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Background: Testing samples of waste water for markers of
infectious disease became a widespread method of surveillance
during the COVID-19 pandemic. While these data gener-
ally correlate well with other indicators of national prevalence,
samples that cover localised regions tend to be highly variable
over short time scales.

Methods: We introduce a procedure for estimating the real-
time growth rate of pathogen prevalence using time series data
from wastewater sampling. The number of copies of a target
gene found in a sample is modelled as time-dependent random
variable whose distribution is estimated using maximum likeli-
hood. The output depends on a hyperparameter that controls
the sensitivity to variability in the underlying data. We apply
this procedure to data reporting the number of copies of the
N1 gene of SARS-CoV-2 collected at water treatment works
across Scotland between February 2021 and February 2023.

Results: The real-time growth rate of the SARS-CoV-2
prevalence is estimated at 121 wastewater sampling sites cov-
ering a diverse range of locations and population sizes. We
find that the sensitivity of the fitting procedure to natural vari-
ability determines its reliability in detecting the early stages of
an epidemic wave. Applying the procedure to hospital ad-
missions data, we find that changes in the growth rate are
detected an average of 2 days earlier in wastewater than in
hospital admissions data.

Conclusion: We provide a robust method to generate reli-

able estimates of epidemic growth from highly variable data.

Applying this method to samples collected at wastewater

treatment works provides highly responsive situational aware-

ness to inform public health.

Infectious disease surveillance is a fundamental pillar of
public health management. Epidemiological data col-

lected with regularity across multiple locations provides
an awareness of the progress of a disease as it spreads
through a population. Robust surveillance systems to sup-
port this will prevent adverse outcomes through early ac-
tion, without undue risk of raising false alarms. An emerg-
ing technology that promises improve surveillance capabil-
ities pathogen detection in wastewater [1]. This has been
shown to provide early detection of epidemic trends com-
pared to other surveillance sources [2–6]. The technology
has potential to detect a range human diseases [7–13] and
reach otherwise overlooked communities [14,15].
A central question for policy makers is whether incidence

of a disease is increasing or decreasing. Since an upward
trend in new infections may be a reason to introduce re-
strictions or adjust provisions to hospitals, it is important
to have reliable methods for determining epidemic trajec-
tories in real time from the available data [16–18]. For
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wastewater based epidemiology using RT-qPCR this is par-
ticularly challenging as there are factors beyond changes
in the underlying population prevalence that affect the ob-
served signal - an observed increase in the gene copy count
between samples taken on different days does not neces-
sarily indicate an increase in the number of infected peo-
ple [19,20].
To mitigate the effects of natural variability, smooth-

ing can be applied over time and space [18, 21–24]. This
approach can, however, have the unintended consequence
of distorting some important features of the data, such as
inflection points where there is a sudden change in the epi-
demic trajectory, or a sharp increase in one location that
subsequently spreads to the wider region. We propose that
an approach based on fitting an epidemiologically realistic
model is more appropriate for these data as we would like
the outcome to represent the underlying epidemic trajec-
tory as accurately as possible. The question is how can we
filter out the high levels of variability observed at the local
scale, while retaining the ability to quickly detect changes
in epidemic trajectory?
This paper introduces a method to interpret the highly

variable wastewater sample values and applies it to data
from the Covid-19 pandemic in Scotland. We start by dis-
cussing the various causes of variability affecting data col-
lected from wastewater samples and describe the distribu-
tion of of values we expect to observe at a given prevalence.
We then introduce a function to measure the likelihood of
any given epidemic trajectory in relation to the observed
wastewater data and describe a procedure to find the best
fitting function from a class of exponential models. We
compare results across different sampling locations, opti-
mise the process for early detection of epidemic waves, and
finally compare results to hospital admissions data.

1 Methods

1.1 Data. From February 2021 to the time of writing
(February 2023), samples from Waste Water Treatment
Plant (WWTP) were regularly taken by the Scottish En-
vironment Protection Agency (SEPA) to detect fragments
of SARS-Cov-2 virus RNA [25, 26]. Samples from sewer-
age influent were taken at 122 sampling locations across
Scotland approximately two to three days each week de-
pending on the location [27]. Each Sample was collected
using a refrigerated autosampler that obtained a fixed vol-
ume of influent every hour over a 24-h period (08:00 to
08:00). Composite 24-h samples were mixed and concen-
trated before viral RNA was extracted using commercial
kits. SARS-CoV-2 N1 gene average concentrations (gene
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copies/l) are obtained using RT-qPCR.
WWTP data were provided by SEPA via a publicly

available portal [28]. For each sample taken the data pro-
vides the date, the WWTP, and the N1 reported value
obtained from RT-qPCR. Additional data for fluid flow
for a limited number of WWTPs were provided though re-
stricted access from SEPA. Since inflow to each WWTP
comes from households and other premises connected to
the sewerage network, the recorded values relate to SARS-
CoV-2 infections in a specific geographical catchment area.
Scottish water provided shapefiles giving the border of the
region corresponding to each WWTP.
Restricted access to hospital admission data was pro-

vided by Public Heath Scotland. The hospital admission
database includes information on individuals admitted to
hospital in Scotland including primary reason for admis-
sion, other contributing conditions, date of admission, and
the place of residence provided at the datazone level (each
datazone contains approximately 700 residents). We take
all admissions for which Covid-19 was listed as primary or
other contributing reason for admission, and aggregate to
the datazone level before using the proportions of overlap
between the datazones and the WWTP catchment shape-
files we aggregate to the geographical area of the each
WWTP catchment.

1.2 Variability. Our goal is to use data from WWTPs to
observe changes in the growth rate of infections in the pop-
ulation. Since there are many factors that may affect the
quantity of viral RNA in a sample, we cannot interpret
every observed change in the reported value to be a true
indicator of a change in the number of people infected. We
often see the reported value fall to a fraction of what it was
in the previous sample, only to jump to a high value again
in the next sample. Rapid changes like this are too fast
to be explained by transmission dynamics based on our
current understanding of SARS-CoV-2 epidemiology.
Table 1 lists some of the causes of variability suggested

in the literature. While each of these will have some ef-
fect, we generally lack sufficient data to control each of
these factors; for the purpose of obtaining growth esti-
mates it is more practical to accept that there is some
inherent randomness in the wastewater sampling process.
Our approach is to model the variabilty we expect to see
at a given prevalence. We hypothesize that the variability
between samples is predominantly the result of variability
between the amount that infected individuals contribute
to the wastewater sample, and this enables us to describe
mathematically the distribution of outcomes we expect to
see from a sample given for a given population prevalence.
This distribution will provide a basis for modelling the un-
derlying trend in prevalence.
Naively, it is natural to assume that the N1 gene copies

contained in a 24-hour sample is contributed equally from
every individual in the catchment who is infected and cur-
rently shedding the virus. In reality this may not be the
case; firstly, there is some variability there in the amount
each individual dispenses to waste water (related to the
amount of RNA fragments passing through the gastro-

Figure 1: Flow of viral RNA fragments. RNA fragments shown as
red circles. The amount from each household may vary across time
and depend on severity of outcomes. When samples are taken, this
variability is expected to affect the outcome of taking a sample. Com-
posite sampling may reduce variability but the quantity of viral RNA
detected may still be dominated by RNA originating from a single in-
fection.

intestinal tract) [34–36], and secondly, as illustrated in
Figure 1, fluids and fecal matter do not dilute perfectly
throughout the sewerage influent, adding additional vari-
ability to the concentration of viral RNA received by the
sampler. In an extreme case, the sampler my by chance
pick up a large concentration of viral RNA from one highly
infected individual giving an atypically large value [33].
Let us suppose that on a specific day there are n individ-

uals who are infected and contributing to some wastewa-
ter sample. We let xi represent the quantity of viral RNA
contributed by individual i. We model the values xi for
i = 1, 2, ..., n as an i.i.d random variables from a distribu-
tion with mean µ and standard deviation σ. It follows from
the central limit theorem that the cumulative quantity of
viral RNA detected

v =
n∑

i=1

xi, (1)

is modelled as a random variable that follows a Normal
distribution:

v ∼ N (nµ, nσ2 ). (2)

If we assume that samples drawn from this distribution at
any two times are independent, the variability over short
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Table 1: Factors influencing temporal variation in the observed RNA count in wastewater samples.

Factor Description
Movement Prevalence may change on a daily or seasonal time scale depending on move-

ments of infected people in or out of the catchment [19,29]
Temperature May affect survival rate of RNA in the sewerage system [30]
Fluid flow Household wastewater and rainfall that drains into sewerage pipes may cause

variable amounts of dilution [19]
Industrial waste Chemical waste can inhibit PCR assays [19]
qPCR variability Outcomes of lab analysis can vary according to the equipment used and the

precise details of how the test is performed [31]
Variant Different variants induce different pathological responses which may alter shed-

ding rates [27]
Vaccination Vaccinated individuals may experience less severe outcomes from infection and

therefore shed differently into the wastewater [32]
Demographic distribution of infections Proportion of infections in older/younger population varies over time leading

to variation in outcomes and shedding quantities [33]

time scales can be explained by a sufficiently high value of
nσ2.
This generalises to other data series including the num-

ber of reported cases or the number of hospital admissions.
In both cases, each infected individual contributes either
0 or 1 to the total count depending whether they report
a positive test (for case count data) or have symptoms
that lead to hospitalisation (for admissions data). The to-
tal count can therefore be modelled as an Binomial distri-
bution and, for sufficiently large numbers contributing to
the signal, approximated by the Normal distribution. The
methods described in this paper are therefore applicable
to a wide range of sources of epidemiological surveillance.

1.3 Likelihood of underlying prevalence model. We allow n
to be a function of time, n(t), representing the number
of people who are shedding virus in wastewater on day t.
Similarly v(t) is the total quantity of viral RNA in the
sampler on day t (assuming a sample was taken). The
function f(t) = n(t)µ transforms Eq. (2) to

v(t) ∼ N ( f(t), Df(t) ). (3)

where D = σ2/µ is a property of the distribution of indi-
vidual contributions, xi, known as the index of dispersion.
Note that we have assumed that this distribution is time-
independent.
Our approach to estimating the epidemic trajectory from

WWTP data is to find the function f(t) and parameter D
that achieves the maximum likelihood for the given data.
Representing the data as two vectors t = {t1, t2, ..., tk},
and y = {y1, y2, ..., yk}, where ti is the time the ith sample
was taken and yi is the reported quantity of viral RNA, the
best fitting parameter values are found by solving

{f̂ , D̂} = argmax
f,D

logL(f,D | t,y), (4)

where

logL(f,D | t,y) = −1

2

k∑
i=1

log(2πDf(ti)) +
(yi − f(ti))

2

Df(ti)
.

(5)

The function f(t) in Eq. (4), can be any time series over
the period where data were collected. Since our goal is
to remove unwanted variability and reveal the underlying
epidemic trajectory, we choose to constrain f to a class of
functions that are feasible given the epidemiology of the
disease.

1.4 Epidemic trajectory model We limit our choice of the
epidemic trajectory f to the class of exponential functions
with growth rates that change at discrete points in time.
Supposing there are m times when the exponential growth
rate changes, hereafter referred to as change points, we let
c be a vector of length m representing the times of each
change point, and r be a vector of length m+1 where the
ith entry is the growth during the interval from ci to the
next change point. Thus we have

f(t; c, r, A1) =



A1e
r1t if 0 ≤ t < c1

A2e
r2t if c1 ≤ t < c2

...

Am+1e
rm+1t if cm ≤ t

(6)

where A1 is a free parameter (the intercept), and the other
Ak are determined using the formula

Ak = exp

[
k∑

i=0

(ri − ri−1)ci

]
(7)

to ensure that f is continuous.

1.5 Optimization procedure An estimate for the epidemic
trajectory and natural variability is found by solving Eq. 4
over the class of functions of the form expressed in Eq. (6).
The free parameters are the initial quantity of wastewater
RNA (A1), the number of times the growth rate changes
(m), the times of each of these changes (c), the correspond-
ing growth rates (r), and the index of dispersion (D). If
we want to fit to data over a period containing several
change points, the space of possible parameter combina-
tions becomes very large and computationally expensive
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Figure 2: Model fitting. The model is fitted to the data by iteratively adding data points and optimizing the parameters using hill-climbing at
each iteration. In each iteration a candidate change point (CP) is added. If there is an improvement in the likelihood resulting from the added
exceeds some threshold value then the change point becomes part of the accepted model.

to optimize by brute force. We tried several off-the-shelf
methods for solving the for optimization but these strug-
gled to consistently produce useful output. We then devel-
oped our own heuristic procedure for solving Eq. (4) which
we detail here.

The outline of the procedure, illustrated in Figure 2, is as
follows: A simple exponential curve is fitted to the first few
data points using a hill-climbing algorithm. The remaining
data points are added sequentially. Each time a new data
point is added, the hill-climbing algorithm is re-applied
to optimize the parameters. A candidate change point is
considered between the most recent change point (or the
start of the data if no change points have been added) and
the time of the newly added data point. The hill-climbing
algorithm is re-applied to optimize the parameters (includ-
ing the time of the candidate change point and the growth
rate after the change). If the inclusion of the change point
yields an increase in the likelihood function, Eq. (5), that
exceeds a given threshold value then the new change point
is added to the parameter set of f . This is repeated until
all the data have been added.

The choice of the threshold value has consequences for
the outcome. If set close to zero it will produce a model
that is highly sensitive to variability in the underlying data.
Higher thresholds will find longer-term trends in the un-
derlying data while being less sensitive to the natural fluc-
tuations of the waste water signal. The choice of threshold
value can only be determined when the goal of the analysis
has been decided. In this paper the goal is to detect waves
of SARS-CoV-2 infection as early as possible.

Here we describe the hill-climbing part of the algorithm.
The first step selects a discrete set of possible values for
each parameter. The dispersion parameter (D) can take
values from 0.5% to 10% of the maximum quantity of viral
RNA across the series at intervals of 0.5%, the time of each
change point (c) can be any day between the midpoint of
its current value and the previous change point (or start
of the data), and the midpoint of its current value and the
next change point (or end of the data at that iteration of
the algorithm).

The initial quantity of wastewater RNA (A1) exponen-

tial growth rates (r) are not included as parameters ex-
plicitly, instead we use the gene copy value at each change
point and use them to calculate growth rates after the opti-
mization. The range for the gene copy values is 100 equally
spaced values from 0 to 1.5 multiplied by the maximum
value in the series. The hill-climb proceeds by perturb-
ing parameters one at a time to adjacent values within the
ranges described. It then chooses to accept the perturba-
tion which yielded the best improvement. This continues
until no improvement can be made.

2 Results

2.1 Model fitting. We use the 10 largest WWTPS (by pop-
ulation) to explore the effects of the threshold on the out-
come. As shown in Fig. 3, higher threshold values pro-
duce fewer changes in the modelled trajectory and corre-
spondingly higher values for the dispersion (the measure
of non-epidemic variability). The threshold value of 8 was
provides outcomes that are neither too sensitive to nat-
ural variability yet still responsive to real changes in the
epidemic trajectory. We applied the procedure with this
threshold to 121 WWTPs, 1 was omitted for containing no
positive values for the quantity of viral RNA. The quality
of the outcome is measured by the mean log likelihood; the
maximum likelihood result divided by the number of data
points. This varied across sites, however, it did not vary by
the number of samples in the data (Pearson’s r,p = 0.36)
and there was no significant effect of the catchment area
population size (Pearson’s r,p = 0.16), implying that the
procedure can be applied successfully in geographical re-
gions as small as 1500 people (Figure S1).

2.2 Real-time estimation of the epidemic growth rate The
real-time growth rate at time t is the rate value (rm+1, in
the function f given by Eq. (6)) obtained after fitting the
model to time series up to and including time t. Figure
4A shows the estimated growth rates over time for one
WWTP for three different threshold values. This example
illustrates a general trend that we observe across all the
treatment sites: that the responsiveness of the real-time
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Figure 3: Relationship between the sensitivity threshold and the number of trajectory changes. A. The top panel shows the raw data reporting
the quantity of viral RNA in the collected samples. The panels below show the outcome of model fitting using maximum likelihood estimation
for two values of the threshold hyperparameter. B The dependence of the number of change points on the threshold hyperparameter for the 10
largest WWTPs by catchment population. C. Relationship between the number of change points and the index of dispersion. With fewer change
points, variability around the mean must necessarily be larger in order to explain the distribution of observed quantities.

estimate to changes in the data is dependent on the chosen
threshold value.

As measure of the responsiveness to changes in the epi-
demic trajectory we count the number of periods of unin-
terrupted positive growth. We see that periods of growth
tend to start earlier for lower thresholds, potentially pro-
viding an earlier warning that prevalence will rise, but also
causing a larger frequency of “false alarms” where the di-
rection of growth will change for a short period before
changing again. From Figure 4 we see that the number of
waves predicted is highly sensitive to the threshold value
when it is below 6, while threshold values of 8 or greater
provide relatively consistent outcomes. We therefore sug-
gest that values from 6 to 8 provide high responsiveness
while remaining insensitive to high frequency fluctuations
in the data.

2.3 Comparison to hospital admissions data Throughout the
Covid-19 epidemic the number of reported cases has pro-
vided a useful metric to help forecast hospital demand [37].
As the number of reported test results is highly dependent
on test-seeking behaviour, wastewater can potentially be
a less biased way to provide the same early warning. To
address this we compare the growth rates obtained from
wastewater data to those obtained from hospital admission
data to see if one time series predicts the other.

To obtain growth rates from hospital admission data we
applied our method to time series data reporting the num-
ber of people admitted to hospital for COVID-19 who live
in the catchment of each of the 10 largest WWTPs (Fig-

ure 5A). We found that a threshold value of 8 provided
a real-time growth rate that captured the major changes
to the epidemic trajectory without being overly responsive
to fluctuations in the data. It predicted a similar number
of waves to the waste water output for the same thresh-
old value (within 1 across all WWTPs tested) and there-
fore provided outputs suitable for comparison. Figure 5B
shows an example of this for one WWTP.

We calculated the correlation between the time series
over a range of lags. A lag of length l means that the
growth rate value on day t in the wastewater time series
is paired with the growth rate value on day t + l in the
hospital admissions time series. The optimal lag is the
value of l that give the highest correlation between the
two series. A positive optimal lag implies that the signal
coming from wastewater data responds quicker to changes
in the epidemic trajectory than the signal coming from
admissions data. We find that the optimal lag is positive
for 6 of the 10 sites. Taking the mean of the Pearson’s r
values over the 10 sites we find that a lag of 2 days achieved
the largest correlation (Figure 5C).

2.4 Environmental factors. Rainfall entering the sewerage
system is expected to dilute the concentration of viral ma-
terial in the fluid leading to lower observed values. While
this dilution effect will vary depending on the amount of
rainfall, it can be difficult to observe directly as its magni-
tude is small in comparison to the variation in viral preva-
lence. To test whether fluid flow has an effect on the re-
ported quantities of viral RNA, we compare fluid flow val-
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Figure 4: Real-time growth rate estimates. A. Estimates for the Seafield WWTP at three threshold values. The solid line in these figures shows
the estimated growth rate using the data available at each the given point in time. Higher thresholds are less responsive to high frequency
variability in the data. Regions shaded red indicate periods uninterrupted positive growth. B. The number of periods uninterrupted positive
growth. Low threshold values produce a high frequency of “false alarms” - changes to the trajectory that are not sustained - higher threshold
values are more stable but periods of positive growth tend to begin later.

ues to the z-scores of the observed viral RNA quantities
with respect to the modelled distribution (using a sensi-
tivity threshold value of 8). The z-score is calculated by
subtracting the model mean from the observed value and
dividing by the standard deviation, in principal removing
the effects of underlying epidemic trajectory.

Of the 15 sites with more than 100 recorded flow values,
correlation between fluid flow and higher than expected
viral RNA was found in 5 (Pearson’s r < 0, p < 0.05). In
these cases the effect size is small in comparison to the over-
all amount of variability. For example, applying linear re-
gression to data from Meadowhead, we find that that each
additional 100 megalitres of flow per day reduces the mean
sample value by 0.41 standard deviations (Figure S2).

3 Discussion

The goal of this work was to provide a methodology to in-
terpret waste water data and help inform policy decisions.
A major challenge to decision makers is deciding when a
change in the reported data indicates a genuine change in
the underlying epidemic trajectory, particularly when the
data are subject to high levels of natural variability. Our
approach accounts for the variability between samples ob-
served in the reported RT-qPCR result and uses it as the
basis for a model fitting procedure. The main outcome is
an estimate of the growth rate of the epidemic that updates
each time new data become available. Applying this pro-
cedure to data from sampling locations across Scotland,
we found that samples collected from wastewater detect
changes to the epidemic trajectory approximately two days
earlier than can be observed in hospital admissions.

Despite the recent growth of waste water surveillance as
a non-intrusive source of population health data, there are
no clear guidelines around how these data should be used
to inform policy. We note that deep analysis is not always

needed; Polio, for example, is rare in the UK but confers a
profound risk if it is not controlled - if the virus is detected
then action should be taken [38]. For highly prevalent dis-
eases, on the other hand, deciding when to take action is
less straight-forward; there is always a risk of mistaking a
random fluctuation for a real spike in incidence, and this
may be a reason for some to distrust this valuable source
of data. Our approach of estimating the growth rate of an
underlying model resolves this problem.

We highlight here some limitations of our analysis and
areas for potential improvement. Firstly, the method has
only been tested on SARS-CoV-2 data in Scotland during
a period when prevalence was high. While the method can
be applied in other settings we recommend first validat-
ing the outputs against other sources of surveillance data
in those settings. Secondly, we made a specific choice to
explore the exponential function as the prevalence curve.
This assumption is reasonable in most cases as infectious
diseases dynamics are typically driven by branching pro-
cesses parameterized by the effective reproductive number.
There may, however, be situations where other functions
should be considered for example if we are to take into ac-
count the duration of shedding [21,35]. Thirdly, adjusting
the observed quantities of viral RNA using a normalisation
factor (such as the fluid flow which we have shown to affect
the model output) could potentially yield some improve-
ment to the results [20, 27, 27, 39, 40]. Similarly, adjust-
ing the hospital admissions data prior analysis to remove
known periodic patterns may yield an improvement.

One advantage of our method is its applicability to data
from individual sites distributed over a range of geographi-
cal locations. Better spatial coverage achieves earlier warn-
ings of the start of an epidemic wave and better targeting
of control measures [41]. As wastewater surveillance grows,
we may see samples being taken at more WWTPs or even
within the sewerage network, reaching ever smaller popu-
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Figure 5: Comparison to admissions data. A. Model fitted to data from hospital admissions of individuals living in the catchment of the Seafield
WWTP using identical methods to those applied to wastewater data in previous figures. B. The real time growth rate estimated using samples
from the Seafield WWTP and admissions for the corresponding catchment area. C. Pearson’s r correlation between the time-series produced in
panel B and for the 10 largest WWTP catchments in Scotland over a range of lags. Circles are added at the bottom of the figure to show the
value of the lag that yields the maximum correlation. The mean correlation over the 10 sites is shown as a dashed line. Positive lag implies that
wastewater growth rates respond faster than those obtained from hospital admissions data.

lations [42,43]. While our results demonstrate that surveil-
lance for Covid-19 can be useful over catchment popula-
tions as low as 1500, we don’t know precisely where the
limitations of the method lie. Future work should explore
these limits, not just in terms of spatial resolution, but also
the sampling frequency and underlying prevalence.

We hope that this work contributes to the wider goal of
improving the way we mitigate the risks of disease through
wastewater surveillance. While we are confident that the
methods developed here are applicable to a range of cur-
rent settings, they exist to be improved upon and adapted
to the specific diseases and challenges in wastewater mon-
itoring. The ongoing challenge is to build on the work
of many environmental and biological scientists that have
made these data sources possible, to push the continued de-
velopment of mathematical and statistical tools, and help
support decision makers and the population by providing
the best possible scientific analysis.
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Räisänen, Carita Savolainen Kopra, Teemu Möttönen, Oskari Luo-
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Figure S1: Model fit does not appear to be affected by the number of samples or the population of the WWTP catchment. The log likelihood
of model using the maximal likelihood parameter values is divided by the number of data points to give the mean log likelihood. Each point in
these plots represents a WWTP.

Figure S2: The affect of fluid flow is small. We show the 10 largest WWTPs (by population) for which flow data are available. Each point in
these plots represents a sample. The vertical axis shows the z-score for the sample with respect to the distribution that maximizes the model
likelihood
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