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Abstract. Resting-state electroencephalography (RSEEG) is a method under 

consideration as a potential biomarker that could support early and accurate 

diagnosis of Parkinson’s disease (PD). RSEEG data is often contaminated by signals 
arising from other electrophysiological sources and the environment, necessitating 

pre-processing of the data prior to applying machine learning methods for 

classification. Importantly, using differing degrees of pre-processing will lead to 
different classification results. This study aimed to examine this by evaluating the 

difference in experimental results when using re-referenced data, data that had 

undergone filtering and artefact rejection, and data without muscle artefact. The 
results demonstrated that, using a Random Forest Classifier for feature selection and 

a Support Vector Machine for disease classification, different levels of pre-

processing led to markedly different classification results. In particular, the presence 
of muscle artefact was associated with inflated classification accuracy, emphasising 

the importance of its removal as part of pre-processing. 
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1. Introduction 

Resting-state electroencephalography (RSEEG) is a method under consideration as a 

potential biomarker that could support early and accurate diagnosis of Parkinson’s 

disease (PD),[1, 2] as it can differentiate people with PD (PwPD) from controls.[3] In an 

effort to create diagnostic models, researchers have applied machine learning (ML) 

methods:[4] in most cases, RSEEG data are represented as features (e.g. power or 

entropy), followed by classifying each person’s feature vector using either conventional 

ML algorithms, such as Support Vector Machines (SVMs) and Random Forest 

Classifiers (RFCs), or deep learning approaches. Classification accuracy has ranged from 
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62.0% to 99.9%, with most experiments focusing on differences between controls and 

PwPD, though some have looked at the severity of cognitive impairment.[4] 

Unfortunately, there have been large differences in the pre-processing approaches in 

different studies: some simply process raw data, some apply filters, and some use full 

pre-processing pipelines that include filtering, removal and interpolation of electrodes 

that are contaminated with noise, and artefact rejection.[4] This makes comparison and, 

indeed, interpretation of the results difficult. For example, inclusion of muscle artefact 

in the signal usually leads to higher classification accuracy,[5] but this implies that the 

classification was, at least partially, based on non-neural activity. 

The goal of this study was therefore to evaluate the difference in classification 

performance resulting from different pre-processing pipelines. Features were created by 

calculating absolute and relative power at three stages: after re-referencing, after running 

a full pre-processing pipeline that included filtering, electrode removal and interpolation, 

and artefact rejection, and after running the same pipeline but without removing muscle 

artefact. We used three independent data sets for our experiments. 

2. Methods 

Three data sets were used for this study (Table 1). One collected by direct measurement 

at The Canberra Hospital (TCH) in Australia, and two were publicly available data sets 

provided by the University of New Mexico (UNM), USA, and the University of Turku 

(UTU), Finland.[1] 

 

 Table 1. Details of the three data sets used in this study. 

 

Data were pre-processed using MATLAB R2018b and the MATLAB toolbox EEGLAB 

2020.0,[6] following the recommendations of the Swartz Centre of Computational 

Neuroscience and Makoto Miyakoshi.[7] Data were re-referenced to the average of the 

electrodes and down-sampled to 128 Hz. A 1 Hz high-pass filter and 50 Hz low-pass 

filter were applied, and noisy channels were removed and interpolated using the 

EEGLAB extension ‘clean_rawdata’. Non-stationary artefacts were removed with the 

Artifact Subspace Reconstruction (ASR) function of ‘clean_rawdata’. Independent 

Component Analysis (ICA) and IClabel[8] were used to identify and remove 

independent components (ICs) that were more than 70% likely to not be of neural origin. 

Six regions of interest (ROIs) over the scalp were created by averaging electrodes 

based on location, and the signal was divided into 2-second epochs that were averaged 

for each ROI. Features, based on those used in the literature[4], were extracted after re-

referencing, after filtering, after running the full pre-processing pipeline, and after 

running the full pipeline without removing muscle artefact. Absolute power in each of 

six frequency bands - delta, theta, alpha, alpha1 (8-10 Hz), alpha2 (10-13 Hz), and beta 

- was extracted using a Fourier transformation at each ROI, and these values were then 

used to calculate relative power, i.e. the alpha1-to-theta ratio and the ratio between alpha-

plus-theta and alpha-plus-beta. In total, there were 84 features. 

Data  

set 

Recording 

Duration  

N PwPD 

(female, male) 

N Controls 

(female, male) 

PwPD mean age 

[years]  

Controls mean 

age [years] 

TCH 3 minutes 21 (13, 8) 18 (9, 9) 68.2 ± 9.2  68.4 ± 8.7 
UNM 1 minutes 28 (11, 17) 28 (11, 17) 69.8 ± 8.6 69.2 ± 9.2 
UTU 2 minutes 20 (11, 9) 20 (12, 8)  70.0 ± 7.2 68.0 ± 6.0 
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An SVM classifier with a radial basis function kernel was used for the classification. 

Data were normalised using PowerTransformer.[9] Feature selection was performed 

using an RFC, only retaining the top 30 features based on Gini-coefficient, during 10-

fold cross-validation repeated 10 times. Hyperparameters of the SVM were optimised, 

while the optimal number of features was obtained by starting out with the 2 best features, 

finding the best hyperparameters, then adding the next best feature and optimising 

performance again, until all features were included in the model. Performance was 

evaluated using accuracy, sensitivity (or recall), specificity, precision (also known as the 

positive predictive value), and F1-score, and significance tests were performed using 

Welch’s t-tests and a Bonferroni-corrected alpha level of .0167. All experiments were 

implemented in Scikit-learn in Python 3.8.[9] 

For cross-validation, we used a train/validation split without a test set. This was 

necessitated by the small sizes of the data sets and warranted because the aim of the study 

was to evaluate the effects pre-processing on an ML classification task rather than 

assessing the generalisation capabilities of the ML classifier on unseen data. The “best-

performing” model should be based on neural, rather than non-neural signals, and the 

test set would suffer even more severely from the same problem, as the data would be 

pre-processed in the same manner. 

Collection of the TCH data set and use of all three data sets for this study were 

approved by the ACT Health Human Research Ethics Committee (ETH.4.16.060) and 

the Australian National University (ANU) Human Research Ethics Committee (protocol 

No. 2020/612). Written consent was obtained from all participants in TCH data set. 

3. Results 

Comparison of accuracy results of full pre-processing to full pre-processing retaining 

muscle artefact using Welch’s t-tests showed a significant difference for the UNM and 

UTU data sets (p < 0.0001 for both), accuracy being better if muscle artefact was 

included (Table 2). 

 

Table 2. Evaluation metrics from the described experiments in percentages on the validation set. ‘Full’ refers 

to the full pre-processing pipeline described in the methods and ‘Full, retaining artefact’ refers to full pre-

processing with muscle artefact left in.  The best scores for each data set are in bold. 

 

Data 

set 

Pre-processing stage Accuracy ± 
SD 

Sensi-

tivity 

Speci- 

ficity 

Precision F1-score 

TCH Re-referenced 65.13±24.43 70.48 58.89 66.67 68.52 
 Filtered 58.97±24.67 60.48 57.22 62.25 61.35 
 Full, retaining artefact 69.74±19.07 71.43 67.78 72.12 71.77 
 Full 73.85±21.20 65.71 83.33 82.14 73.02 

UNM Re-referenced 66.96±17.36 61.79 72.14 68.92 65.16 
 Filtered 85.00±13.89 83.93 86.07 85.77 84.84 
 Full, retaining artefact 79.11±15.10 75.00 83.21 81.71 78.21 
 Full 66.07±20.36 57.86 74.29 69.23 63.04 

UTU Re-referenced 52.31±25.48 51.05 53.50 51.05 51.05 
 Filtered 57.44±25.46 58.42 56.50 56.06 57.22 
 Full, retaining artefact 71.03±21.52 63.68 78.00 73.33 68.17 
 Full 51.79±23.73 47.37 56.00 50.56 48.91 
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Features selected by the RFC differed between the fully pre-processed data and data with 

muscle artefact, as well as between data sets, and were very diffuse, so features were 

grouped by ROI and frequency band (Tables 3 and 4). For example, relative alpha and 

absolute alpha were grouped together. For the TCH data, 4 features were selected for the 

fully pre-processed data and 7 for data with muscle artefact, while for the UNM and UTU 

data sets these numbers were 2 and 30, and 29 and 4, respectively. 

 

Tables 3 and 4. Distribution of features across ROIs and per frequency band, per data set, and per pre-
processing stage, expressed as a percentage of total number of features selected by the RFC. Note that 

frequency band percentages do not always add up to 100% as they do not include the ratio features. 

4. Discussion 

We evaluated the differences in classification performance of PwPD and controls when 

using different levels of pre-processing of RSEEG data as used by studies in the 

literature[4] To enhance the validity of our observations, we used three different data sets 

and investigated the differences in features selected to attain these performance metrics. 

The highest metrics were achieved for the TCH data set using fully pre-processed data, 

for the UNM data set using filtered data, and for the UTU data set using data with muscle 

artefact. Of note, for the UNM and UTU data sets, classification metrics were improved 

when using data retaining muscle artefact than when using fully pre-processed data.  

Interestingly, contrary to the other data sets, fully pre-processing the TCH data set 

increased performance. There are several possible explanations for this. For example, the 

EEG data were noisy, and the data sets were small (39, 43, and 56 total participants in 

the TCH, UNM, and UTU data sets, respectively). It is also possible that the controls in 

the TCH data set had more muscle artefact in their recordings compared to the other data 

sets, which obscured the signal and was filtered out, leading to improvements. 

Data 

set 

ROI Fully pre-

processed 

With muscle 

artefact 

 Data 

set 

Freq. 

band 

Fully pre-

processed 

With 

muscle 

artefac

t 

TCH frontal 0 0  TCH delta 0 0 
 central 0 33%   theta 25% 71% 
 parietal 25% 0   alpha 25% 14% 
 occipital 0 16%   beta 0 0 
 temporal left 75% 33%      
 temporal right 0 16%      

UNM frontal 0 10%  UNM delta 0 20% 
 central 50% 17%   theta 0 20% 
 parietal 0 20%   alpha 100% 37% 
 occipital 50% 23%   beta 0 20% 
 temporal left 0 20%      
 temporal right 0 10%      

UTU frontal 31% 25%  UTU delta 3% 0 
 central 7% 75%   theta 24% 0 
 parietal 14% 0   alpha 41% 25% 
 occipital 14% 0   beta 17% 0 
 temporal left 24% 0      
 temporal right 10% 0      
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  The best-performing ROIs were not consistent across data sets. However, 

feature analysis was clearer: using fully pre-processed data, absolute power in the theta 

band (4-8 Hz) contributed most for the TCH and UTU data sets, while absolute power in 

the alpha1 band contributed most for the UNM data set. Of note, the cut-off points 

between frequency bands are still being debated[10,11], so two data sets being dominated 

by theta features and one data set by alpha1 features was not too surprising. Grouping 

frequency bands together would not be unreasonable and this suggests that a more 

detailed analysis of frequency in the future research is worthwhile. 

5. Conclusion 

Our results indicate that removal of artefacts is essential if the intention is to classify 

subjects based on neural activity.  When this is done, theta and alpha features contribute 

most to classification accuracy. Further research is needed to determine which specific 

features are necessary for accurate classification. 
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