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 2 

Abstract 1 

Multivariate machine learning techniques are a promising set of tools for identifying complex 2 

brain-behavior associations. However, failure to replicate results from these methods across 3 

samples has hampered their clinical relevance. This study aimed to delineate dimensions of 4 

brain functional connectivity that are associated with child psychiatric symptoms in two large 5 

and independent cohorts: the Adolescent Brain Cognitive Development (ABCD) Study and the 6 

Generation R Study (total n=8,605). Using sparse canonical correlations analysis, we identified 7 

three brain-behavior dimensions in ABCD: attention problems, aggression and rule-breaking 8 

behaviors, and withdrawn behaviors. Importantly, out-of-sample generalizability of these 9 

dimensions was consistently observed in ABCD, suggesting robust multivariate brain-behavior 10 

associations. Despite this, out-of-study generalizability in Generation R was limited. These 11 

results highlight that the degree of generalizability can vary depending on the external 12 

validation methods employed as well as the datasets used, emphasizing that biomarkers will 13 

remain elusive until models generalize better in true external settings. 14 
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 3 

Introduction 26 

Psychiatric neuroimaging has sought to illuminate the neurobiological underpinnings 27 

of psychiatric disorders over the past few decades, providing a unique opportunity to study 28 

neurodevelopment during childhood and adolescence, a key risk window for the emergence of 29 

mental health problems1. One surging area of research, brain-behavior association studies, has 30 

been a promising approach to explore individual brain variability that predicts behavioral 31 

phenotypes2–4. To date, however, rigorously validated and generalizable neurobiological 32 

biomarkers that are able to guide clinical practice remain elusive5–9. Several features of the 33 

literature can explain this empirical reality, such as insufficient statistical power, variability 34 

across methodologies, and a heavy reliance on univariate analysis techniques that fail to map 35 

the multidimensional neural bases of psychiatric disorders8,10. Inherent heterogeneity and high 36 

comorbidity of psychiatric disorders exacerbate the problem, rendering it difficult to isolate the 37 

most relevant neural features of interest. This is especially the case for children and adolescents 38 

who usually present less clearly defined psychopathology and heterotypic continuity of 39 

symptoms and phenotypes11.  40 

A potential promising path forward is the application of multivariate machine learning 41 

techniques3,12. Multivariate methods can assess the covariation of neural phenotypes, jointly 42 

modeling different types of information (e.g., brain and behaviors). They are less hampered by 43 

the small effect sizes that univariate analyses of psychiatric neuroimaging studies typically 44 

observe8,10, resulting in greater statistical power and the potential for better reproducibility3. 45 

Moreover, multivariate methods with a data-driven nature can shed light on transdiagnostic 46 

brain-behavior associations by identifying coherent and specific brain mechanisms that cut 47 

across diagnoses13–15, offering the potential for parsing possible sources of comorbidity and 48 

heterogeneity.  49 
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One widely-used multivariate method in psychiatric neuroimaging is canonical 50 

correlation analysis (CCA), a technique that aims to identify the common variation across 51 

phenotypes and dissect their complex relationships into a small number of distinct dimensions4. 52 

Several studies have implemented CCA to depict transdiagnostic brain-behavior dimensions2,16, 53 

and the identified brain dimensions could be further used to study potential neurobiologically 54 

informed classifications of psychiatric disorders17. However, the replicability of these methods 55 

has come under heavy scrutiny18–20. One of the key elements, which is largely missing from 56 

previous work, is robust external validation in a fully independent dataset (i.e., not a hold-out 57 

subsample from a single cohort). Though this has been widely implemented in the validation 58 

of prediction models in medical research21,22, psychiatric neuroimaging studies have not 59 

generally adopted these external validation strategies.  60 

In most existing studies, various forms of cross-validation have been implemented by 61 

sampling randomly from a pool of data from a single study. This means the data are often 62 

highly homogenous in many respects, including participant sampling and data collection 63 

protocols. While this step of within-study internal validation is a reasonable start, 64 

understanding the real-world generalizability of a model requires a different dataset that is 65 

fundamentally distinct from the data used to train the model. This means the model must be 66 

robust to sampling and methodological differences, which is a necessity for population-level 67 

model generalizability12. Without this crucial step of a proper generalizability test, clinical 68 

utility will remain unreachable.  69 

The current study aims to address these gaps by leveraging two large population-based 70 

neurodevelopmental cohorts, the Adolescent Brain Cognitive Development (ABCD) Study 71 

(n=6,529) and the Generation R Study23,24 (n=2,076), in order to delineate robust and 72 

generalizable multivariate associations between resting-state functional magnetic resonance 73 

imaging (rs-fMRI) connectivity and child psychiatric symptoms. As childhood and 74 
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adolescence are periods of marked brain development25 during which psychiatric problems 75 

emerge or exacerbate26, understanding how neural mechanisms are linked to psychopathology 76 

during this time is crucial. Using the ABCD study as the discovery set, we applied sparse CCA 77 

(SCCA) under a rigorous multiple hold-out framework27,28 to identify linked brain-behavior 78 

dimensions. Importantly, the trained model in ABCD was applied and evaluated in a 79 

completely independent, external data set to test the out-of-study generalizability of the results. 80 

Given the two cohorts utilized in this study represent the largest in-site and multisite studies of 81 

neurodevelopment in the world, they are uniquely positioned to conduct such multivariate 82 

analyses. We highlight the importance of model generalizability in the context of psychiatric 83 

neuroimaging and offer several insights on how to improve generalizability through these 84 

techniques. 85 

 86 

Results 87 

Dimensions of child psychiatric symptoms and functional connectivity 88 

A total of 8,605 rs-fMRI scans from the multi-site ABCD Study (ages 9-to-10 years 89 

from 21 study sites) and the single-site Generation R Study (ages 9-to-12 years) were 90 

summarized using the 352-region Gordon parcellation29. After several important functional 91 

MRI covariates were regressed out (e.g., motion, see Methods), functional time courses from 92 

the different regions (333 cortical, 19 subcortical) were used to construct connectivity matrices 93 

for each individual by correlating the time courses pair-wise across all regions. To safeguard 94 

against overfitting, the connectivity matrices underwent dimensionality reduction by principal 95 

component analysis (PCA) with a weighting scheme (100 components, see Methods).  Eight 96 

syndrome scales were used to characterize psychiatric symptoms of children assessed by the 97 

parent-report Child Behavioral Checklist (CBCL)24(anxious/depressed, withdrawn/depressed, 98 

somatic, social, aggressive, rule-breaking, thought, and attention problems). The ABCD data 99 
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 6 

were randomly split into a training set consisting of 18 sites (ABCDTraining) and a test set 100 

consisting of 3 sites (ABCDTest). This split procedure was repeated 10 times to reduce sampling 101 

bias, resulting in 10 pairs of independent train-test sets. Analyses in ABCDTraining and ABCDTest 102 

sets were fully separated to prevent data leakage (Figure 1). ABCDTraining and ABCDTest sets 103 

were comparable on age, sex, race/ethnicity/parental education, and psychiatric symptoms 104 

(Table 1).  105 

Initial derivation of brain-behavior dimensions 106 

Using the ABCDTraining set to train the model, six brain-symptom dimensions (canonical 107 

variates) were identified using an elastic net combining LASSO and ridge penalties with SCCA 108 

(r1 = 0.20, r2 = 0.19, r3 = 0.17, r4 = 0.16, r5 = 0.15, r6 = 0.13, ps < .01 after permutation testing; 109 

averaged across 10 splits, see Table 2, Figure 2a). 110 

Out-of-sample generalizability of brain-behavior dimensions 111 

Next, to ascertain the out-of-sample generalizability of the model, the remaining 3 112 

ABCD study sites (ABCDTest set, repeated 10 times) were used. By applying the eigenvectors 113 

of the weighted PCA along with the resulting weight vectors from the SCCA of the 114 

ABCDTraining set, the model parameters were projected onto the functional connectivity data 115 

and psychiatric symptom data from the ABCDTest set. This process yielded out-of-sample 116 

canonical correlations. Overall, we found evidence that the first two canonical variates were 117 

robustly identified, and the third to a lesser extent (Table 2). The first dimension was 118 

consistently validated across the 10 splits (r1 = 0.13, p < .001, permutation testing; averaged 119 

across 10 splits). This brain-symptom dimension captured the correlates between attention 120 

problems and connectivity in networks involved in higher-order functions (e.g., salience and 121 

frontoparietal network)30, visual-spatial attention network (parietal occipital, medial parietal 122 

network)31, auditory, and default mode network (Figure 3a, 3d). The second dimension was 123 

evident in most of the train-test splits (r2 = 0.08, p < .05, permutation testing; averaged across 124 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.12.23287158doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.12.23287158


 7 

10 splits). This dimension delineated a relationship between aggressive/rule-breaking 125 

behaviors and connectivity patterns in similar networks involved in the first dimension, with a 126 

larger contribution from subcortical areas (e.g., hippocampus, thalamus) and ventral attention 127 

network (Figure 3b, 3e).  The third dimension was observed in half of the train-test splits (r3 = 128 

0.06, p < .05 permutation testing; averaged across 10 splits). Here, a correlation between 129 

withdrawn and anxious/depressed problems and connectivity patterns mostly in ventral 130 

attention, default mode networks, and subcortical areas (e.g., thalamus, amygdala) was 131 

observed (Figure 3c, 3f). Interestingly, the default mode, medial parietal, parietal occipital 132 

networks, and subcortical areas overlapped across three dimensions. Importantly, when 133 

splitting the ABCD sample into train/test sets differently (i.e., allowing all study sites to be 134 

represented in both training and testing sets), the first three canonical variates were more stable 135 

and demonstrated a smaller decrease in canonical correlations from training to test set 136 

(Supplementary Table 3). These results suggest the SCCA likely overfits when training and 137 

testing sets contain data from all ABCD study sites, and also demonstrate SCCA has the 138 

potential to ‘learn’ differences across sites (e.g., demographic differences, residual site effects). 139 

Stability of the brain-based dimensions 140 

To further interpret the characteristics of each canonical variate and the stability of 141 

canonical loadings, 1000 bootstrap subsamples were generated in ABCD (see Methods). The 142 

variability of the first three canonical correlations, CBCL canonical loadings, and brain 143 

connectivity canonical loadings are presented in Figure 4. This again validated the three 144 

canonical variates we identified across the 10 train-test splits, showing that the loadings are 145 

relatively stable. Importantly, the three canonical correlations decreased considerably in the 146 

ABCDTest set compared to the ABCDTraining set, especially for the second and third canonical 147 

correlations (Figure 4c). Consistent with this larger decrease of the second and third 148 

correlations, the instability of rs-fMRI canonical loadings manifested through more variability 149 
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in the canonical loadings for the second and third canonical variates, while relatively stable 150 

contribution from CBCL syndrome scores was observed (Figure 4a, 4b). 151 

Out-of-study generalizability in a fully independent sample 152 

Although the ABCD Study is a multisite study, it is a highly harmonized dataset in the 153 

context of the imaging and behavioral data, and also likely has sampling characteristics that 154 

are specific and uniform across sites. Therefore, in order to test the out-of-study generalizability 155 

of the results we obtained in ABCD, we use the Generation R Study as an independent external 156 

validation set. The Generation R Study is a single-site population-based birth cohort in 157 

Rotterdam, the Netherlands23, which has ascertained a large, early adolescent sample with very 158 

similar measures as the ABCD Study.  We included 2,076 children at the age of 10 with good-159 

quality resting-state connectivity data (see Methods). We characterized two approaches of 160 

external validation. One is the commonly used ‘qualitative replication’, where the SCCA model 161 

was independently trained on Generation R and the results between cohorts were correlated. 162 

Another is the ‘gold-standard’ test, where we directly projected the SCCA model weights of 163 

the ABCDTraining set onto Generation R. 164 

In the gold-standard generalizability test, the first canonical variate survived 165 

permutation tests in only 3 of the 10 train-test splits In Generation R (Table 2). No other 166 

canonical correlations survived permutation tests using the SCCA model that was trained in 167 

ABCD (r1=0.04, r2=0.03, r3=0.03, ps > 0.05; Supplementary Table 4). In the qualitative 168 

replication, where the SCCA was re-run in Generation R, five significant canonical variates 169 

were identified. Specifically, one canonical variate (attention problems) showed a Pearson 170 

correlation of r=0.79 for the CBCL canonical loadings between the two cohorts. Further, the 171 

canonical variate related to withdrawn behaviors was also similar, showing a Pearson 172 

correlation of r=0.67 between the CBCL canonical loadings. The canonical variate of 173 

aggressive and rule-breaking behaviors differed in the two cohorts (r=0.18 correlation in 174 
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loadings), where it delineated aggressive and social problems in Generation R (Supplementary 175 

Figure 1). The remaining two canonical variates found in Generation R (Supplementary Figure 176 

2a) did not overlap considerably with those observed in ABCD.  177 

Further exploration of brain canonical variates 178 

One popular application of the dimensionality reduction and multimodal fusion of 179 

SCCA in neuroimaging is to utilize the brain canonical variates as the input for other statistic 180 

models or clustering algorithms4,17. Thus, in a final step, we first explored whether the 181 

identified brain canonical variates were associated with cognitive ability in ABCD (see 182 

Methods). We found that the first and second brain canonical variates (associated with attention 183 

problems and aggressive/rule-breaking behaviors, respectively) were related to fluid and 184 

crystallized intelligence, matrix reasoning scores, and total cognition scores, while the third 185 

brain canonical variate (withdrawn behaviors and anxious/depression) was only marginally 186 

associated with matrix reasoning scores (Supplementary Table 5).  187 

Discussion 188 

Several studies have highlighted the intriguing potential of multivariate brain-behavior 189 

associations, but the lack of replicability of results has hampered the identification of robust 190 

neurobiological mechanisms underlying psychiatric problems3,17. To maximize the robustness 191 

and generalizability of brain-behavior associations in a fully independent sample, which is 192 

largely absent in previous research in the psychiatric neuroimaging literature, the present study 193 

moved beyond solely testing out-of-sample generalizability in a single cohort, to evaluating 194 

out-of-study generalizability in a fully external cohort. Robust multivariate brain-psychiatric 195 

symptom associations in children were observed, however, the gold-standard test of 196 

generalizability in an external cohort was largely negative. While these results reinforce 197 

previous work demonstrating the potential for brain-based dimensions of psychiatric problems, 198 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.12.23287158doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.12.23287158


 10 

they also highlight the deep-rooted problem of poor generalizability in psychiatric 199 

neuroimaging studies.  200 

In ABCD, we identified two brain-symptom dimensions that were consistently 201 

validated in the out-of-sample test sets, indicating robust within-study (internally valid) 202 

multivariate brain-symptom associations. The first two brain-symptom dimensions center on 203 

externalizing problems (attention problems, aggressive and rule-breaking behaviors). Several 204 

connectivity networks loading highly on these dimensions, such as salience, default mode, 205 

parietal occipital, and medial parietal networks, have been shown to be involved in attention 206 

deficit hyperactivity disorder (ADHD)32,33. These networks have also been implicated in 207 

deficits of top-down executive control, attention, and spatial working memory in children with 208 

ADHD31–34. The third brain-symptom dimension characterizes internalizing problems, 209 

representing behaviors such as withdrawal, anxiety, and depression35. Consistent with previous 210 

findings in adults and children36–38, the default mode and ventral attention networks manifested 211 

as the major contributors, which are related to emotional dysregulation and impaired 212 

reorientation of attention36,39. The three identified brain-based dimensions were further 213 

validated by their associations with child cognitive ability, which is in line with results in 214 

behavioral studies showing associations between externalizing/internalizing problems and 215 

intelligence40.  216 

While we discovered three brain-symptom dimensions in ABCD, the out-of-study 217 

generalizability in Generation R presented a complex picture. Psychiatric neuroimaging studies 218 

employ varying approaches to test generalizability, and thus demonstrate varying degrees of 219 

external validity. One commonly used approach consists of repeating the analyses in data that 220 

were previously ‘unseen’, and then qualitatively (and to some extent, quantitatively) comparing 221 

results. In the present study, we observed similar behavioral dimensions when training the 222 

SCCA model independently in Generation R. Two dimensions were highly robust in ABCD 223 
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and observed in the qualitative external replication, lending support for reasonable internal 224 

validity of these brain-behavior dimensions. Therefore, the results are convincing in the general 225 

context of underlying dimensional neurobiology. However, even though this route of 226 

‘replication’ is a valuable way to demonstrate whether the brain-behavior associations exist 227 

from an empirical perspective, precisely how one can define a ‘successful’ replication based 228 

on the qualitative or quantitative similarities between results remains a non-trivial challenge 229 

for the field.  230 

Importantly, the more robust, gold-standard generalizability test yielded less optimistic 231 

results. In clinical prediction, which is arguably the primary goal of machine-learning models 232 

in psychiatric neuroimaging, a ‘gold-standard’ test demonstrates a much higher degree of real-233 

world generalizability. The lack of this degree of generalizability in an external, independent 234 

sample suggests that the dimensions cannot be applied to other datasets as a potential biomarker. 235 

In the subsequent paragraphs, we will delve into the potential explanations of the challenges in 236 

this generalizability test, and then ultimately provide recommendations on how to improve out-237 

of-study generalizability.  238 

First, the multivariate method we utilized, CCA, is highly prone to overfitting and 239 

instability18,41 and requires a large sample size to obtain sufficient statistical power20. In our 240 

study, the sample size of Generation R (n=2,076) might not be large enough to capture the true 241 

associations. However, Generation R is similar in size to our ABCDTest set (n ~ 1500), where 242 

we successfully validated associations. Second, the vast majority of previous studies drew from 243 

clinical samples with a specific diagnosis, such as depression, psychosis, and ADHD2,17,42. 244 

Focusing on the general population, rather than clinical samples, might dilute associations. 245 

However, the utility of dimensional assessments of symptoms is well-known and has several 246 

advantages to problems in clinical, case-control designs. Third, rs-fMRI data has intrinsically 247 

high inter-individual variability than other brain measures in psychiatry43, thus extracting 248 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.12.23287158doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.12.23287158


 12 

clinically important signals on an individual basis is difficult and generalizability across 249 

cohorts could be especially challenging.  250 

Another important reason that we consider is that the rs-fMRI data in ABCD and 251 

Generation R could not be fully harmonized. Nevertheless, our results show that this is unlikely 252 

to be the main driver of low generalizability, and rather that there is a strong site effect. Using 253 

the gold-standard generalizability test, we observed several generalizable canonical 254 

correlations in Generation R despite the two cohorts being independent in many aspects. 255 

Moreover, even within ABCD, a fully harmonized cohort in terms of imaging acquisition and 256 

image preprocessing, there was a significant drop in canonical correlations from the training to 257 

test sets of 50% or more. Importantly, when the train-test split disregards the site information 258 

(e.g., random), we observed less degradation of performance. Taken together, the low 259 

generalizability of our models is likely driven by factors inherently embedded in different study 260 

sites that cannot be completely accounted for by data harmonization. Model failure is thus 261 

intertwined with the difference of other confounding factors which are distinct across 262 

cohorts7,44.   263 

A few limitations of the study should be noted. First, we only applied SCCA in our 264 

analysis. Other multivariate methods were not examined. Yet, CCA is one of the most widely 265 

used techniques, and other multivariate methods have been found to be sensitive to similar 266 

problems of generalizability3,5. Second, ABCD and Generation R were not fully harmonized 267 

in terms of imaging acquisition and processing. However, as discussed above, a clear site effect 268 

was observed even within ABCD where the data were fully harmonized, and thus it is unlikely 269 

that the harmonization will lead to considerable differences. As there will never be a situation 270 

where data across the world can be perfectly harmonized, it is crucial that we identify methods 271 

that are less sensitive to differences across studies.  272 

 273 
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Conclusions 274 

In summary, the utilization of SCCA enabled us to discover robust brain-symptom 275 

associations. The results offer substantial room for optimism about using multivariate methods 276 

in brain-behavior association studies. Future studies could further explore whether these brain-277 

based dimensions could inform more targeted prevention, detection, and intervention of child 278 

psychiatric disorders. However, to achieve this goal of clinical utility, future studies must test 279 

results in fully external validation sets. Further, more robust, gold-standard generalizability 280 

tests are crucial for the clinical translation of results (e.g., applying model coefficients from 281 

one study directly to an external validation set). Finally, in addition to data harmonization, 282 

hidden confounders across sites or studies should be considered.  Recent advances in methods 283 

of accommodating site variations might also considerably boost generalizability and reduce the 284 

site differences45.  285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

  293 
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Methods 294 

Study population  295 

This study is embedded in two prospective cohorts of child development, the ABCD 296 

study24 and the Generation R Study23. 297 

The ABCD Study 298 

The ABCD study assesses brain development from pre-adolescence to adulthood and 299 

was conducted across 21 study sites in the United States. Children aged 9-10 years were 300 

recruited as baseline and the sample is epidemiologically-informed24. In the ABCD cohort, 301 

resting-state functional magnetic resonance imaging (rs-fMRI) was obtained through the 302 

ABCD-BIDS Community Collection (ABCC), a community-shared ABCD neuroimaging 303 

dataset that is continually updated (https://collection3165.readthedocs.io). Both the rs-fMRI 304 

data and the behavioral assessments (data release 4.0) were retrieved from the baseline visit 305 

data of children aged 9-11 years old. Details of the study design and exclusion criteria are 306 

described in previous reports24. Of the 9,400 children whose rs-fMRI data were available, we 307 

excluded 1,398 children who failed the quality control of the resting-state connectivity data 308 

(see below), 303 children with incidental findings, and 23 children with any missingness in 309 

behavioral measures and covariates. For families with multiple participants, one twin or sibling 310 

was randomly included (1,147 excluded). Accordingly, data from 6,529 participants were 311 

available for analysis in ABCD. 312 

Generation R  313 

The Generation R Study is a population-based birth cohort in Rotterdam, the 314 

Netherlands.  Rs-fMRI data and behavioral assessments were obtained as part of the age-10 315 

data collection which began in 201323. Among the 3,992 children who were scanned with MRI, 316 

3,170 completed rs-fMRI scanning. We excluded children as a result of the image quality 317 

assurance protocol (see below, n=583), and children with higher than 25% missing values in 318 
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the behavioral assessments (n=446). After randomly including one twin or sibling (n=65), 319 

2,076 participants were included in the final sample for analysis.  320 

 321 

Measures 322 

Child psychiatric symptoms 323 

Child psychiatric symptoms were assessed using the Child Behavioral Checklist 324 

(school-age version)46. The CBCL is a 118-item caregiver report with eight syndrome scales 325 

(anxious/depressed, withdrawn/depressed, somatic, social, aggressive, rule-breaking, thought, 326 

and attention problems), assessing child internalizing and externalizing problems. Internalizing 327 

problems reflect a variety of inner-directed symptoms, such as anxiety, withdrawal, or 328 

depression, while externalizing problems incorporate outer-directed symptoms, such as 329 

aggression and rule-breaking behaviors47. The CBCL was administered in both cohorts and the 330 

primary caregivers answered 118 items on a three-point scale (not true, sometimes true, very 331 

often or always true) for problems in the past six months. Raw sum scores of the syndrome 332 

scales were utilized in the current study, with higher scores representing more problems.  333 

fMRI pre-processing 334 

The ABCD data sets were retrieved from ABCC. In ABCC, the BIDS data were 335 

preprocessed with the abcd-hcp-pipeline (https://github.com/DCAN-Labs/abcd-hcp-pipeline), 336 

a modification and extension of the Human Connectome Project (HCP) Minimal Preprocessing 337 

Pipelines48,49. Structural data undergo a multi-step pre-processing procedure first, including 338 

brain extraction, denoising, and B1-inhomogeneity (bias field) correction (“pre-FreeSurfer” 339 

phase). Next, structural scans are processed through the FreeSurfer software suite (“FreeSurfer” 340 

phase). Nonlinear registration using the ANTs toolbox is then applied to warp structural data 341 

to MNI space (6th Generation MNI ICBM 152 supplied with FSL50, “post-FreeSurfer” phase). 342 

Resting-state data were then intensity normalized, corrected for geometric distortions, undergo 343 
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volume realignment to correct and assess head motion, and aligned first to the structural scan 344 

and then to the MNI template by concatenating with the previously determined warp (“Vol” 345 

phase). Lastly, data were projected to surface-based space (32k fs_LR).  346 

In the Generation R study, rs-fMRI data were preprocessed using the FMRIPrep 347 

pipeline (version 20.1.1 singularity container)51. Briefly, structural MRI data first underwent 348 

intensity normalization to account for B1-inhomogeneity and brain extraction, followed by 349 

nonlinear registration to MNI space and FreeSurfer processing.  Functional MRI data first 350 

underwent volume realignment with MCFLIRT (FSL).  BOLD runs were then slice-time 351 

corrected with 3dTshift (AFNI), followed by co-registration to the corresponding T1w 352 

reference. Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template version 353 

2009c52 was conducted through nonlinear registration with the antsRegistration tool of ANTs 354 

v2.1.050, using the above-mentioned T1w reference in the registration scheme. Data were 355 

ultimately resampled to Cifti format in 32k fs_LR surface space. 356 

Parcellation and whole-brain connectivity estimation 357 

Within ABCD, the resting-state functional connectivity matrices were processed using 358 

the DCANBOLDProcessing (DBP) resting-state fMRI processing tools   359 

(https://github.com/DCAN-Labs/dcan_bold_processing). This consisted of applying a 360 

respiratory filter, flagging volumes with FD > 0.3mm as contaminated with motion, demeaning 361 

and detrending of data, and denoising of data by regressing out whole brain, ventricular and 362 

white matter (and their derivatives) signals, and finally bandpass filtered between 0.008 and 363 

0.1 Hz to avoid potential aliasing of the time series signal. The processed functional data was 364 

used to generate correlation matrices using Pearson correlation, followed by Fisher z-365 

transformation (https://collection3165.readthedocs.io/en/stable/pipeline/). Following the 366 

instruction of the ABCC collection, we downloaded the available functional connectivity 367 

matrices that were calculated and labeled using the Gordon cortical parcels29 and FreeSurfer 368 
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subcortical segmentation53. This yielded 352 distinct parcels consisting of 333 cortical and 19 369 

subcortical regions.  370 

Within Generation R, whole-brain functional connectivity matrices were calculated and 371 

mapped onto the same 333 cortical and 19 subcortical regions with ABCD. Similar to ABCD, 372 

the extracted time series were adjusted for CSF and white matter signals (not global signal), 373 

low-frequency temporal regressors for high pass temporal filtering, and the ICA AROMA 374 

components related to motion artifacts. Next, we removed the first 4 volumes of each subject 375 

to ensure magnetic stabilization, then BOLD signals were averaged across all voxels in each 376 

cortical and subcortical region. Connectivity estimation was the same across cohorts, including 377 

the Pearson correlation that was applied to estimate the temporal dependence between the 378 

residualized regional time series and Fisher z-transformation, resulting in a symmetric 352 × 379 

352 functional connectivity matrix for each participant.  380 

Quality controls of the scans 381 

In the ABCC data sets, only data that passed the initial acquisition Data Analysis Imaging 382 

Center (DAIC) quality control were included. At the time of scanning, quality control was 383 

performed by scan operators with a binary pass or fail. Images were also visually inspected for 384 

motion and other major artifacts. Automated measures of quality control (e.g., FD and also 385 

temporal SNR) were also applied. Participants were excluded based on the recommended 386 

guidelines (imgincl_rsfmri_include = 1), which involve raw and postprocessing quality control, 387 

passed FreeSurfer QC, had more than 375 rs-fMRI frames after censoring, and other cut-off 388 

scores (see ABCD Release 4.0), for a total of 1,398 participants excluded due to poor quality. In 389 

addition, we excluded 303 participants with clinically relevant incidental findings. 390 

In Generation R, the following exclusion criteria were applied to screen eligible 391 

participants (1) scans with major artifacts (e.g., dental retainers, or other scan-related artifacts) 392 

(2) scans lacking whole-brain coverage (e.g., missing large portions of the cerebrum or 393 
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cerebellum from the field of view) (3) scans with excessive motion (mean framewise 394 

displacement (FD) higher than 0.25 mm or having more than 20% of the volumes with an FD 395 

higher than 0.2 mm)54. Moreover, the accuracy of co-registration was visually inspected by 396 

merging all co-registered images into a single 4D Nifti image and scrolling through the images. 397 

583 scans with poor quality were excluded in total.  398 

Covariates 399 

In ABCD, child age, sex, race/ethnicity, parental education, and data collection site 400 

were used as covariates. Demographic information (child age, sex, race/ethnicity, and parental 401 

education) were assessed by parent-report questionnaires. The original 21-category parental 402 

education was recoded into three categories to make it comparable with Generation R: 1st to 403 

12th grade, high school/GED/college, and Bachelor’s degree or higher.  404 

In Generation R, similar covariates were included except for study sites, including age 405 

of children when undergoing the MRI scanning, sex, child national origin, and maternal 406 

education. Child national origin was defined based on the birth country of the parents and was 407 

coded into three categories: Dutch, non-Dutch European, and non-European55. Maternal 408 

education, an indicator of socioeconomic status, was recoded into three categories: maximum 409 

of three years secondary school, more than three years general secondary school; intermediate 410 

vocational training, and Bachelor’s degree or higher56. Missing values were imputed by using 411 

Expectation-Maximization imputation as the proportion of missing values was smaller than 1% 412 

of the current Generation R data set57.  413 

Child cognitive ability 414 

Child cognitive ability data was retrieved from NIH Toolbox age-corrected standard 415 

scores of fluid intelligence (adaptive problem-solving), crystallized intelligence (knowledge 416 

acquisition from experience), total cognition scores (overall cognition composite scores), and 417 
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matrix reasoning scaled scores (non-verbal reasoning) from the Wechsler Intelligence Scale 418 

for Children-V (data release 4.0)58,59.  419 

 420 

Statistical analysis 421 

Analysis framework 422 

The current study implemented a multiple hold-out framework that aims to increase the 423 

generalizability of the analysis28. We used ABCD as the discovery set (n=6,529), in which all 424 

analyses were conducted (trained) and tested. The ABCD discovery set was randomly split into 425 

a training set consisting of 18 sites (ABCDTraining) and a test set consisting of 3 sites (ABCDTest). 426 

In this way, subjects in the ABCDTraining and ABCDTest sets were entirely from different sites, 427 

approaching the true out-of-sample context (Figure 1). To reduce sampling biases, the split 428 

procedure was repeated 10 times, resulting in 10 pairs of independent train-test sets. 429 

Importantly, the analyses in ABCDTraining sets and ABCDTest sets were fully separated to 430 

safeguard the results from data leakage (Figure 1). Specifically, the model was trained in 431 

ABCDTraining set, where the dimensionality reduction (see weighted PCA below) was done, and 432 

the performance of the hyperparameter of the models were selected in 100 further random splits 433 

of training (80% of ABCDTraining set) and validation set (20% of ABCDTraining set). After fitting 434 

the model with the optimal hyperparameters in the ABCDTraining set, out-of-sample model 435 

generalizability was evaluated in the ABCDTest set. In a final step, Generation R, which has 436 

ascertained a large early adolescent sample with very similar measures, was used as an 437 

independent external validation set (n=2,076). We characterized two approaches of external 438 

validation (see Out-of-study generalizability test in Generation R), allowing us to estimate the 439 

out-of-study generalizability of the findings from ABCD. Moreover, we did several 440 

explorations of the identified brain canonical variates in ABCD. First, we tested whether the 441 

identified brain canonical variates were associated with child cognitive ability at the age of 10. 442 
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Second, we investigated whether we could find distinct subgroups/clusters of children based 443 

on the identified brain canonical variates.  444 

Dimensionality reduction  445 

Prior to SCCA analysis, the upper triangle of the 352 × 352 functional connectivity 446 

matrix was flattened, resulting in 61,776 connectivity features for each participant. 447 

Connectivity values were residualized to ensure the above-mentioned covariates did not 448 

influence the results16. As the high-dimensional nature of the connectivity features could lead 449 

to considerable overfitting in SCCA, weighted principal component analysis (PCA) was 450 

applied to reduce the connectivity features into principal components (PCs) that aggregated the 451 

information of the data60. This PCA-CCA framework has been used extensively and has shown 452 

good performance15.  453 

While traditional PCA only considers the structure of the brain data, the weighted PCA 454 

uses the relationship between the brain and behavioral data in dimensionality reduction to 455 

identify a relatively small number of PCs carrying information from the phenotypes of 456 

interest60. This ensures the variability in the functional connectivity data most related to 457 

behavioral and emotional problems will be captured in the PCs. To achieve this, we rescaled 458 

the connectivity data according to a rank-based weighting scheme, which depends on the sum 459 

of CBCL scores. The weight assigned to each subject was determined by the rank of their total 460 

CBCL score. The rank-based pre-weights were calculated as follows:  461 

𝑤"! = ln𝑛 − ln𝑟! 462 

Where n is the number of data points and r is the ranking. We normalized the pre-463 

weights by 𝑤! 	= 𝑤"! ∑𝑤"!⁄ , and the original connectivity data was demeaned and adjusted with 464 

the corresponding normalized weights. We then submitted the adjusted connectivity matrix to 465 

PCA, and the eigenvectors (variable loadings) of PCA were extracted and multiplied with the 466 

original connectivity matrix, resulting in a new, dimensionally reduced weighted connectivity 467 
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matrix. To further protect against overfitting in subsequent analyses, a selection of PCs was 468 

made, namely the first 100 principal components15. 469 

Sparse Canonical Correlation Analysis 470 

Sparse CCA. To delineate multivariate relationships between functional connectivity 471 

and child psychiatric problems, we applied sparse CCA (SCCA), an unsupervised learning 472 

technique that can simultaneously evaluate the relationships between two sets of variables from 473 

different modalities4. SCCA imposes both l1-norm and l2-norm penalty terms, an elastic net 474 

regularization combining the LASSO and ridge penalties, to high-dimensional data sets and 475 

achieves sparsity of the solution61. This method is more stable and does not have the main 476 

constraint of classic CCA: the number of observations should be larger than the number of 477 

variables16. Specifically, given two matrices, Χ"×$  and Y"×% , where 𝑛  is the number of 478 

participants, 𝑝  and 𝑞  are the number of variables (e.g., CBCL scores and brain PCs, 479 

respectively), SCCA aims to find 𝑢	and 𝑣  (canonical loading matrices) that maximize the 480 

covariance between 𝑋𝑢 and 𝑌𝑣. 𝑋𝑢 and 𝑌𝑣 are canonical variates that are the low dimensional 481 

representation of brain and behavioral measures.  482 

Selection of penalty parameters. Using the extracted 100 brain PCs after 483 

dimensionality reduction, we first determined the optimal penalty parameters before fitting the 484 

SCCA. In order to identify the best set of penalty parameters for the SCCA of functional 485 

connectivity and behavioral features, we used a repeated resampling procedure of the 486 

ABCDTraining set27,28 (Figure 1). Specifically, we first split the ABCDTraining set further into 487 

penalty parameter training (80%) and validation set (20%) 100 times, resulting in 100 pairs of 488 

training and validation sets. Next, a grid search between 0 and 1 with increments of 0.1 was 489 

used to determine the combination of penalty parameters (l1 and l2) that show the best 490 

performance16. For each combination of penalty parameters, we fitted the SCCA model in the 491 

training set, projected the canonical loadings extracted from the training set (𝑢	and 𝑣) on the 492 
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validation set, and then calculated the canonical correlations. The optimal combination of 493 

penalty parameters was chosen based on the highest first canonical correlation of the validation 494 

set averaged across 100 splits61. 495 

Fitting SCCA model and significance test. After the selection of optimal penalty 496 

parameters, the SCCA model was fitted to ABCDTraining set with the chosen parameters. The 497 

resulting weight vectors (canonical loadings) from ABCDTraining set were then projected onto 498 

brain PCs and CBCL scores of ABCDTest set (after first deriving brain PCs in the ABCDTest set 499 

by applying the eigenvectors of the weighted PCA from ABCDTraining set). This process yielded 500 

the canonical correlations in the ABCDTest set, reflecting the within-cohort out-of-sample 501 

generalizability of the SCCA model. To determine the statistical significance of each canonical 502 

correlation, a permutation testing procedure was applied both in the ABCDTraining and ABCDTest 503 

sets. In the permutation test, the rows of the behavioral data were shuffled to disrupt the 504 

relationship between the brain connectivity features and the behavioral features, while the brain 505 

connectivity matrix was held constant18. We performed 2,000 permutations, building a null 506 

distribution of each canonical correlation. The p-value of the permutation test is defined as the 507 

number of null correlations that exceeded the correlations estimated on the original, un-508 

shuffled dataset. The same set of penalty parameters was used in each permutation. Only 509 

canonical variates surviving permutation testing (p < 0.05) were selected for further analysis.  510 

Stability of SCCA model. The classical CCA has been found to be unstable at times 511 

and fails to converge when the samples-to-feature ratio is small20. To investigate the sampling 512 

variability of the canonical loadings and inspect the features that consistently contributed to 513 

each canonical variate in the SCCA model, 1,000 bootstrapping subsamples (sample with 514 

replacement) were generated. The distribution of canonical loadings in this procedure allows 515 

us to inspect the stability and sampling variability of the SCCA model. This was done in one 516 

randomly selected train-test split. As arbitrary axis rotation could be induced by bootstrapping, 517 
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leading to the changes of the order of canonical variates and sign of the canonical weights, we 518 

matched the order of canonical variates based on the CBCL loadings we derived from the 519 

original datasets16. 520 

Associations with cognitive ability 521 

 To further validate the canonical variates we found, we tested whether the identified 522 

brain canonical variates were associated with child cognitive ability at the age of 10 in the 523 

ABCD cohort. We separately modeled the relationship between each significant canonical 524 

variate of brain connectivity and the cognitive ability of the participants with linear regression 525 

models adjusted for all covariates. 526 

Out-of-study generalizability in Generation R 527 

CCA is vulnerable to overfitting and the generalizability of the canonical variates 528 

should be carefully investigated20,28. In the current study, we tested the generalizability of the 529 

findings from the ABCD discovery set in an external validation set: Generation R. We utilized 530 

two approaches to test the generalizability: the qualitative replication and the gold-standard 531 

test. In the qualitative replication, a common practice in current psychiatric neuroimaging 532 

studies, the SCCA model was independently trained on Generation R, yielding another set of 533 

canonical loadings. The Pearson correlation between the two sets of canonical loadings (ABCD 534 

and Generation R) was calculated as a quantitative indicator of generalizability. Similar to what 535 

is described above for ABCD, in another, more standard practice in machine learning studies, 536 

the ‘gold-standard’ test, we projected the SCCA canonical loadings of ABCDTraining set directly 537 

on Generation R. The canonical correlations were ultimately calculated and assessed with 538 

permutation testing.  539 

Data availability  540 

The ABCD data reported in this paper are openly available upon approval from the 541 

NDA Data Access Committee. The ABCD data came from ABCD collection 3165 (ABCD-542 
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BIDS Community Collection (ABCC), https://collection3165.readthedocs.io) and the Annual 543 

Release 4.0 (https://doi.org/ 10.15154/1523041).  544 

The Generation R datasets generated and/or analyzed during the current study may be 545 

made available upon request to the Director of the Generation R Study, Vincent Jaddoe 546 

(v.jaddoe@erasmusmc.nl), in accordance with the local, national, and European Union 547 

regulations. 548 

Code availability  549 

All analysis code is publicly available in the following GitHub repository: 550 

(https://github.com/EstellaHsu/Brain_dimensions_ABCD_GenR). 551 
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Figure 1 

Multivariate brain-behavior associations analysis pipeline 

Note. a-b. ABCD was the discovery set and Generation R as the external validation set. The discovery set 
was divided into training and test sets 10 times, resulting in 10 train-test pairs in ABCD. The eigenvectors of 
PCA from the ABCDTraining set were applied to ABCDTest set to calculate the principal components, then the 
weight vectors (canonical loadings) obtained from the ABCDTraining set were projected to ABCDTest set to 
compute the out-of-sample generalizability. Similarly, weight vectors of SCCA from the ABCDTraining set 
were then directly applied to Generation R to assess the out-of-study generalizability of the model. We also 
implemented the qualitative replication approach, in which we train the CCA model independently in 
Generation R and compare the results across the two cohorts. Note that the sample size in ABCD is an 
example from one train-test split.   
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Discovery set  External validation set 

ABCD 
n = 6,529 

 Generation R 
n = 2,076 

 ABCDTraining  ABCDTest            
 

  

N 5,156 1,373  N 2,076 

Age (years), M(SD) 10.0 (0.6) 9.9 (0.6)  Age (years), M(SD) 9.9 (0.3) 

Sex    Sex  

Girls, (%) 48.9 47.2  Girls, (%) 52.3 

Race/ethnicity (%)    Nation of birth (%)  

White 52.9 60.1  Dutch 65.6 

African American 13.9 9.8  Non-Dutch European 15.1 

Hispanic 20.7 17.5  Non-European 19.3 

Asian 2.1 1.5    

Others 10.3 10.5    

Parental education (%)    Maternal education (%)  

Low 5.5 3.9  Low 2.9 

Medium 40.5 37.3  Medium 34.8 

High 54.0 58.8  High 62.3 

Child Behavior Checklist (CBCL)    Child Behavior Checklist (CBCL)  

Externalizing scores, M(SD) 4.4 (5.7) 4.1 (5.9)  Externalizing scores, M(SD) 3.9 (4.6) 

Internalizing scores, M(SD) 5.2 (5.6) 4.7 (5.4)  Internalizing scores, M(SD) 4.8 (4.9) 

Total scores, M(SD) 18.1 (17.6) 16.9 (17.8)  Total scores, M(SD) 17.2 (15.2) 

Framewise displacement (median) 0.16 0.16  Framewise displacement (median) 0.15 

Table 1 

Descriptive statistics of the discovery set (example) and the external validation set 

Note. Values are frequencies for categorical variables and means and standard deviations for continuous variables. 
The descriptive statistics for ABCD were based on one of the ten train-test splits, other splits showed similar statistics.  
M = Mean, SD = Standard Deviation 
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 ABCD 
Generation R 

n = 2,076  Canonical 
Correlations Training Test Sparsity 

Split 1 

 n=5156 n=1373    
r1 0.24 0.11*** rs-fMRI 0.8 0.03 
r2 0.22 0.09** CBCL 0.5 0.06 
r3 0.22 0.06*   0.06 

Split 2 

 n=4898 n=1631    
r1 0.21 0.17*** rs-fMRI 0.5 0.07** 
r2 0.22 0.12*** CBCL 0.5 0.002 
r3 0.19 0.05   0.06* 

Split 3 

 n=4613 n=1916    
r1 0.18 0.13*** rs-fMRI 0.3 0.02 
r2 0.15 0.11*** CBCL 0.5 0.03 
r3 0.17 0.04   0.01 

Split 4 

 n=5058 n=1471    
r1 0.21 0.12*** rs-fMRI 0.5 0.08*** 
r2 0.21 0.07** CBCL 0.5 0.04 
r3 0.21 0.04   0.01 

Split 5 

 n=5408 n=1121    
r1 0.23 0.09** rs-fMRI 0.6 0.03 
r2 0.23 0.06* CBCL 0.5 0.01 
r3 0.18 0.07*   0.01 

Split 6 

 n=4846 n=1683    
r1 0.18 0.14*** rs-fMRI 0.3 0.01 
r2 0.15 0.09*** CBCL 0.5 0.01 
r3 0.14 0.06*   0.01 

Split 7 

 n=5279 n=1250    
r1 0.22 0.15*** rs-fMRI 0.5 0.04 
r2 0.20 0.08** CBCL 0.5 0.04 
r3 0.19 0.06*   0.01 

Split 8 

 n=5660 n=869    
r1 0.21 0.16*** rs-fMRI 0.5 0.08*** 
r2 0.22 0.02 CBCL 0.5 0.04 
r3 0.18 0.12***   0.05 

Split 9 

 n=4703 n=1826    
r1 0.14 0.12*** rs-fMRI 0.2 0.02 
r2 0.12 0.09*** CBCL 0.7 0.01 
r3 0.09 0.02   0.01 

Split 10 

 n=5209 n=1320     
r1 0.20 0.11*** rs-fMRI 0.3 0.01 
r2 0.17 0.09*** CBCL 0.5 0.03 
r3 0.16 0.04   0.01 

Table 2 

Canonical correlations in ABCD and Generation R across 10 splits  

Note. We first completed the weighted PCA, penalty parameter search, and fitting the SCCA model in the 
ABCDTraining set. Next, the PCA eigenvectors (variable loadings) we derived from the ABCDTraining sets 
were applied to brain connectivity data in the ABCDTest sets, then the SCCA weight vectors from 
ABCDTraining sets were projected to the brain PCs and CBCL scores in the ABCDTest sets. In this way, the 
canonical correlations were computed, and then the significance of the ABCDTest canonical correlations 
was assessed by permutation tests. This process was repeated 10 times in the 10 training-test splits.  
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Figure 2 

Associated dimensions of brain connectivity and CBCL syndrome scores in ABCD 

Note. SCCA identified brain-behavior correlates in training and test sets of ABCD. a. The first six canonical 
correlations survived the permutation tests in the ABCDTraining sets. The canonical loadings of CBCL syndrome 
scores in the ABCDTraining set were averaged across 10 train-test splits. b. The mean and standard deviation of 
the first three canonical correlations across 10 train-test splits. c. Covariance explained in the training and test 
sets (example from one train-test split). d. The first three canonical variates were replicated in ABCDTest set 
across the 10 train-test splits. e. Permutation tests for the first three canonical correlations in the test sets 
(example from one of the 10 train-test splits), the red dotted lines represent the canonical correlations in the 
unshuffled data. P values were corrected for multiple testing.   
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Figure 3 

Resting-state connectivity canonical variates in ABCD  
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Note. Brain connectivity modules involved in the three identified canonical variates in ABCD. The contribution of each 
connectivity feature was determined by computing the correlations between the original connectivity matrix and the 
canonical variate scores of the brain connectivity extracted from the SCCA model (calculated by canonical loadings 
averaged across 10 train-test splits and the whole sample of ABCD), indicating the importance of each connectivity 
feature. After calculating the contribution of each connectivity feature, we summarized the contributions based on pre-
assigned network modules and calculated the within and between-network loadings based on the network module 
analysis method in Xia, et al. (2018). a-c. The top 5% of the connectivity patterns that contributed most for each of 
canonical variate. The outer labels represent the names of network modules. The thickness of the chords showed the 
importance of different network modules. d-f. The connectivity patterns associated with the first three canonical variates. 
This is based on the z-scores of the within- and between-network loadings we calculated. None is the community not 
labeled.  
 



 39 

 

Note. Sampling variability and important contributors for the first three canonical variates. a. The variability for the canonical loadings of CBCL syndrome scores across 
1000 bootstrap subsamples. b. The variability for the canonical loadings of brain PCs across 1000 bootstrap subsamples. The PCs presented here were selected based on the 
intersection of top 10 most important PCs for the first three canonical variates. c. The variability of the first three canonical correlations in ABCDTraining and ABCDTest set. 
The black dot is mean, and the vertical black line is standard deviation. Note that the bootstrap subsampling is conducted in one of the 10 train-test splits. CV1: canonical 
variate 1, CV2: canonical variate 2, CV3: canonical variate 3. 
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Figure 4 

Stability and sampling variability of canonical correlations and canonical loadings in ABCD (example) 


