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Abstract 

Introduction: 

Mood instability in bipolar disorder (BD) is poorly understood. Here we examined cognitive 
and neural mechanisms related to these fluctuations and how they are changed with the 
mood stabilizer lithium.  

Methods: 

We recruited volunteers with low (n=37) or high (n=40) risk of BD (using the Mood Disorder 
Questionnaire, MDQ). We also recruited patients with BD who were assigned (randomized, 
double-blind) to six weeks of lithium (n=19) or placebo (n=16) after a two-week baseline 
period. Participants completed mood ratings daily over 50 (healthy) or 42 (BD) days, as well 
as a risky decision-making task and one functional magnetic resonance imaging session. The 
task measured adaptation of risk taking to past outcomes (increased risk aversion after a 
previous win, ‘outcome history’). 

Results: 

While the low MDQ group was risk averse after a win, this was less evident in the high MDQ 
group and least so in the patients with BD. Neurally, ‘outcome history’ was linked to medial 
frontal pole activation at the time of the decision. Corresponding to the behavioural effect, 
this activation was reduced in the high MDQ vs. the low MDQ group. While lithium did not 
reverse the pattern of BD in the task, it changed reward processing in the dorsolateral 
prefrontal cortex.  

Discussion: 

Healthy participants’ modulation of risk-taking in response to reward outcomes was reduced 
by risk of BD and BD.  These results provide a model for how reward may prime escalation of 
risk-related behaviours in bipolar disorder and how mood stabilising treatments may work. 

 

 
 
Introduction 
 
Bipolar disorder (BD) is typically characterized by episodes of depression or mania, lasting 
weeks and months. Lithium is the most effective mood stabiliser for management of BD, 
reducing the frequency of both manic and depressive episodes (1).  While, fluctuating mood 
episodes have traditionally be seen as lasting weeks or months, more recent work has shown 
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that, in fact, patients with BD show large day-to-day fluctuations in mood even when 
symptoms are in the non-clinical range (2). A specific aspect of this mood instability – volatility 
- is affected by lithium treatment (3). Understanding the processes underpinning these 
fluctuations may help us develop and assess more effective treatment approaches. 
 
To understand mood fluctuations in BD, recent work has used a computational-psychiatry 
approach drawing from the field of reinforcement learning. This work has suggested  that 
destabilizing positive feedback cycles between mood and perceptions of rewards may 
contribute to BD (4–6): In people with subclinical symptoms of BD, positive or negative 
surprises were found to affect the neural and behavioural responses to reward and 
punishments.  In particular, symptoms were associated with an increase in reward value after 
a positive surprise.  This kind of reward sensitivity has been linked to later changes in mood, 
suggesting a route by which escalation of reward responses may translate into clinical 
symptoms (7). In patients, however, work so far has focused on lab-based measures of mood 
and its impact on behaviour on the scale of minutes.  
 
Beyond learning, research on decision-making has also revealed that behaviour shows 
temporal interdependencies. For example, people show ‘biases’ such as ‘loss chasing’ (8) 
(taking more risks to recover losses). While these behaviours have often been interpreted as 
biases, from more recent conceptual work from an ecological perspective (9–12), they could 
be seen as useful for achieving homeostasis between needs for different rewards. Using 
momentary ecological monitoring has revealed homeostatic, mood stabilizing, behaviour. In 
healthy controls, when mood fluctuates, people self-report using strategies to re-establish 
mood homeostasis such as engaging with aversive activities when they are in a good mood 
(13). It has been shown that this strategy is reduced in people with depression or low mood 
(14). However, it is yet unclear whether homeostatic behaviour is also reduced in BD. 
 
Studies in healthy participants and patients show that there is a wide network of frontal and 
striatal areas in the brain that process rewards and are crucial for motivation (15,16) and 
potentially important for understanding mood disorders (17,18) and homeostasis (9,10,12). 
However, how BD and mood instability change signals in these networks related to 
homeostasis is still unclear. 
 
Here, we have built on these findings to test whether a gradient of mood elevation, was linked 
to behavioural measures of reduced active homeostatic behaviour in a decision-making task, 
measured as changes in decision strategies (risk taking) from trial to trial in response to 
reward/loss outcomes. For this, we recruited 40 healthy volunteers with risk of BD, i.e. a 
history of mood elevation,  assessed using the mood disorder questionnaire (MDQ (19)), 37 
volunteers without mood elevation, and 35 patients with BD. To assess whether behaviour 
and naturally occurring daily-life mood fluctuations were related, participants completed up 
to 50 longitudinal testing sessions at home. To understand the neural mechanisms of 
homeostatic stabilizing behaviour, we measured brain activity with fMRI. To test the causal 
effect of a commonly prescribed mood-stabilizing drug, lithium, 19 patients were randomly 
assigned for six weeks to lithium and 16 to placebo in a double-blind design. 
 

METHODS 
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Participants 

Participants were recruited in two separate studies (see below) approved by the local ethics 
committee: Oxford University Ethic Committee (MSD-IDREC-C2-2014-023) and Soutch 
Central – Oxford A Research Ethcis Committee (15/SC/0109). Participants gave informed 
consent and were reimbursed for taking part in the study. The intervention study was 
registered: https://doi.org/10.1186/ISRCTN91624955. 
 
Volunteers with history of high or low mood elevation: Participants were recruited through 
local advertisement and from pools of previous participants who had consented to be re-
contacted. Seventy-seven were included in the study. Participants were recruited into two 
age- and gender-matched groups depending on their scores from the Mood Disorders 
Questionnaire, MDQ (19): ‘low MDQ’ group: <5 points (n=37); ‘high MDQ’ group: ³ 7 points 
and additionally indicating that several of these symptoms happened during the same period 
of time (n=40). Detailed exclusion criteria appear in supplementary method 1A.  A higher 
score on the MDQ indicates a history of mood elevation and risk of BD.   
 
Patients with BD: Participants were recruited through the BD Research Clinic (Oxford). All 
participants met criteria for BD-I (n=7), BD-II (n=27) or BD not otherwise specified (BD-NOS, 
n=1), based on structured clinical interview. Full exclusion criteria are provided in the 
supplementary materials [1B]. Participants were assigned to placebo (n=16) or lithium (n=19), 
see below. 
 

Study design 

Volunteers. We measured participants’ mood and behaviour in a cognitive task longitudinally 
five times a week over ten weeks. Brain activity during the same task was measured during 
an MRI scan. The data here were part of a larger study (supplementary method 1B).  
 
Patients with BD. This study was a randomised, 6-week, double-blind, placebo-controlled trial 
(20). See supplementary method [1B] for full information. All participants underwent a two-
week pre-randomization phase during which they completed the cognitive task and mood 
ratings daily at home. Due to logistic challenges, for some participants this phase lasted longer 
than two weeks. For the next phase, which lasted 6 weeks, participants were randomly 
assigned to receive either lithium or placebo in a double-blind design. The first 10 participants 
were fully randomly assigned to avoid predictability, while for subsequent participants, an 
algorithm was used to minimize differences in age (<25 or >25 years) and gender between 
the two groups. In the lithium group, participants were titrated to doses producing plasma 
levels of 0.6-1 mmol/L (see supplementary methods 1C for dosing details). Data from one MRI 
session are ported here (n= 23 participants were fMRI compatible). 
 
Throughout, we performed two types of group comparisons. First, we compared across 
history of mood elevation severity/ risk of BD (i.e. group as ordered factor (21) in regressions, 
Low MDQ < High MDQ < patients with BD), subsequently referred to as ‘mood elevation 
gradient’. Second, we tested for the effects of lithium treatment as drug (lithium/placebo) x 
time point (baseline/post) interactions. 
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‘Wheel of fortune’ task 

Trial structure. On each trial of the task, participants were given two options shown side-by-
side. In the at-home version, these were wheels of fortune (Figure 1A). In the fMRI version, 
they were instead presented as bars. Each option had three attributes: probability of winning 
vs. losing (size of green vs. red area), magnitude of possible gain (number on green area, 10 
to 200), and magnitude of possible loss (number on red area, also 10 to 200). After 
participants chose one option, the wheel of fortune started spinning and then randomly 
landed on either win or loss. Finally, participants were shown their updated total score. The 
experiment was designed so that most choices were difficult, i.e., the options were very 
similar in value (90% of choices were not more than 20 points apart; 76% not more than 5 
points apart), Figure 1B.  
 
 
 

 
Figure 1. Task design and longitudinal behaviour. A) On each trial, participants chose 
between two gambles (‘wheel of fortune’) that differed in their probability of winning or 
losing points and in the number of points that could be won or lost. Once participants had 
chosen an option, the alternative was hidden, and the chosen wheel started spinning until 
finally landing on the win or loss. B) Participants' choices (left vs. right option) were guided 
by the relative utilities (reward utility - i.e., probability * magnitude – minus loss utility): the 
higher the utility of the left option, the more it was chosen. The computational model (lines) 
captured behaviour (dots with error bars) well. Data were combined across all testing 
sessions (up to 50) per participant (20 trials per session). Error bars show the standard error 
of the mean, and the size of the dots indicates the number of data points available. 
 
 
Timings and number of trials. Each day, participants were asked to rate their positive and 
negative mood using the Positive and Negative Affect Schedule – Short Form, PANAS-SF (22). 
They were also asked to give an overall rating of their mood (‘How are you feeling’, referred 
to here as ‘Happiness VAS’) using a slider ranging from ‘very unhappy’ (red sad face drawing) 
to ‘very happy’ (green smiley face).  They then played 20 trials of the task. After the task, they 
repeated the happiness VAS. 
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In the fMRI scanner, participants played 100 trials. All timings were jittered. From the onset 
of options until participants could make a choice: 1-2 sec; delay between participants’ 
response and outcomes shown: 2.7 to 7.7 sec; duration of outcome shown: 1-3 sec; duration 
of total score shown: 1-9 sec; ITI: 1-9 sec.  
 

Behaviour  

Behavioural data were analysed in R (23) (version 4.0.2) and Matlab. R-packages: Stan (24) , 
BRMS (25,26), dplyr (27), ggpubr (28), sjPlot (29), compareGroups (30), emmeans (31), ggsci 
(32). 
 
Model-free analyses of behaviour: We analysed participants’ choices without and with 
computational models. First, to test that participants could perform the task, i.e., that their 
choices were sensitive to value, we binned their choices (% left vs. right option) according to 
the overall utility difference between the two options (i.e., left vs. right reward utility minus 
loss utility).  
 
To test sensitivity to risk of losses, as has been previously reported to be affected in BD 
(33,34), we refined the binning of choices (as above) by further splitting the data according 
to win and loss utility (i.e. probability * magnitude). 
 
We next analysed behaviour for adaptions of risk taking to past outcomes. One way this can 
be measured is by considering how participants change their behaviour – here risk-taking – 
based on win/loss outcomes on previous trials (‘outcome history’ effect), as we and others 
have previously done in a learning context (16,35). One might think that rational behaviour 
could mean that the outcome of one trial should not affect the choice in the next trial. 
While this might be rational in a simple computer task, it is plausible that participants 
approach the task with mechanisms adapted to decision making in the real world in which 
there are sequential dependencies between decisions or extended temporal contexts that 
might affect which outcomes will follow choices. For example, in an ecological framework 
where participants try to achieve homeostasis (9,12), they might be willing to accept higher 
risks of losing to make up for losses just encountered, or vice versa, be more avoidant of 
future losses after having received a reward outcome. To measure this in our experiment, 
we considered in the binning of choices (as above) whether choices were influenced by the 
previous trial’s win/loss outcome. 
 
To compare groups, instead of a standard ANOVA procedure which tests for any differences 
between groups, we tested for a systematic effect, i.e. a gradient of mood elevation (group 
as ordered factor (21), Low MDQ < High MDQ < BD patients) in linear regressions, also 
controlling for age and gender. Models used the BRMS toolbox interface for Stan 
(supplementary methods 2). For this and all subsequent analyses, we used Bayesian Credible 
Intervals (36) to establish significance by the 95% CI not including zero. 
 

Computational models 
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Decision making. We used a computational model to capture participants’ choices. The 
model first computed the overall value (‘utility’) of each option, then made a choice (left or 
right option) depending on which option had the better utility, but also allowing for some 
random choice behaviour (17,37).  
 
First, the model compared the options’ utilities as displayed at the time of choice on the 
current trial, i.e., probability (prob) x magnitude (mag). We allowed for individual differences 
in sensitivity to the loss vs. reward utility (l). Participants’ ‘outcome history’ was captured by 
a parameter (g) that changed the weighting of the loss utility on the current trial depending 
on whether the previous trial’s outcome was a win or a loss (i.e., g>0 means increased 
sensitivity to losses after a win on the previous trial).  
 
 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦&'() = 𝑃𝑟𝑜𝑏 ∗ 𝑀𝑎𝑔3'4 − 6l+ g ∗ 𝑃𝑟𝑒𝑣𝑂𝑢𝑡𝑐4=>
&?@@

A ∗ (1 − 𝑃𝑟𝑜𝑏) ∗ 𝑀𝑎𝑔&?@@ 

 
To decide which option to choose, the model compared the utilities of the left and right 
options taking into account each participant’s ‘randomness’ (inverse temperature (b), with 
higher values indicating choice consistency and lower choice randomness): 
 
 

𝑝F𝐶ℎ𝑜𝑖𝑐𝑒&'()I =
1

1 + 𝑒b∗(J)=&=)KLMNOPQJ)=&=)KRSTP)
 

 
Models were validated using simulations (Table S1 and supplementary methods 2A).  
 
 
Model Fitting. To allow fitting of individual sessions (20 trials), a Bayesian approach was 
implemented that allowed specifying priors for each parameter (supplementary methods 2B). 
 
To assess group differences, we then entered these session-wise parameters into hierarchical 
regressions (using BRMS). This enabled consideration of parameters that might change over 
the days of testing, as well as individual differences in the means and variability (standard 
deviation) across sessions of parameters. For example: 
 
Mean: invTemp(b) ~ 1 + day + group+ Age + Gender + (1 + day | ID),  
 
And error term: sigma ~ 1 + group + Age + Gender + (1|ID)) 
 
The effect of lithium (vs. placebo) was tested analogously: 
Mean: invTemp(b) ~ 1 + day + group*pre/post+ Age + Gender + number_days_baseline (1 + 
day | ID) 
 
These models were used for group comparisons of mean parameters (supplementary 
methods 2B+C). Variabilities were not compared as model validation (table S1) suggested 
poor recovery. Mood data (positive and negative PANAS, happiness VAS) were analysed using 
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similar regressions (supplementary methods 2C) to assess group differences in mood (mean 
or variability) or the relationship between task outcomes and changes in happiness VAS.  
 

MRI acquisition  

Data from all 77 healthy volunteers and 13 patients with BD were collected on a 3T Siemens 
Magneton Trio. Data from 9 patients with BD were collected at a different site using a Siemens 
Magneton PRISMA. Group comparisons include scanner as a control regressor. Scan protocols 
were carried out following (16), supplementary methods 3A. 
 

FMRI analysis – whole-brain 

General approach. Data were pre-processed using FSL ((38), supplementary methods 3B). 
Data were pre-whitened before analysis (39).  Statistical analysis was performed at two levels. 
At the first level, we used an event-related GLM approach for each participant. On the second 
level, data were analysed using a mixed-effects model using FSL’s FLAME 1 (40,41) with outlier 
de-weighting. The main-effect images are all cluster-corrected (p<0.05 two-tailed) with the 
inclusion threshold of z < 2.3.  
 
Regression designs. Firstly, at the time of the decision, we looked for neural activity 
correlating with the utility (predicted reward, loss) of the choice. Second, at the time of the 
outcome of the gamble, we looked for neural activity related to the processing of the 
outcome (win/loss as continuous regressor). Decision and outcome-related activity could be 
dissociated due to jitter used in the experimental timing (see (16)). Third, as a key measure 
of interest, we looked at whether there was a history effect at the time of the choice (i.e., 
previous trial’s gamble win/loss outcome (16,42), analogous to the behavioural findings). Full 
design information is included in the supplementary methods [3C] and Figure S2.  
 
Group-level comparisons. We compared the low vs high MDQ groups (n=77) in a second-level 
analysis (statistical thresholds as described above). For the patients with BD, only 23 
participants were available. Therefore, group comparisons were first performed in the 
regions of interest (ROIs) derived from comparisons of the healthy volunteers (see below). As 
exploratory analyses, groups were also compared at the whole-brain level. Scanner 
assignment was included as a control variable.  
 
ROI analyses. Mean brain activations (z-stats) were extracted for each participant. These 
were used to illustrate group differences and also to perform independent statistical tests 
(e.g., ROIs of clusters defined based on group differences of high vs. low MDQ could be used 
to test group differences between lithium and placebo). For this, non-hierarchical Bayesian 
regressions were used, also controlling for age and gender. Brain activations were also 
correlated with behavioural measures. For this, effects of age, gender and group (and for the 
patients with BD: number of days in the baseline phase) were first removed using regressions 
from both neural and behavioural measures. As correlations of primary interest, activity from 
brain areas of significant differences between the groups was correlated with significant 
behavioural measures.  
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RESULTS 

We recruited four groups of participants in two separate studies (Table 1).  
  

 
Table 1. Participant demographics. Statistical tests are two-tailed p-values and refer to 
comparisons between the two groups of healthy participants with low or high mood 
elevation (‘Low vs. high MDQ’) and between the two groups of patients with BD randomized 
to lithium or placebo (‘Lith vs. pla’). Values are the mean and standard error of the mean. 
Abbreviations: ‘# Behav. Days’ – number of days of behavioural data available (20 trials per 
day), ‘# Behav. days (pre)’ – number of days in the baseline phase for the patients with BD, ‘# 
PANAS days’ – number of days with mood scores (PANAS, positive affect negative affect 
scale, short form) available. ‘MDQ’ – Mood disorder questionnaire. ‘Has longitudinal data: 
Yes’ – percentage of participants from whom longitudinal data (i.e., sessions at home) were 
available. Diagnoses: ‘BD-I’ – bipolar I disorder; ‘BD-II’ – bipolar II disorder; ‘BDNOS’ – 
bipolar disorder not otherwise specified; ‘PTSD’ – post traumatic stress disorder. For the 
patients with BD, comorbid disorders were not measured. Note that in the low and high 
MDQ groups, diagnoses were only based on SCID, not on a full clinical examination. 
 
General performance 
Participants completed longitudinal daily behavioural test sessions at home, consisting of 20 
trials of a gambling task and mood self-reports. In the task (Figure 1A), participants needed 
to choose repeatedly between two gambles (wheels of fortune), considering the probabilities 
of winning or losing points and the number of points that could be won or lost. Participants 

  Low MDQ    High MDQ   BD lith BD pla
Low vs high 
MDQ (p-value)

BD lith vs. 
pla (p-value)

N=37 N=40 N=19 N=16                
Age 25.0 (6.61) 25.0 (7.06) 28.8 (9.81) 35.1 (13.8) 0.974 0.137
Gender:                                                  0.998 1
    F 24 (64.9%) 27 (67.5%) 11 (57.9%) 9 (56.2%)                
    M 13 (35.1%) 13 (32.5%) 8 (42.1%) 7 (43.8%)                
MDQ 1.11 (1.31) 9.32 (1.67) NA NA <0.001 NA
Handedness:                                                  0.757 NA
    Right 32 (86.5%) 32 (80.0%) NA NA        
    Ambidext 0 (0.00%) 1 (2.50%) NA NA                
    Left 5 (13.5%) 7 (17.5%) NA NA                
Diagnosis:                                                  0.119 0.527
    BDI 0 (0.00%) 0 (0.00%) 3 (15.8%) 4 (25.0%)        
    BDII 0 (0.00%) 3 (7.50%) 16 (84.2%) 11 (68.8%)            .   
    BD NOS 0 (0.00%) 2 (5.00%) 0 (0.00%) 1 (6.25%)
    None 37 (100%) 35 (87.5%) 0 (0.00%) 0 (0.00%)
Additional diagnosis:                                                  0.236 NA
    Depression 0 (0.00%) 4 (10.0%) NA NA        
    Depression & Past alcohol dependence 0 (0.00%) 1 (2.50%) NA NA        
    Depression & Past panic disorder 0 (0.00%) 1 (2.50%) NA NA        
    Depression & PTSD 0 (0.00%) 2 (5.00%) NA NA        
    Past alcohol dependence 0 (0.00%) 1 (2.50%) NA NA
    None 37 (100%) 31 (77.5%) NA NA
# Behav. days 46.7 (3.63) 44.9 (6.61) NA NA 0.146 NA
# Behav. days (pre) NA NA 11.8 (6.72) 12.4 (5.04) NA 0.771
# Behav. days (post) NA NA 24.5 (7.85) 28.5 (9.32) NA 0.182
Has longitudinal data: Yes 37 (100%) 38 (95.0%) 19 (100%) 16 (100%) 0.494 1
Has FMRI data: Yes 37 (100%) 40 (100%) 13 (68.4%) 10 (62.5%) 1 0.992
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in all groups performed the task well (Figure 1B), selecting options with higher values more 
frequently.  
 

Sensitivity to potential losses 

To test whether sensitivity to potential losses vs. wins when gambling was reduced with a 
mood elevation gradient (low MDQ < high MDQ < patients with BD), we examined how much 
participants’ choices took the value differences between options into account. We found that 
indeed, the mood elevation gradient was related to reduced sensitivity to losses compared to 
wins (Figure 2 Ai, group*win/loss dimension* utility bin: mean=0.33, 95% CI = [0.06; 0.61]), 
driven by both an increased sensitivity to wins (group*utility bin: mean 0.24, 95% CI = [0.08; 
3.99]) and a decreased sensitivity to losses (group* utility bin: mean = -0.15, 95% CI = [-0.30; 
-0.01]). To quantify the behavioural effect precisely while controlling for potential confounds, 
we used computational modelling. We built a stochastic decision-making model that 
described participants’ choices as being based on the reward and loss utilities of the two 
options while allowing for individual differences in how people made decisions. The model 
captured participants’ sensitivity to losses (vs. wins) as a parameter (l). We found again that 
the higher the  mood elevation, the lower the sensitivity to losses (Figure 2Aii, Table S2, mean 
=-0.27, 95%CI = [-0.49; -0.05], driven mainly by a decrease in the group of patients with BD 
compared to the low/high MDQ groups). Lithium vs. placebo did not affect this (Figure 2Aiii). 
 

Outcome history effects 

We next analysed how participants adapted their risk taking across trials based on win or loss 
outcomes in the previous trial (‘outcome history effect’). Low MDQ participants had the 
strongest outcome history effects, i.e., reduced risk taking (avoidance of potential losses) 
after a previous win. This was reduced with the mood elevation gradient (Figure 2A mean = -
0.4, 95% CI = [-0.74; -0.06). 
In the computational model, outcome history effects were captured as a parameter (g) that 
described to what extent participants were less sensitive to potential losses after a win on the 
previous trial. We found again that the mood elevation gradient reduced outcome history 
effects (Figure 2B, Table S2, mean=-0.05, 95% CI=[-0.11; -0.0001]). 
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Figure 2. Group differences in longitudinal behaviour and mood. A) Loss sensitivity. Ai) 
Illustration of sensitivity of choices to loss/reward utility – as utility increases for the left 
compared to the right option, participants are more likely to choose the left option. For low/ 
high MDQ participants, this increase in choice probability is similar for the reward or loss 
dimension. In contrast, patients with BD show decreased sensitivity to losses vs. rewards (the 
loss curve is shallower). Aii) The loss sensitivity model parameter reflects the group 
difference observed in the binned data (Ai). Aiii) Lithium (vs. placebo) does not affect loss 
sensitivity (group [lithium/placebo] * time [pre/post] interaction).B) Outcome history. Bi) 
Illustration of participants’ increased risk-taking after a loss (compared to a win) on the 
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previous trial (‘outcome history’), indicated by the distance between the % choice values split 
by previous trial’s outcome. This difference is smaller with mood elevation gradient. Bii) The 
outcome-history model parameter (g) differed between the groups capturing the effects 
observed in the binned behaviour (Bi). Low MDQ participants showed the most and the 
patients with BD showed the least outcome history effects. Biii) Lithium (vs. placebo) does 
not affect outcome history effects. A full list of comparisons of parameters for the groups is 
shown in Tables S2 (longitudinal data) and Table S4 (fMRI session data). Relationships 
between parameters measured longitudinally over weeks or in the lab during the fMRI 
session are shown in Table S5. ii) and iii) show conditional effects from regression models, 
roughly equivalent to means, controlling for regressors of no interest. 
 

Mood 

Finally, an advantage of the behavioural data being collected at home was that we could 
relate daily moods to task-based behaviour. As reported previously (3,43) and similar to other 
studies (2,44,45) groups differed in their instability (standard deviation) of mood. The low 
MDQ group showed the lowest and the patients with BD the highest (positive PANAS: mean= 
0.22, 95%CI = [0.11; 0.33]; negative PANAS: mean=0.64, 95%CI = [0.45; 0.83], Table S2A, 
Figure S1A). Lithium did not affect instability when using our measure of standard deviation 
here (table S2B), though note that using a measure of Bayesian volatility, lithium has been 
found to increase volatility of positive mood (3). Looking at the relationship between task 
outcomes and mood (happiness VAS), across all groups, happiness was increased by reward 
and decreased by loss (mean = 0.42, 95%CI = [0.31; 0.52]), but this did not differ mood 
elevation (mean =-0.06, 95% CI = [-0.15, 0.03]).  
 

Neural results 

Neural data were available for 77 volunteers and 23 patients. Across volunteers, brain 
activations to reward and loss utility during decisions (Figure 3A) and at the receipt of 
outcomes (Figure 3C) activated brain evaluation networks, including ventromedial prefrontal 
cortex (vmPFC), ventral striatum, dorsal anterior cingulate cortex (dACC), insula (Table S6). 
Next, we tested whether, related to the outcome history effect, there was brain activity when 
participants made a choice related to what had happened previously. Indeed, we found that 
activity in a network including the ventral striatum, vmPFC and medial frontal pole (FPm) 
related to the outcome of the previous trial (Figure 3B, Table S6).  
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Figure 3. Neural activity during gambling. A) At the time of the decision a wide network of 
areas activated with relative (chosen minus unchosen) reward utility (orange), while loss 
relative utility activated the anterior cingulate cortex (blue). B) At the time of the decision, 
the last trial’s outcome (points won or lost) activated areas including vmPFC and ventral 
striatum (orange). C) At the time of the outcome (win or loss received), the outcome (points 
won or lost) activated areas including vmPFC, FPm, and ventral striatum (red/orange) and 
deactivated the pre-supplementary area. All results are cluster-corrected at p<0.05, two-
tailed, with inclusion cut-off z>2.3. See Table S6 for the full list of results. Data were 
combined across both volunteer groups (low and high MDQ). 
 
 
Next, we compared the low and high MDQ groups. Activity for the last trial’s outcome was 
higher for the low MDQ vs high MDQ group in FPm (Figure 4A-B, Table 2A, p=0.038, whole-
brain cluster corrected). In other words, while all participants showed activity in vmPFC/FPm, 
in low MDQ participants the cluster extended further into FPm. Moreover, the stronger the 
activity for the last trial’s outcome in this area, the stronger the behavioural outcome history 
effect (Figure 4C, r=0.24, p=0.017, partial correlation after correction for control variables and 
group; without correction: r=0.28, p=0.005). Lithium vs. placebo participants’ activity did not 
differ in this area (mean=0.64, 95% CI = [-0.23; 1.44]).  
 
 

A B C

x=4

z=-4

x=-2

y=12

x=2

z=0 y=12
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Figure 4. Group differences in signals related to outcome history effects. A) Activation with 
last trial’s outcome at the time of the current trial’s decision differed between the low and 
high MDQ groups in the medial frontal pole (FPm; x=-10, y=56, z=16; p=0.038, n=77, cluster-
corrected, Table 2A). In the low MDQ group, the activation with the last trial’s outcome that 
is found across both groups (Figure 3B) extends further dorsally. B) This group difference was 
driven by the low MDQ group showing stronger activation than the high MDQ group in FPm 
(Figure shows conditional effects from regression model, roughly equivalent to means, 
controlling for regressors of no interest). There was no significant difference between 
activations comparing lithium and placebo groups. C) This FPm activity correlated with the 
longitudinally measured outcome history parameter. Colours match those of groups in B. 
 
 
 

 
Table 2. Group comparisons. Statistics for group comparisons in Figures 4-5. A) Comparisons 
of the low vs high mood elevation volunteers (Figure 4). B) Comparisons of the patients with 
BD assigned to placebo or lithium (Figure 5). All cluster-based thresholded, inclusion 
threshold: z=2.3, significance p<0.05 two-tailed. The maximum z-value of the cluster, the p-
value and number of voxels are given for each cluster. Anatomical labels are based on: [1] 
(46)) [2] (47), [3] (48), [4] (49), [5] (50).  
 
 
 

x=-10

A B C

A  Low vs high MDQ groups x y z
max z-
score

p-value (2-
tailed) # voxels

Last trial's win/loss magnitude (signed) at choice
Low > high MDQ
Medial frontal pole (FPm), area 9m [2] -10 56 16 3.52 0.0378 398

B  Bipolar lithium vs. placebo groups - exploratory
Win/loss magnitude (signed) at outcome
Placebo > Lithium
Dorsolateral preforntal cortex (Area 46 [5]) and 
lateral frontal pole [2], Inferior frontal sulcus (IFS), 
(right) 38 48 0 3.49 0.00898 503

C  Patients vs non-patients - exploratory
Last trial's win/loss magnitude (signed) at choice 
Non-patients > Patients
Anterior cingulate cortex  (area 32d and 24), cluster 
extending to caudate 6 42 14 3.43 0.0000062 1135
Thalamus -20 -34 0 3.87 0.001068 669
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As exploratory analyses (due to low sample sizes in the clinical FMRI groups), we next 
compared lithium vs. placebo treatment at the whole-brain level. We found that patients 
receiving placebo had stronger activity related to the outcome of gambles in an area spanning 
dorsolateral prefrontal cortex (dlPFC, area 46) and lateral frontal pole (Figure 5A-B, Table 2B, 
p=0.009).  
 
 

   
Figure 5. Exploratory whole-brain group differences in the patients with BD for gamble 
outcome signal. A) Outcome related activity differed between the placebo and the lithium 
participants in an area including dorsolateral prefrontal cortex and lateral frontal pole 
(whole-brain cluster-corrected, Table 2B). This effect is illustrated in B).  
 
 

DISCUSSION 

We designed a study to test the computational and neural correlates of adaptations of risk-
taking to gains and losses in bipolar disorder (BD) and treatment with lithium. We included 
participants along a gradient of history of mood elevation ranging from volunteers with low 
risk of BD or mood instability (low MDQ group), to volunteers high risk of BD, to  patients with 
BD. In the patients, we tested the effect of lithium treatment in a placebo-controlled double-
blind design. We measured how much participants adapted their risk-taking following reward 
outcomes in a risky decision-making task (‘outcome history effects’). We measured behaviour 
both longitudinally over up to 50 days and during a brain imaging (FMRI) session. We found 
that the low MDQ group showed ‘outcome history effects’. Specifically, after a win on a trial, 
they were more risk averse. This was reduced across the mood elevation gradient (lowest in 
patients with BD). Neurally, outcome history was related to the representation of past 
information in a large swath including ventromedial prefrontal cortex (vmPFC) and medial 
frontal pole (FPm). In low MDQ volunteers, this brain signal extended further dorsally into 
FPm.  
 
First, we replicated previous findings (33,34) that mood elevation decreased sensitivity to 
potential losses (vs wins).Then, we went further looking at adaptation of risk taking to past 
outcomes. We found that healthy volunteers without mood elevation showed sequential 
dependencies between their choices and previous trials’ outcomes. This was not strictly 
rational in our task since outcomes for gambles across trials were independent. Therefore, 
these sequential effects could be understood as a bias, e.g., ‘chasing’ as has been described 
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in the gambling literature (8). However, an alternative view is that ‘biases’ observed in the lab 
are actually functionally appropriate in more naturalistic environments (17,51–53). For 
example, in natural environments, which are experienced continually rather than in discrete 
trials and in which different types of rewards (e.g. food, water) need to be accumulated or a 
homeostatic setpoint needs to be reached, it would make sense to adapt behaviour according 
to previous outcomes (9,10,12,54,55). Here we find that in the absence of mood elevation, 
volunteers show a kind of ‘active homeostatic behaviour’, i.e., they modulate their risk-taking 
depending on the previous trial’s outcome.  This tendency was lower in the high MDQ group 
and lowest in patients with BD. Reduced homeostatic behaviour could lead to unstable moods 
as in the healthy population mood has been found to be regulated through behaviour (13). 
Relatedly, in patients with BD, purposefully regulating behaviour during the prodromal 
periods has been shown to reduce the risk of relapse (56).  
 
We focused on whole-brain analyses for the low/high MDQ volunteer sample due to the 
larger sample size. Decision-making and the processing of outcomes produced a typical 
pattern of activation (15,57–59) in areas including dorsal anterior cingulate cortex, striatum 
and vmPFC. However, there were no group differences in any of these signals, matching our 
behavioural results. We next looked for brain activity related to the modulation of risk taking 
with ‘outcome history’. We found that at the time when people made decisions, there was 
activity representing the last trial’s outcome in an area spanning vmPFC to FPm. This is similar 
to previous findings in a learning context of between-trial activities (16,35,42). This signal 
extended more dorsally into FPm in low MDQ volunteers. Furthermore, the stronger this 
signal, the stronger the modulation of risk taking by outcome history. In this region, lithium 
did not affect brain activity. In an exploratory analysis, we also compared the brain activity of 
patients with BD with lithium or placebo. Patients given placebo showed larger outcome-
related activity in dorsolateral prefrontal cortex, while under lithium this activity was similar 
to the non-clinical groups. Previously, a dampening of reward responses with lithium has been 
reported in the ventral striatum in healthy volunteers (60). 
  
It has been proposed that changes to reward processing, particularly reward hypersensitivity, 
are central to BD (61,62). While self-reports strongly support this (63), behavioural findings 
are more mixed: though some have found differences in reward-based decision-making or 
risk-taking (64,65), the interpretation has been hampered by concerns about the tasks (64), 
non-computational analysis strategies focusing on ‘correct’ answers (65), or similar effects 
being seen in other disorders. Neurally, while there have been suggestions that BD is 
accompanied by increased reward-related brain signals (66), opposite findings have also been 
observed (67). One possible explanation could be that these neural effects are sensitive to 
patients’ mood states or medication (67). Recently, computational work has suggested how 
differences in the interplay between reward processing and mood could lead to feedback 
loops and fluctuations in mood, including spiralling out into manic and depressive episodes 
(4,6,7). Our findings here complement these results by revealing the process underlying 
changes in active homeostatic behaviour. In the future,  it would be interesting to see how 
these different processes interact or whether there are distinct clusters of patients as has 
been proposed for other facets of decision-making (68). 
 
The current study also revealed an effect of lithium treatment on the neural response during 
rewarded outcome, making these measures more similar to healthy controls. Analysis of 
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subjective ratings from the same patient cohort revealed that lithium increased the volatility 
of positive affective experiences compared to placebo (3). This effect was proposed to reduce 
the persistence of positive affect in patients with bipolar disorder.  A previous study also 
revealed effects of lithium on reward-related prediction errors in a healthy volunteer model 
(60). While the efficacy of lithium in the treatment of both manic and depressive episodes is 
well established, its mechanisms of action remain a subject of debate.  Together our results 
highlight the importance of considering rewarded decision-making and learning perspectives 
to understand mood instability and the effects of lithium.   
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