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Abstract1

Background: SARS-CoV-2, the virus responsible for the COVID-19 pandemic, can be detected2

in stool samples and subsequently shed in the sewage system. The field of Wastewater-based epi-3

demiology (WBE) aims to use this valuable source of data for epidemiological surveillance, as it has4

the potential to identify unreported infections and to anticipate the need for diagnostic tests.5

Objectives: The objectives of this study were to analyze the absolute concentration of genome6

copies of SARS-CoV-2 shed in Catalonia’s wastewater during the Omicron peak in January 2022, and7

to develop a mathematical model capable of using wastewater data to estimate the actual number of8

infections and the temporal relationship between reported and unreported infections.9

Methods: We collected twenty-four-hour composite 1-liter samples of wastewater from 16 wastew-10

ater treatment plants (WWTPs) in Catalonia on a weekly basis. We incorporated this data into a11

compartmental epidemiological model that distinguishes between reported and unreported infections12

and uses a convolution process to estimate the genome copies shed in sewage.13

Results: The 16 WWTPs showed an average correlation of 0.88 ± 0.08 (ranging from 0.96 to14

0.71) and an average delay of 8.7± 5.4 days (ranging from 0 to 20 days). Our model estimates that15

about 53% of the population in our study had been infected during the period under investigation,16

compared to the 19% of cases that were detected. This under-reporting was especially high between17

November and December 2021, with values up to 10. Our model also allowed us to estimate the18

maximum quantity of genome copies shed in a gram of feces by an infected individual, which ranged19

from 4.15× 107 gc/g to 1.33× 108 gc/g.20

Discussion: Although wastewater data can be affected by uncertainties and may be subject to21

fluctuations, it can provide useful insights into the current trend of an epidemic. As a complementary22

tool, WBE can help account for unreported infections and anticipate the need for diagnostic tests,23

particularly when testing rates are affected by human behavior-related biases.24

1 Introduction25

The emergence of the SARS-CoV-2 coronavirus in 2019 has resulted in a global pandemic, which has led26

to over 600 million infections and 6 million deaths worldwide. Epidemiological data has played a crucial27

role in monitoring the spread of the epidemic, with clinical testing via reverse transcription quantitative28

polymerase chain reaction (Rt-qPCR) on nasopharyngeal swabs being the primary method. However,29

limitations and biases exist in any epidemiological indicator, particularly in the case of PCR testing, which30

relies on voluntary participation and may only capture individuals more likely to be infected. Given the31

high number of asymptomatic and subclinical infections, this biased testing process can significantly32

impact estimations. Although hospitalizations and deaths are less susceptible to bias, they may not be33

ideal for real-time forecasting due to their lagged estimations.34

Wastewater-based epidemiology (WBE), i.e. the surveillance of epidemic spreading through the analy-35

sis of virus concentration in wastewater plants, is therefore presenting itself as a potential complementary36

tool to clinical testing, and it is gaining more and more attention among the mathematical modellers.37

The concept of WBE centers around the knowledge that SARS-CoV-2 RNA can be detected in stool sam-38

ples excreted by human bodies [1–3], and then shed in the sewage system. Therefore, daily sampling of39

SARS-CoV 2 RNA in wastewater would provide information similar to that from daily random testing of40
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thousands of individuals in a community [4], but not distinguishing between symptomatic, asymptomatic41

or presymptomatic people as long as they develop viral RNA in their feces. The interest of the WBE42

relays on two main aspects: wastewater data can potentially account the unreported cases, and they43

can also represent an estimate in advanced over time respect to diagnostic tests. Consequently, WBE is44

envisaged to become the most important non-invasive diagnostic tool of the epidemics in a population.45

46

The concept of wastewater epidemiology has frequently been referred to as a ”leading indicator” of47

reported cases [5], although there is often a time delay between the two measures [6–9]. The extent of48

the lead time provided by sewage data varies significantly in the literature, ranging from a few days to49

up to two weeks [10]. The duration of the time delay between wastewater estimates and reported cases50

is influenced by various factors, including the characteristics of the health system such as the availability51

and distribution of diagnostic tests, and the time required to obtain test results [5]. However, it is52

important to note that wastewater estimates are subject to considerable uncertainty, which is attributable53

to several factors. Firstly, our understanding of the shedding process is limited. As detailed in section 2.2,54

the quantity of SARS-CoV-2 shed in feces and its temporal profile exhibit considerable inter-individual55

variability, and clinical studies have reported a wide range of results. Moreover, it remains unclear56

whether the onset of viral shedding in feces precedes or coincides with the onset of symptoms, given that57

most existing clinical studies have been conducted in hospitalized patients.58

Secondly, the virus within the sewage system is subject to various ”random” factors, such as dilution59

with the daily water flow, temperature, possible interactions with chemical agents or other substances,60

and environmental factors like rain. The features of the sewage systems, such as the travel time from61

households to treatment plants, can also have a significant impact on measurements. Lastly, the experi-62

mental process for extracting data on genetic copy concentration from sewage is not without challenges,63

and measurement errors should always be taken into consideration.64

Upon considering the previous explanations, a fundamental question arises as to how to mathemat-65

ically quantify the biases between the genome copies concentration in wastewater, the reported cases,66

and the actual incidence in any given area. To this end, we conducted an analysis of data pertaining67

to the absolute concentrations of the SARS-CoV-2 gene biomarker N1 in weekly wastewater samples68

collected from 16 wastewater treatment plants (WWTP) in Catalonia, Spain, during the period span-69

ning October 2021 to March 2022. The data was sourced from the Catalan Surveillance Network of70

SARS-CoV-2 in Sewage (https://sarsaigua.icra.cat/). Initially, we examined the time delay and71

statistical correlation between wastewater data and reported cases at each WWTP. The data pertain-72

ing to reported cases was obtained from the official website of the Catalonia government (Generalitat73

de Catalunya https://analisi.transparenciacatalunya.cat/browse?q=covid&sortBy=relevance).74

Subsequently, we proposed a model that incorporates a time-varying rate of unreported cases to explain75

the observed delays and, in general, the heterogeneity of outcomes reported in the literature on the76

subject.77

The principal outcomes of our study are twofold: Firstly, our analysis of wastewater data in the78

Catalonia region reveals a markedly high correlation with reported cases, with a mean Pearson correlation79

of 0.9, and an average 9-day advance in anticipating trends in reported cases, but with variability ranging80

from 0 to 20 days. Secondly, the proposed model enables us to successfully link wastewater data with81

temporal dynamics of the reported cases during the same period, and provides estimates of the actual82

prevalence of infection and parameters of interest in the context of wastewater-based epidemiology.83

2 Methods84

2.1 Wastewater sampling85

The study involved the weekly collection of 1-liter composite samples of influent wastewater from 1686

wastewater treatment plants (WWTPs) (Table 1) in the region of Catalonia, Spain. The samples were87

collected over a period of six months, from October 2021 to March 2022. The WWTPs selected covered88

a population of approximately 2,514,618 inhabitants, which represents around 31% of the total Catalan89

population. The samples were transported in a portable icebox at a temperature range of 0°-4°C and90

were analyzed the day after concentration. The wastewater samples were collected within the framework91

of the Catalan Surveillance Network of SARS-CoV-2 in Sewage (https://sarsaigua.icra.cat/; http:92

//doi.org/10.5281/zenodo.4147073).93
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2.2 Wastewater concentration94

Wastewater samples were concentrated by using the aluminum hydroxide adsorption-precipitation method,95

as described in previous studies (Randazzo et al., 2020 [11]; Wallis-Melnick, 1967 [12]). Two hundred96

milliliters of wastewater were concentrated to a final volume of 1-5 milliliters of phosphate-buffered saline97

(PBS). To ensure the accuracy of the concentration process, 1.5 × 106 TCID50 units of the attenuated98

PUR46-MAD strain of the Transmissible Gastroenteritis Enteric Virus (TGEV) (Moreno et al., 2008 [13])99

were seeded into each sample prior to the concentration step.100

2.3 Nucleic acid extraction101

To extract nucleic acids, 300 µl of the concentrated samples were used and the Maxwell® RSC PureFood102

GMO and Authentication Kit (Promega) was employed following the manufacturer’s instructions. In each103

extraction run, a PBS negative control was included. To determine virus recovery, a previously described104

RTqPCR assay for quantification of the Transmissible Gastroenteritis Enteric Virus (TGEV) was used105

(Vemulapalli and GulaniSantrich, 2009 [14]). Samples with virus recovery ≥1% were deemed acceptable.106

Recoveries varied from 1% to 98% with an average of 24% ± 18%.107

2.4 RTqPCR assays108

Quantification of SARS-CoV-2 RNA in sewage samples was based on the N1 assay (US-CDC 2020), which109

targets a fragment of the nucleocapsid gene. We employed the PrimeScriptTM One Step RT-PCR Kit110

(Takara Bio, USA) and a CFX96 BioRad instrument.111

2.5 Convolution description of viral shedding112

Convolution operations represent the most appropriate approach to mathematically model the relation-113

ships between genome copy concentration, reported cases, and actual infection prevalence. Convolution114

is a mathematical method that involves the combination of two functions to produce a third function that115

describes how one function modifies the other. The resulting function is defined as the convolution of the116

two input functions. In essence, the procedure involves sliding one function over the other, multiplying117

the overlapping portions of the two functions, and integrating the product over the entire variable range118

to generate a novel function that portrays the interplay between the two functions.119

The virus concentration in sewage can be modeled as a function of the number of infected individuals120

in the serviced area and the time since they became infected, given a specific profile of the quantity of121

virus shed in feces over time.122

There is a general consensus in the scientific literature on certain characteristics of the virus shedding123

profile: long duration, exponential decay, and peak around symptom onset. Wu et al. [15] reported124

that SARS-CoV-2 RNA can be detected in feces for a mean of 11.2 days after respiratory tract samples125

test negative (up to 5 weeks); Zhang et al. [16] found a median fecal shedding duration of 22 days.126

Wolfel et al. [1] observed RNA-positive stool samples for over 3 weeks without symptoms, with peak127

viral RNA likely occurring during the first week of symptoms. The timing of shedding onset relative128

to symptom onset remains debated due to lack of clinical data on exposed individuals, but Hoffman et129

al. [17] constrained the latter part of the shedding profile with a fast exponential decay. Miura et al. [18]130

successfully tested the model proposed by Teunis et al. [19] for norovirus shedding, to SARS-CoV-2131

clinical data, which accounts for both exponential rise and decay.132

Wrapping up, a description that accurately captures the essential characteristics of the viral shedding133

profile is a gamma distribution, as reported in previous studies such as Huisman et al. [20] and Fernandez-134

Cassi et al. [21]. Specifically, Huisman et al. [20] used data on the incubation period and gastrointestinal135

shedding following symptoms onset to model the shedding profile as a gamma distribution with a mean136

of 6.7 days and a standard deviation of 7 days. We adopted this approach in our analysis.137

Therefore, we modeled the quantity of genome copies at day t as138

CG(t) = k̄
t′=t∑

t′=t−30

Γ(t− t′)NI(t′), (1)

where the number of new infections at time t′, NI(t′), is convoluted with the gamma distribution described139

above, truncated at 30 days, which tell us the quantity of genome copies per gram of feces shed at t− t′140

days after the infection. The factor k̄ is a scale parameter and it should take in account several aspects:141

the degradation, D (defined between 0 and 1), that the shed virus may undergoes in his way to the plant142
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(this is affected by multiple factors like water temperature, dilution, chemical reactions as well as by the143

time the virus spends in it), the average grams of feces produced per person g, the fraction of infected144

people shedding virus in feces p and the total quantity of virus shed in a gram of feces by an individual145

during the entire course of the infection Q. Therefore, similarly as in Ahmed et al. [22], we can write146

k̄ = Q× p× g ×D. (2)

Following Chavarria-Miró et al. [23] the quantity g can be taken equal to 380 grams per day, based on an147

excretion of 30 g per 5.5 kg of body weight, assuming an average weight of Spanish population of 70 kg148

(https://www.mscbs.gob.es/estadEstudios/sanidadDatos/). The value for the fraction of infected149

people shedding virus in feces p, is quite variable in the literature, ranging from the 29% of Wang et150

al. [2] to the 83.3 % of the patients for Zhang et al. [16]. The review on the topic by Cheung et al. [24]151

suggests to consider a value equal to the 48.1%.152

The value of Q is also uncertain. Several studies [1] [24] [25] [26] agree that the maximum possible153

shed quantity of genome copies per milliliter of stool should be around Qmax = 107 gc/ml; Zhang et154

al. [16] indicates one order of magnitude less (Qmax = 105.8 gc/ml) while Arts et al. [27] proposed a value155

around Qmax = 109 gc/g. The dissipation process is also quite difficult to describe as affected by random156

factors and, in principle, it could change in time. McMahan et al. [25] proposed to use an exponential157

decay model which considers the effects of the water temperature and of the holding time on the virus.158

As stated by Weidhaas et al. [28], reported decay rates for SARS-CoV and surrogate coronaviruses in159

unpasteurized wastewater at 23 °C range from 0.02 to 0.143 per hour.160

2.6 Compartmental model with a time-varying rate of reported infections161

Compartmental models, specifically ordinary differential equation (ODE) models, have been the corner-162

stone of infectious disease modeling for over a century. These models divide the population into different163

compartments based on their infectious status, such as susceptible, infected, and recovered in the classical164

SIR model [29]. The movements of individuals between compartments are described by transition rates,165

which are based on the underlying biology of the disease, as well as demographic and behavioral factors.166

By simulating these transitions, compartmental models can be used to predict the future course of an167

outbreak and to evaluate the impact of different intervention strategies (Arenas et al. [30]).168

In this study, we propose a variation of the Susceptible-Infected-Recovered (SIR) model, where infected169

individuals are divided into those who are infected but not detected (IN ) and those who are detected and170

isolated (ID). The model is described by a system of differential equations, where the transmission rate171

of the disease is represented by β, the recovery rate by γ, and the total population by N :172

dS(t)

dt
= −βS(t)IN (t)

N
, (3)

dIN (t)

dt
=

βS(t)IN (t)

N
− γIN (t) − p(t)IN (t), (4)

dID(t)

dt
= p(t)IN (t) − ID(t), (5)

dR(t)

dt
= γIN (t) + ID(t). (6)

Note that we have included in the model a time-dependent probability of infected individuals being173

detected, represented by p(t), which is proportional to the ratio of the detected infections at time t:174

p(t) = p0 + (1 − p0)

(
ID(t)

IN (t) + ID(t)

)
, (7)

where, in case of zero detection, p(t) = p0. This equation consists of a constant part and a time-175

dependent one: at each time step there is a constant percentage p0 of infected that decide to get tested176

unconditionally while the rest is more sensible to the available information about the actual state of the177

epidemics.178

This probability is influenced by factors such as changes in testing availability, policy, and implemen-179

tation of Non-Pharmaceutical-Interventions (NPIs), as well as the general perception of the population180

about the ongoing epidemic. We assume that infected individuals, once detected, are automatically181

removed from the infected but not detected compartment. Moreover, we argue that p(t) is also funda-182

mentally related to the general perception that the population has about the on-going epidemic, especially183
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when the testing process is subministered on voluntary basis: people can be more or less willing to be184

tested according to their risk awareness or according to costs/benefits considerations, which clearly de-185

pend on the state of the epidemic, or better, on its perceived state; all the information that people have186

about the epidemic are enclosed in the daily reported cases. Given this and taking inspiration by several187

works which tried to model risk perception ( [31], [32]).188

Our idea is to validate this model using both wastewater data and reported cases information. The189

former can be generated at each time step according to equation 1, with daily new infections estimated190

by the system of equations above.191

We argue that our model has the potential to provide insights into parameters of interest, such as k̄192

and p(t), which can justify the spectrum of delays observed between wastewater data and reported cases.193

This theoretical framework can provide valuable information about the dynamics of infectious diseases194

and can inform public health policy and decision-making.195

3 Results196

3.1 Statistical description197

We calculated the Pearson correlation between the number of genome copies in each wastewater treatment198

plant (WWTP) and the 7-day averaged number of reported COVID-19 cases for each specific plant. The199

reported cases were shifted back from 0 to 20 days to quantify the delay between sewage data and reported200

cases. We analyzed the period between October 2021 and March 2022, during which the Omicron variant201

was spreading rapidly in Catalonia and other parts of the world. The results, summarized in Table 1 and202

Figure 1, showed an average correlation of 0.88±0.08 (0.96-0.71) and an average delay of 8.7±5.4 (0-20)203

days across the 16 WWTPs.204

Figure 1: Distribution of the delays between wastewater data and reported cases curve across the 16
WWTPs analyzed.

These findings suggest that wastewater data can broadly capture the current trend of the epidemic,205

or at least to the extent that reported cases do. Furthermore, they seem to anticipate voluntary testing206

by a relevant quantity of days, more than reported in other studies. The observed delay was highly207

heterogeneous, ranging from 0 to 20 days, with extreme values occurring in the case of lower correlations.208

Figure 2 compares the genome copies per liter averaged on all the 16 WWTPs versus the cases209

reported for the entire Catalonia, both normalized according to a population of 100,000 inhabitants. In210

this global perspective, the time-shift between the two curves is 10 days, with a correlation of 0.95. The211

model will provide plausible arguments to realistically explain a delay higher than expected, considering212

the available information about incubation period, fecal shedding, infection duration, and in general, to213

justify the wide range of observations in the literature.214
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Figure 2: Absolute genome copies concentration averaged for all the WWTPs versus reported cases for
the entire Catalonia.

3.2 Model calibration and validation215

The model has been calibrated with real data of reported cases and genome copies concentration, averaged216

across all the 16 plants and normalized to 100.000 inhabitants, using Approximate Bayesian Computation217

(ABC) [33]. For a total time period of 152 days, we trained the model with the first 100 days and then218

we validated it for the remaining ones. The procedure converged yielding the posterior distributions for219

parameters β, p0 and k̄ displayed in figure 3. The parameter γ has been chosen equal to 10 days−1. All220

the details about the parameters can be found in table 2.221

0.222 0.223 0.224 0.225 0.226 0.227 0.228 0.229

b

0 2000 4000 6000 8000
0.222

0.224

0.226

0.228

b

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

p

0 2000 4000 6000 8000

0.002

0.004

0.006

0.008
p

9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8
1e10

k

0 2000 4000 6000 8000

9.2

9.4

9.6

9.8
1e10 k

Figure 3: Posterior distributions provided by Approximate Bayesian Computation for parameters β, p0
and k̄ (b, p and k respectively in the figure).

Afterwards, we ran the model using the average parameter values obtained from the calibration222

process. The resulting epidemiological scenario is presented in Figure 4, which shows the proportions of223

susceptible individuals (S), undetected infected individuals (IN ), detected infected individuals (ID), and224

recovered individuals (R).225
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Figure 4: Proportions of the population being susceptible (S), infected not detected (IN ), infected
detected (ID) and recovered (R).

According to the model, approximately 53% of the population under study was infected during the226

period analyzed. Figure 5 presents a comparison between the confirmed cases data, wastewater data,227

and the model’s predictions in the left and right panels, respectively. The R2 statistics for reported cases228

and genome copies are 0.94 and 0.64, respectively.229

The figures reveal a significant agreement in both qualitative and quantitative terms for all stages of230

the epidemic wave, particularly in the case of reported cases. Sewage data, which are subject to notable231

fluctuations, show a lesser degree of agreement.232

Figure 5: Model validation and spatiotemporal propagation of COVID-19 across Catalonia visualized
through daily reported cases and absolute concentrations of genome copies in sewage.

3.3 Detection rate and under-reporting233

Our study indicates that the actual number of infections during the period of October 2021 to February234

2022 in the analyzed areas of Catalonia was approximately three times higher than the reported cases.235

However, during November to December 2021, this ratio reached values up to ten (left panel of figure 6).236

As a result, the detection rate, which is represented by p(t) in the equations, appears to be a monotonically237

increasing function over time (central panel in figure 6).238

The model predicted that the daily genome copies would peak approximately five days before the239

simulated detected infections, which is consistent with some findings in previous literature [6] [8]. This240

suggests that the observed delays can be attributed to two factors: (i) fluctuations and noise in sewage241

data, and (ii) the value of the parameter p0, which is related to the initial value and variability of the242

detection rate over time. The delay between simulated genome copies and reported cases was observed243
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to be a monotonically decreasing function with p0 in the equations, with values between 0.001 and 0.01244

resulting in a wide range of delays (2 - 16 days), consistent with numerous available datasets (right panel245

of figure 6).246

Figure 6: Temporal evolution for the ratio between simulated new infections and daily reported cases
data (left panel) and for the transition probability p(t) (central panel). Delay between generated genome
copies in sewage and detected infections versus the parameter p0.

3.4 Maximum quantity of genome copies shed in feces by an individual247

Our theoretical framework provides an estimate of the parameter k̄ (see Section 2.5) that relates the248

viral load introduced into the system to that being measured. Using the deterministic equation 2, we249

estimated Qmax, which represents the maximum quantity of genome copies shed in a gram of feces by250

an individual during the course of infection. This quantity is of interest in the field of Wastewater-Based251

Epidemiology (WBE) applied to SARS-CoV-2 but has large fluctuations in estimations available in the252

literature.253

Figure 7: Values of Qmax varying the dissipation factor D and the fraction p and inferred by the estimated
value for k̄.

Figure 7 shows a colormap indicating the values of Qmax inferred from equation 2 using the mean254

value of k̄ in the posterior distribution yielded by the model calibration procedure. We considered the255

possible range of values for the dissipation factor D (0.86-0.98) and the fraction of people shedding virus256

in feces p (0.29-0.83) as indicated in section 2.5. The results indicate a value of Qmax between 4.15× 107257

gc/g and 1.33 × 108 gc/g, which is in agreement with most of the indications from other studies.258

4 Discussion259

The aim of this study was to assess the potential of using wastewater-based epidemiology (WBE) to260

anticipate reported cases and estimate the actual prevalence of SARS-CoV-2 infections. We have used real261

data from Catalonia. The results showed that wastewater data displayed a high correlation with reported262
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cases, indicating that WBE can capture the current trend of the epidemic. On average, wastewater data263

anticipated reported cases by about 9-10 days, providing an early warning of an increase in cases.264

We have also proposed a simple theoretical framework that integrated wastewater data into a com-265

partmental epidemic model. This framework enabled them to estimate the actual prevalence of infection,266

which was found to be about 53%, compared to the 19% detected in the same period in Catalonia. This267

discrepancy suggests that there was a large and time-variable under-reporting in the detection of infec-268

tions, especially at the onset of the epidemic. We argued that this under-reporting was fundamentally269

related to people’s perception of the epidemic state and the information available to them, generating a270

vicious circle.271

We have estimated the maximum quantity of genome copies shed in a gram of feces by an individual272

during the course of the infection, which results to be between 4.15×107 gc/g and 1.33×108 gc/g, which273

showed a good agreement with the literature.274

We want also to remark few aspects that can limit our analysis. The main limitation is represented by275

the data itself: as pointed out by [20], with less than three samples per week the measurements of genome276

copies in sewage can change according to the day of the data taking. We are looking forward to improve277

our weekly data-set increasing the number of samples per week. In general, we are aware that a more278

complex model is needed to model SARS-CoV-2 epidemic involving other aspects like mobility, protection279

measures, restrictions, age stratification etc.. and, in particular, to express such intricate concept like280

the people perception and awareness about the epidemic. Indeed, other aspects of human behaviour can281

be taken in consideration, as imitation processes or adoption of different strategies, given that human282

behaviour and epidemic spreading undergo to a complex interaction that goes in both directions. We are283

also aware that mechanistic models that try to in-globe wastewater data cannot be extremely accurate,284

due to the intrinsic volatility and the multitude of factors that enter in the entire process of the virus285

shedding in the sewage system. For instance, Thomas et al. [34] highlighted how considering dynamical286

populations, for which the number of persons served by a specific sewage plant can change in time, is way287

more accurate than fixed ones. Morvan et al. [8] showed how machine learning models result naturally288

more accurate in capturing the wastewater phenomenology.289

Nevertheless, we think that our work can hopefully highlight the importance of monitoring trends in290

wastewater data, being a crucial tool to estimate actual infections when voluntary testing policies results291

too biased. We hope that this work can be seen as a threefold contribution in the field of wastewater-292

based epidemiology, in the study of biases in data and as a retrospective study for the Covid-19 Omicron293

epidemic wave in Catalonia during January 2022.294
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Tables

WWTP MAX CORR. DELAY (days)
LLAGOSTA LA 0.96 8

VILAFRANCA DEL PENEDÈS 0.95 8
MONTCADA 0.95 5
GRANOLLERS 0.94 9

RUBÍ 0.94 10
GIRONA 0.94 9
RIERA DE LA BISBAL 0.92 8

PUIGCERDÀ 0.91 4
ABRERA 0.91 3
PRAT DE LLOBREGAT EL 0.91 10
SABADELL/RIU SEC 0.89 2
FIGUERES 0.86 12
BANYOLES 0.83 20

MONTORNÈS DEL VALLÈS 0.76 0
MARTORELL 0.72 20
BERGA 0.71 12

Table 1: The maximum Pearson correlations and the corresponding delays between sewage
data and reported cases for each WWTP.
For each of the 16 wastewater plants listed in the left column we measured the Pearson correlation between
genome copies concentrations data linearly interpolated and 7-days averaged daily reported cases in the
corresponding served municipalities. We performed the analysis shifting back in time reported cases from
0 to 20 days. We interpreted as delay the shift at which we reached maximum correlation.

Symbol Description Estimates Assignment
β Infectivity 0.225 (97% CI: 0.223 - 0.227) Calibrated
γ Recovery rate 10 days−1 Assumed
p0 Initial testing rate 0.004 (97% CI: 0.001 - 0.006) Calibrated
k̄ Scale factor for shedding process 9.49×1010 (97% CI: 9.29×1010 - 9.68×1010) Calibrated

Table 2: Parameters of the model
The parameters were estimated using Approximate Bayesian Computation (ABC). Only the recovery
rate γ was assumed to be equal to 10 days−1.
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Figure captions

• Figure 1: Histogram showing the distribution of the delays between wastewater data and reported
cases curve across the 16 WWTPs considered. With delay we refer to the amount of days by
which daily reported cases needed to be shifted back in time in order to obtain maximum Pearson
correlation. This procedure results in a average correlation of 0.88±0.08 (0.71- 0.96) and an average
delay of 8.7 ± 5.4 days (0-20);

• Figure 2: Graphic showing the trends for absolute genome copies concentrations of SARS-CoV-
2 averaged across the 16 WWTPs (dots, right y-axis) and for 7-days averaged reported cases in
Catalonia (solid line, left y-axis). Both measures were calibrated to 100.000 inhabitants. The
striped area indicates the temporal distance between the peaks of the two curves;

• Figure 3: The figure shows the results of the Approximate Bayesian Computation (ABC) procedure
for the estimation of the parameters β, p0 and k̄, respectively indicated as b, p and k. The plots
on the left side are the posterior distributions whereas in the right side are showed all the values
sampled during the process for all three parameters;

• Figure 4: The figure displays the temporal evolution of the simulated epidemic according to the
model. The curves indicates the proportion of susceptible (S), infected not detected (IN ), infected
detected (ID) and recovered (R) compartments;

• Figure 5: The figure shows the comparison between model predictions and data about daily
reported cases (left side) and absolute genetic concentrations of SARS-CoV-2 in sewage. Solid lines
show model predictions for the daily reported cases (left) and the daily number of genome copies in
sewage (right) for 100 000 inhabitants, whereas dots correspond to real data. The model has been
trained for the first 100 days data (white dots) and validate in the remaining ones (black dots).
The shadowed areas represent the 95% prediction interval. The R2 statistics is 0.94 for cases and
0.64 for wastewater data;

• Figure 6: Left panel: temporal evolution of the ratio between new infections simulated by the
model at each time step and daily reported cases data. Central panel: temporal evolution of the
detection rate p(t) according to the model estimates. Right panel: days of delay between generated
quantity of genome copies concentrations and detected infections varying the value of p0. The
former is deduced again looking to the maximum Pearson correlation between the two simulated
data-sets of genome copies and detected infections;

• Figure 7: Colormap showing estimations for the maximum quantity of genome copies shed in feces
by an individual Qmax inferred from equation 2, varying the dissipation factor (D) and the fraction
of people shedding virus in feces (p) , according to the indications in the literature. We used the
mean value of k̄ in the posterior distribution yielded by the model calibration procedure. The white
dashed line indicates the value for p suggested by Cheung et al. [24] in their review.
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