017).  The methylation assay used 241 

in these studies was the Illumina Infinium Human Methylation 450K array. We used the annotation 242 

file provided by the manufacturer to map the CpG probe ids (with “cg” prefix) to the HUGO gene 243 

nomenclature committee (HGNC) gene symbol.  244 

 245 

Table 2. Reference xQTL molecular datasets used for XWAS studies.  246 

Study Tissue Sample 

size 

Publication Genotype Probe assay Number of 

probes in 

SMR 

analysis 

reference eQTL data 

eQTLGen peripheral 

blood 

31,684 (Võsa et al., 

2021) 

 SNP 

array 

Expression 

Array and 

RNA-seq 

19,250 

BrainMeta 

v2*  

Brain cortex 2,865 

(effective 

sample 

size: 2,443) 

(Qi et al., 

2022) 

SNP 

array/ 

WGS 

Expression 

Array and 

RNA-seq 

16,744 

 

reference pQTL data 

deCODE** Blood 

plasma 

35,559 (Ferkingstad 

et al., 2021) 

SNP 

array/ 

SOMAscan 4,773 
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WGS 

ROS/MAP-

Banner- 

MSBB 

dPFC+ 

FC/  

dPFC/ 

PG 

366+70/15

1/ 135 
 

(Wingo et 

al., 2022) 

WGS TMT 

isobaric 

labeling MS 

9,346 
 

       

reference mQTL data 

Blood 

mQTL*** 

Peripheral 

blood 

1,980 (McRae et 

al., 2018; 

Wu et al., 

2018) 

 SNP 

array 

 

Illumina 

Human 

Methylation 

450 array 

94,338 

Brain 

mQTL**** 

dPFC/ 

Fetal brain 

1,160  (Qi et al., 

2018) 

 SNP 

array 

 

Illumina 

Human 

Methylation 

450 array 

 

436,077 

SOMAScan:  Slow Off-Rate Modified Aptamer scan, WGS: Whole genome sequencing, ROS: Religious Orders Study, MAP: Rush Memory and 

Aging Project, MSBB: Mount Sinai NIH Neurobiobank, dPFC: dorsolateral prefrontal cortex, FC: Frontal Cortex, PG: parahippocampal gyrus, 

TMT: Tandem Mass Tag, MS: Mass Spectrometry 

* This data is a meta-analysis of the GTEx brain, CMC, and ROS/MAP by using MeCS (Qi et al., 2018). 

** One group of participants is from deCODE and the second group is from the Icelandic Cancer Project. 

*** Meta-analysis of mQTL data from two independent cohorts: Brisbane System Genetics (BSGS) and Lothian Birth Cohorts (LBC). 

**** Meta-analysis of mQTL data from three independent cohorts [Hanon et al., Jaffe et al. and ROS/MAP (Hannon et al., 2016; Jaffe 

et al., 2016; Ng et al., 2017)] by MeCS  
 247 

2.5. Gene set enrichment analysis 248 

Our aim is to uncover pathways that are associated with NPSUD. For this purpose, we tested for 249 

pathway enrichment in XWAS signals. We performed two separate Functional Mapping and 250 

Annotation (FUMA) (v1.41) (Watanabe et al., 2017) pathway analyses using genes with 251 

suggestive signals from: i) TWAS and PWAS combined and ii) MWAS only. We included genes 252 

with suggestive adjusted p-values () in query gene lists for FUMA analyses assumed a possible 253 

universe of 54,619 coding and non-coding genes (protein coding, long non-coding RNA, non-254 

coding RNA and processed transcripts). Due to the complexity of the MHC region, we chose the 255 
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option for excluding genes from this region in FUMA analyses. To adjust for multiple testing, we 256 

assessed pathway significance using the False Discovery Rate (FDR) procedure (q-value < 0.05) 257 

(Benjamini and Hochberg, 1995).  258 

 259 

2.6 Joint NPSUD concordance analysis of TWAS and MWAS gene signals 260 

To increase the statistical power for the prioritization of genes in underpowered NPSUD and 261 

tissues (such as brain), we used a multi-trait and multi-tissue approach. Therefore, we conducted 262 

a joint trait concordance analysis using Primo (R package for Integrative Multi-Omics association 263 

analysis) (Gleason et al., 2020) within the more powerful XWAS paradigms (TWAS and MWAS). 264 

We did not jointly analyze PWAS because brain results were too sparse. We used Primo because 265 

it was designed to jointly analyze summary statistics from multiple studies while adjusting for the 266 

correlation between datasets (e.g., due to sample overlapping). Gene-level adjusted p-values from 267 

SMR analyses were used as input for the joint trait and tissue concordance analyses. If a gene had 268 

multiple p-values then the Cauchy method (Liu et al., 2019) was used to combine these p-values 269 

to have one p-value for the gene. Because Primo requires the estimated proportion of statistics 270 

(alt_props) coming from the alternative distribution, we exhaustively tested different values for 271 

this parameter. We also estimated it directly from the data using a mixture of two distributions. 272 

This parameter was critical because more significant results were identified when larger values of 273 

alt_probs were used. We finally decided to set alt_probs=10-3 which was also suggested in the 274 

Primo paper (Gleason et al., 2020). For prioritization purposes, we considered genes with posterior 275 

probabilities (PP) > 0.95 as significant. 276 

 277 

Besides increasing signal detection in the brain, the joint analysis might open the avenue for further 278 

investigations. For instance, blood and brain concordant signals might be further studied to be used 279 

as proxies for the brain pathology of NPSUD. It is possible that such blood markers might also 280 

have an impact on the diagnosis/prognosis of NPSUD, i.e., concordant XWAS signals might have 281 

translational implications. 282 

 283 

Results 284 
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 285 

Figure 2. Miami plot [Manhattan blood (above)-brain (below) bi-plot] of TWAS adjusted p-values 286 

(𝑃′𝑆𝑀𝑅)  for investigated neuropsychiatric and substance use disorders. The upper part of the plot 287 

is for the blood and the lower part is for the brain. The red horizontal line denotes Bonferroni 288 

significance threshold. For visualization, we labeled the signals by their affiliated HUGO gene 289 

name and the direction of the SMR effect estimate on the trait shown in parentheses. AUD: 290 

Alcohol Use Disorder BIP: Bipolar Disorder OD: Opioid Dependence/Use Disorder ASD: Autism 291 

Spectrum Disorder SCZ: Schizophrenia ADHD: Attention Deficit and Hyperactivity Disorder 292 

CUD: Cannabis Use Disorder MDD: Major Depression PTSD: Post-traumatic stress disorder. 293 

 294 

In this section, we provide a selection of the common and shared XWAS results. Due to the strong 295 

signals in MHC region making the visualization of other findings difficult, we omitted this region 296 

from the plots of results coming from univariate TWAS and PWAS analyses (Figure 1 and 2). 297 

Details on MHC signals for these two paradigms were provided in Supplementary Figures 1 and 298 

2. All univariate XWAS results collated by paradigm are available in Supplementary data files. 299 

 300 

 301 

TWAS results 302 
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Blood and brain TWAS for BIP, SCZ and MDD yielded the highest number of significant TWAS 303 

signals (Figure 2 and Supplementary Figure 1). These disorders share many common signals, 304 

especially in the Major Histocompatibility Complex (MHC) region on chromosome 6 (25-35 305 

Mbps), e.g., BTN3A2 and C4A, which were concordant (i.e., significant and with the same sign for 306 

effect size) between blood and brain. Other shared signals between three disorders were ATF6B, 307 

C4A, FLOT1, IER3, LINC00243, TRIM10, TUBB, TNXA, ZNF602P and ZSCAN12P1, in blood 308 

and, OR2B8P, ZKSCAN8P1 and ZSCAN16-AS1 in brain.  309 

 310 

Among substance use disorders (SUD), AUD showed significant signals in blood (NRBP1, PPP4C 311 

and YPEL3) and brain (LINC01833). For CUD, HYAL3 and NAA80 on chromosome 3 were 312 

significant signals and with concordant direction of effect between blood and brain. CUD also had 313 

significant blood-only signals on chromosome 10 in ENO4 and SHTN1. However, robust signals 314 

were not detected for OD. 315 

 316 

For ADHD, there were three significant signals from blood (AL139289.1, AP006621.1 and MED8-317 

AS1) and two from brain (MED8 and TIE1). For ASD, there were two significant signals on 318 

chromosome 22 (KIZ and XRN2), with KIZ also being suggestive in brain. We observed signals 319 

for PTSD on chromosome 17, some of which had concordant direction of effect between blood 320 

and brain (e.g., AC005829.23 and KANSL1-AS1). PTSD results also yielded a blood-brain 321 

concordant signal for KYAT3. 322 

 323 
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  324 

Figure 3. Miami plot [Manhattan blood(above)-brain (below) bi-plot] of PWAS adjusted p-values 325 

(𝑃′𝑆𝑀𝑅) for investigated neuropsychiatric and substance use disorders. For details and background 326 

see Figure 2 legend.  327 

 328 

PWAS results  329 

When compared to TWAS, there was a lower number of PWAS significant signals (Figure 3 and 330 

Supplementary Figure 2). This is expected because PWAS had a lower number of probes tested 331 

and lower sample for reference panels, especially for brain tissue. For instance, we did not identify 332 

any significant blood or brain PWAS signals for OD, ASD or CUD. Similar to TWAS - BIP, SCZ 333 

and MDD yielded common signals in MHC regions for blood (BTN3A3, BTN3A1 and MICB - see 334 

also Supplementary Figure 2 for more details). NEK4 was a brain only signal shared between SCZ 335 

and BIP.  336 

 337 

For PTSD, significant brain signals were in KYAT3 (detected also in TWAS), KHK, GPX1, MICB 338 

and CTNND1 (that is also common signal between SCZ and MDD). Among these, only KYAT3 339 
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was blood-brain concordant for the direction of effect.  Some notable disease specific signals were 340 

for ADH1C and ADH1B in AUD blood and TIE1 in ADHD blood PWAS (which was also 341 

significant in ADHD brain TWAS). 342 

 343 

 344 
Figure 4. Miami plot [Manhattan blood (above)-brain (below) bi-plot] of MWAS adjusted p-345 

values (𝑃′𝑆𝑀𝑅) for investigated NPSUD. For details and background, see Figure 2 legend.  346 

 347 

 348 

MWAS results 349 

Notably, biologically significant signals were detected, e.g., ADH1C for AUD in blood. Similar to 350 

TWAS and PWAS, we found that BIP, SCZ and MDD had more significant signals than the 351 

remaining disorders (Figure 4 and Supplementary Files). Again, the largest blood-brain concordant 352 

signals that were common between BIP, SCZ and MDD were in the MHC region, such as, 353 

ZSCAN12L1, BTN3A2, H2AC13, ZNF389 for brain and VARS2, TUBB, TRIM27, TRIM31, 354 
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DPCR1, TRIM15, DDR1, GTF2H4, TRIM40, H2AC13, TRIM26, PBX2, HIST1H4D, SFTA2, 355 

BTN3A2, HCG9, HLA-B and MSH5 for blood. 356 

 357 

As in PWAS, there were no significant signals for OD or ASD. For CUD, SLC38A3 was a blood-358 

brain concordant signal. ADHD yielded two significant signals on chromosome 1 (C1orf84 in 359 

blood and KDM4A in brain). For PTSD, there were significant signals for GMPPB, SCAND3, 360 

C11orf31, FURIN and MAPT in blood. Among these, MAPT and C11orf31 were also concordant 361 

between blood and brain. Other leading PTSD brain signals were AMIGO3, cg05913906 and FES.  362 

 363 

Gene set enrichment analysis results 364 

In this section, we highlighted some of the more interesting signals from FUMA gene set 365 

enrichment. More detailed results can be found in Supplementary Figures 3-33 and in 366 

Supplementary Tables 2 and 3. Consistent with most other XWAS results, there were no 367 

significant findings for OD and CUD. As expected, i) SCZ yielded the highest number of signals 368 

(due to its larger sample size in GWAS) and ii) alcohol metabolism pathways showed significant 369 

enrichments for AUD. For BIP, the combined TWAS and PWAS prioritized genes were 370 

significantly enriched in non-genomic actions of the 1,25 dihydroxyvitamin D3 gene set (PLCB3, 371 

PRKCB, PRKCA and CD40) (q-value = 3.81x10-2) (Supplementary Figure 10). Another BIP signal 372 

was GWAS catalog gene enrichment for plasma omega-3 polyunsaturated fatty acid levels (alpha-373 

linolenic acid) (MYRF, TMEM258 and FADS1) (q-value = 1.00 x10-3) (Supplementary Figure 12). 374 

For the same disorder, GO_HYALURONAN_METABOLIC_PROCESS (ITIH1, ITIH3 and 375 

ITIH4) (q-value = 5.67x10-3) was the most significant Gene Ontology (GO) terms in the Biological 376 

Process category (Supplementary Figure 13). For more details, refer to Supplementary Tables 2 377 

and 3. Peptidase related GO terms were shared signals between BIP, MDD and SCZ 378 

(Supplementary Figures 34-35). Also, neuron related pathways (GO_SYNAPSE_PART, 379 

GO_PRESYNAPSE and GO_POST_SYNANSE) were significant enrichment for MDD 380 

(Supplementary Figures 34 and 35).  381 

 382 

In the MWAS only analysis, again SCZ yielded the most signals. Metabolism of alpha-linolenic 383 

acid (omega-3) was one of the significant gene sets for BIP blood MWAS (FADS2, FADS1 and 384 

MIR1908) (q-value = 3.24x10-4) (Supplementary Figure 33). BIP and SCZ shared a signal for 385 
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cation ion transport related gene sets (GO_CATION_TRANSPORT and 386 

GO_DIVALENT_INORGANIC_CATION_TRANSPORT) (Supplementary Figure 37). See 387 

Supplementary Tables 4 and 5 for details. 388 

 389 

Joint analysis for both i) NPSUD and ii) blood and brain 390 

  391 
Figure 5. Results of the joint trait concordance analysis for TWAS. The top twenty-five genes are 392 

shown as ranked by the sum of the posterior probabilities (PPs) within brain tissue for disorders: 393 

Attention deficit and hyperactivity disorder (ADHD), Autism spectrum disorder (ASD), Alcohol 394 

use disorder (AUD), Bi-polar disorder (BIP), Major depressive disorder (MDD), Post-traumatic 395 

stress disorder (PTSD) and Schizophrenia (SCZ).  396 

 397 

TWAS/MWAS results were jointly analyzed for seven NPSUD (Figure 5), excluding the 398 

underpowered OD and CUD due to poor distributions of XWAS p-values vs Primo PPs.  399 

We observed gene signals (PP>0.95) that are shared between many NPSUD and between blood 400 

and brain (Figure 5). ZDHHC5 was the most shared signal between blood and brain and five 401 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 19, 2023. ; https://doi.org/10.1101/2023.03.15.23287330doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.15.23287330


NPSUD (ADHD, AUD, MDD, PTSD and SCZ). There is a cluster of genes that is also shared only 402 

between ASD, PTSD and SCZ, e.g., LRRC37A2, KANSL1-AS1, MAPK8IP1P1, MAPK8IP1P2 and 403 

AC005829.1. BIP and SCZ also share a number of signals (NEK4, GNL3, NMB, GLYCTK, 404 

AC006252.1 and GOLGA2P7).  405 

However, there were also disease specific genes, e.g., i) AP006621.3 and PIDD1 for ADHD, ii) 406 

ADD3, LMAN2L and PLEC for BIP, iii) KYAT3 and PLEKHM1 for PTSD, iv) PCCB and 407 

GATAD2A for SCZ and v) LINC02803 for MDD. (Detailed in Supplementary Table 6)  408 

 409 

While often there were very similar pattern of shared TWAS signals between blood and brain, 410 

there were also brain specific signals. For instance, BRD2, FURIN and ZSCAN16-AS1 were such 411 

brain only signals that are shared among many disorders. [Note that FURIN was successfully 412 

tested, via CRISPR/Cas9 experiment on isogenic human induced pluripotent cell, for the allelic 413 

effect on its gene expression of the SNP with the largest SCZ signal in the region (Schrode et al., 414 

2019).] There were also both disease and brain specific signals, e.g., FTCDNL1 for SCZ observed 415 

only in brain. For more disease/tissue specific signals, please see also Supplementary Table 6.  416 
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 417 
Figure 6. Results of joint trait concordance analysis for MWAS. The top twenty-five genes 418 

(excluding probes not mapped to a gene name as per Illumina annotation) are shown and ranked 419 

by sum of brain PPs for all disorders.  420 

 421 

For MWAS, we often observed the same pattern of shared signals between blood and brain. 422 

Among the largest signals (ranked by the sum of PP in brain), C11orf31, MED19 and FURIN were 423 

shared among ADHD, AUD, BIP, MDD, PTSD and SCZ (Figure 6). GATAD2A stood out as 424 

shared brain specific signal among ADHD, ASD, BIP, PTSD and SCZ. RERE was shared among 425 

AUD, MDD, PTSD and SCZ, which was one of the eGenes for a cis-eQTL associated with SCZ 426 

that showed allele specific effect via the chromatin interaction (Zhang et al., 2020).  For more 427 

details about results, see Supplementary Table 7.  428 
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Discussion 429 

To provide biological context to GWAS findings, we performed XWAS analyses using the SMR 430 

was performed. These analyses uncovered putative risk genes by inferring the association between 431 

the transcriptome/proteome/methylome and NPSUD. We subsequently identified molecular 432 

pathways associated with NPSUD via gene set enrichment analyses of genes that yielded XWAS 433 

suggestive signals. To improve signal detection power for underpowered traits and brain tissue, 434 

we also performed a joint concordance analysis of all traits and tissues within the two adequately 435 

powered XWAS paradigms (TWAS and MWAS) were performed. The results of this work suggest 436 

possible components of the treatment regimen for certain NPSUD, e.g., the possible implication 437 

of vitamins (B6 and D) and omega-3 pathways for some of these disorders. 438 

 439 

Our analyses replicated biologically relevant and previous significant findings. Among the 440 

biologically relevant ones, we note that the common signal in AUD between blood PWAS and 441 

MWAS was ADH1C, which codes for alcohol dehydrogenase enzyme that metabolizes the 442 

alcohol. It was also implicated as a significant loci in various GWAS of alcohol related phenotypes 443 

(Gelernter et al., 2014; Clarke et al., 2017; Kranzler et al., 2019). We also replicated findings from 444 

Dall’Aglio et al. (Dall’Aglio et al., 2021), in which NEGR1 was found to be  a signal for MDD as 445 

it was the second most significant gene in our MDD blood TWAS. Similar to our TWAS results, 446 

BTN3A2 and RPL31P12 were significant findings in a previous MDD brain TWAS from Yang et 447 

al. (Yang et al., 2021b).  448 

 449 

In our joint TWAS concordance analyses, ZDHHC5 was the shared signal between all NPSUD 450 

except for ASD and BIP (Figure 5). This gene was previously found to be a shared blood TWAS 451 

signal between MDD and SCZ (Reay and Cairns, 2020). In the same paper, some of our other 452 

XWAS signals shared between BIP and SCZ (e.g., NEK4, GNL3 and NMB) were also reported as 453 

shared TWAS signals in blood. Another shared signal between SCZ, BIP and AUD was INO80E 454 

which was previously indicated as one of the top ten shared signals between SCZ and AUD 455 

(Johnson et al., 2021). A common blood-brain MWAS signal for AUD, MDD, PTSD and SCZ 456 

from the Primo joint analyses was RERE. It was one of the eGenes for a cis-eQTL showing allele 457 

specific effect via the chromatin interaction (Zhang et al., 2020). The same gene was also 458 
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implicated as a significant gene in SMR analysis in the recent PGC SCZ GWAS (Trubetskoy et 459 

al., 2022). 460 

 461 

We compared our joint trait concordance analysis findings for SCZ (brain TWAS+MWAS or brain 462 

TWAS only) with PGC3 SCZ GWAS findings. There were common genes identified as significant 463 

(PP>0.95) in our brain tissue results (TWAS+MWAS) and those found in the list of significant 464 

replication and discovery loci (see Supplementary Table 8) in PGC3 SCZ GWAS, such as, 465 

BTN3A2, FURIN, GATAD2A, GNL3, INO80E, KANSL1-AS1 and NEK4. However, we found 466 

significant signals for AC005829.1, BRD2, C11orf31, C6orf15, DND1P1, MAPK8IP1P1 and 467 

ZNF602P, which were not found as significant in the above PGC3 SCZ gene list. There are also 468 

common genes between our brain tissue TWAS results (from the joint analysis) and the list of 469 

genes in PGC SCZ that were prioritized based on the SMR analysis only. Those genes are INO80E, 470 

GATAD2A, PCCB and FURIN. However, our brain results include significant findings that were 471 

not identified in PGC3 SCZ, such as BRD2, GNL3, KANSL1-AS1, NEK4 and ZDHHC5. (For 472 

details see Supplementary Table 8) 473 

 474 

The MHC region is a well-known region associated with some of the NPSUD, e.g., SCZ (Corvin 475 

and Morris, 2014). Our joint XWAS analyses strongly support this assertion for SCZ, BIP, PTSD 476 

and MDD. For instance, BTN3A2 was the leading TWAS signal for BIP, MDD and SCZ. Also, 477 

C4A, thought to be implicated in synaptic pruning (Sekar et al., 2016), was a shared brain TWAS 478 

signal for BIP, MDD, PTSD and SCZ (Figure 5). Similarly, MICB was shared between AUD, BIP, 479 

MDD, PTSD and SCZ in brain MWAS (Figure 6). Its possible involvement in NPSUD was also 480 

supported by empirical transcriptomic evidence. Research showed that MICB is part of a molecular 481 

network interacting with the differentially expressed genes in Brodmann’s area  9 region of 482 

individuals with MDD (Scarr et al., 2019).  483 

 484 

Beside many common signals between NPSUD, there are also some that are disease specific. For 485 

PTSD, we observed specific signals for TWAS/PWAS in a cluster of genes on chromosome 17 486 

and KYAT3 on chromosome 1. KYAT3 was the strongest signal for PTSD brain PWAS. It was 487 

reported as a TWAS signal for reexperiencing a PTSD symptom cluster (Pathak et al., 2022). A 488 
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GWAS on social anxiety also found SNP that is downstream of KYAT3 to be significant (Stein et 489 

al., 2017).  490 

 491 

AUD specific TWAS signals were on chromosome 2 for NRBP1 and SNX17. A meta-analysis of 492 

Alcohol Use Disorders Identification Test (AUDIT) showed that index SNP for GCKR overlap 493 

also with the SNX17 (Sanchez-Roige et al., 2019). This same gene was also found significant (p-494 

value = 1.18x10-6; brain caudate basal ganglia) in TWAS of substance use disorder (Hatoum et al., 495 

2022). For ADHD, TIE1 (chromosome 1) is a TWAS/PWAS signal that was not found in other 496 

NPSUD. This gene is coding for  tyrosine kinase and it was found as significant in PTSD TWAS 497 

(Liao et al., 2019) and ADHD TWAS (Chen et al., 2022). For CUD, we also identified concordant 498 

blood-brain TWAS signals on chromosome 3, e.g., HYAL3 and NAA80. In another  TWAS analysis 499 

using the same CUD GWAS (Table 1), they also found HYAL3 was found to be significant 500 

(Johnson et al., 2020). Previously, expression of NAA80 in brain (anterior cingulate cortex) was 501 

associated with the genome-wide significant variant rs2777888 in meta-analyzed European 502 

ancestry PTSD GWAS (Gelernter et al., 2019). 503 

 504 

Since blood and brain cis-xQTL were known to overlap, this was used to improve the discovery 505 

power for brain XWAS analyses through the joint analysis of both tissues. The joint analyses found 506 

many candidate risk genes that are concordant in direction of effect for both tissues. The blood 507 

XWAS of these concordant genes might be useful for future development of NPSUD multivariate 508 

blood biomarkers that might be used for diagnosis, prognosis and possible treatment of these 509 

disorders.  510 

 511 

Supplements such as vitamins and omega-3 have been tested (with varying success rates) as 512 

treatment for NPSUD (Firth et al., 2019). Previous investigations in blood indicated that the 513 

deficiency (Anglin et al., 2013) and supplementation (Sarris et al., 2016) of vitamin D might 514 

increase/decrease the risk for MDD. Other studies did not find any effect of vitamin D 515 

supplementation on MDD (Marsh et al., 2017) and depression in older adults (Okereke et al., 516 

2020). A most recent GWAS of polyunsaturated and monounsaturated fatty acids showed a 517 

significant gene set enrichment of GWAS catalog genes in Bipolar I and II (Francis et al., 2022). 518 

Omega-3 was also found to likely lower MDD risk (Mocking et al., 2016). It is not clear if these 519 
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non-genetic/non-MR studies did eliminate most confounders. However, most confounders are 520 

eliminated by using mendelian randomization methods, such as SMR that was used in this work. 521 

 522 

While we did not uncover any vitamin associated pathway or gene signal for MDD, our analyses 523 

indicated link between such supplements and other NPSUD. For instance, BIP TWAS and PWAS 524 

prioritized genes showed significant gene set enrichment for the vitamin D3 pathway 525 

(Supplementary Figure 10). For BIP, we also found significant gene set enrichment in omega-3 526 

associated gene sets in combined T/PWAS (Supplementary Figure 11) and MWAS only 527 

(Supplementary Figure 36) FUMA analyses. KYAT3 signal found in PTSD T/PWAS suggests a 528 

possible etiological role of vitamin B6 in this disease. Based on these findings, more clinical 529 

research evidence is needed to test these molecules as a secondary component of the treatment 530 

regimen: i) vitamin D and omega-3 modest supplementation for BIP and ii) vitamin B6 (or B 531 

complex) for PTSD.  532 

 533 

The importance of this study is five-fold. First, this is the most powerful XWAS study of NPSUD 534 

because we integrated the largest available xQTL reference data and NPSUD GWAS. Second, we 535 

extended these most powerful gene-level XWAS inferences to pathway level, which suggested 536 

some novel avenues for treatment. Third, we further increased the detection power for 537 

underpowered trait and tissues via multi-trait multi-tissue joint analyses. Fourth, the joint analyses 538 

uncovered blood-brain concordant XWAS signal that, in the future, might form the basis for the 539 

development of (multivariate) blood biomarkers for diagnosis/prognosis. Fifth, these joint analyses 540 

are the first formal attempt to uncover common signals for multiple disorders and those specific to 541 

a single one.  542 

 543 

Limitations of the study 544 

1. Although we applied the HEIDI test, it is not likely that SMR completely eliminates the 545 

horizontal pleiotropy. For instance, a SNP might be xQTL for multiple genes, which 546 

violates the assumption that the SNP effect on the trait is mediated only through the tested 547 

gene. However, we believe that gene set/pathway inferences are likely to mitigate the 548 

confounding effect of this phenomenon from gene-level analysis. 549 
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2. While Primo can adjust for the correlations between multiple different studies, it does not 550 

correct for the correlation between genes (e.g., which can happen due to the linkage 551 

disequilibrium of variants). Thus, future studies need to validate the identified genes.  552 

3. Reference brain pQTL has lower sample sizes than the blood pQTL data. This resulted in 553 

fewer significant signals for brain PWAS.  554 

4. Some reference xQTL data (e.g., brain proteome) are enriched in individuals with certain 555 

neurological disorders.  556 

5. We used 1000 Genome phase 3 as a reference LD panel that might not be an exact match 557 

for the LD patterns from the GWAS cohort. By adjusting 𝑃𝑆𝑀𝑅, we eliminated the inflation 558 

of 𝑃𝐻𝐸𝐼𝐷𝐼, signals due to any cohort-panel LD mismatch.  559 

6. Due to extended and irregular LD patterns, findings in certain regions (e.g., MHC) should 560 

be interpreted with care.  561 

7. Since we only included xQTL reference data obtained from bulk tissue, any cell type 562 

specific information was not presented in our findings.  563 
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