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Abstract

Objective
Machine learning has the potential to increase the scale of real-world data curated from
electronic health records, but maintaining a high standard of data quality is important to avoid
biasing downstream analyses. To increase scale without compromising quality, we propose a
hybrid data curation methodology that employs both manual abstraction by clinical experts and
automated extraction by machine learning models.

Materials and Methods
Our methodology makes the determination about when to employ manual abstraction using a
confidence score associated with each model output. We describe a process for selecting
confidence thresholds based on simulations validated against a reference-standard labeled
dataset. To establish the fitness of our methodology for retrospective research, we apply it to a
multi-variable cohort selection task on a large real-world oncology database.

Results
Only small amounts of manual abstraction are required for hybrid curation to achieve
expert-level error rates. In fact, the hybrid methodology can even reduce error rates relative to
manual abstraction in some cases. We further demonstrate that demographic characteristics of
a research cohort defined using hybrid variables are comparable to one curated with
conventional methods.

Discussion
Our methodology is general and makes few assumptions about the clinical variable or machine
learning model. A key requirement is the availability of reference standard labels for calibrating
the tradeoff between abstraction effort and data quality.

Conclusion
Incorporating machine learning into real-world data curation using hybrid methodology holds the
promise to scale practicable cohort sizes while maintaining data fitness for research purposes.
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Introduction
Retrospective analysis of real-world data (RWD) generated during routine clinical care has the
potential to address important scientific and policy-related questions.1,2 Relative to traditional
clinical trials, RWD-based research can address larger patient cohorts that are more
representative and studied for longer durations.3,4 RWD can be derived from a number of
sources, including tumor registries, insurance claims, and electronic health records (EHR). In
particular, EHR data offer a deep and longitudinal perspective that may not be available from
other sources.

While some information is captured in structured EHR fields, structured data often have missing
values, encode information at only a high level, and fail to capture important datapoints such as
diagnosis dates or biomarker test results.5 The depth and completeness of EHR-derived RWD
can therefore be substantially enhanced by including information from unstructured sources
such as clinical notes or reports. To be useful for quantitative analysis, however, this information
must first be curated into structured datapoints. The curation process can be challenging
because medical records are often complex and nuanced.6 Errors caused by oversight (e.g.,
missing a biomarker test result) or miscoding (e.g., mistaking a second primary tumor for a
distant metastasis) have the potential to bias downstream analyses.7

To produce datasets that are fit for use in retrospective analyses, the RWD curation process
must be reliable and unbiased. Traditionally, this has been achieved through manual curation by
highly-trained abstractors. Yet manual abstraction is effortful and time consuming, and finite
abstraction resources can limit the practicable size of RWD datasets.5 Therefore, realizing
RWD’s promise of larger cohort sizes requires a curation process that is both accurate and
scalable.

Recent advances in natural language processing (NLP) using machine learning (ML)
algorithms8 have the potential to help realize this promise. Algorithmic approaches can rapidly
process massive volumes of unstructured data, surfacing relevant information with high
reliability and scaling to arbitrarily large cohorts with minimal marginal cost. But substituting ML
algorithms for human abstractors may increase the risk of errors when charts are complex or
require clinical expertise to correctly interpret. Therefore, it is important to understand how ML
can be used to scale RWD curation while maintaining a level of accuracy that is fit for use in
research applications.

Here, we present a novel methodology that achieves these objectives. Our approach has three
important components: we employ a “hybrid” process such that, within a given variable (e.g.,
date of diagnosis), some datapoints are generated using only ML, while others are determined
through manual review by an expert human abstractor; we use the likelihood that the model is
correct (i.e., the model’s “confidence”) to allocate manual abstraction effort; and we create a set
of reference standard labels to understand the tradeoffs between accuracy and effort. This
allows us to reduce the manual effort needed for data curation—and hence scale practicable
cohort sizes—without compromising the accuracy of the process. In fact, we demonstrate that
hybrid variables can have lower error rates than variables produced using only manual
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abstraction. Therefore, our approach balances the strengths of manual and algorithmic RWD
curation to produce datasets with scale and quality that could not be achieved through either
method alone.

Methods
This work is divided into two sections. We first describe the process of hybrid RWD curation. We
then demonstrate its performance when applied to a large dataset of oncology records.

Hybrid extraction methodology

RWD variables
RWD variables comprise structured datapoints representing information derived from medical
records. The information may be structured at point of entry (i.e., entered using a dropdown
menu in an EHR system) or curated from information present in unstructured records (clinical
notes, surgical reports, etc.). This work focuses on the curation of RWD from unstructured
sources (Adamson, et al. in press, 2023).

RWD variables may contain a single datapoint for each patient (e.g., the date of the patient’s
initial diagnosis with a particular cancer) or multiple datapoints (e.g., the result of every test
performed for a specific tumor biomarker). We refer to “datapoint” as the finest level of
granularity relevant for a particular variable; concretely, it corresponds to a row in the structured
output. While this manuscript focuses on the generation of patient-level datapoints, the
methodology is general.

Critical to the curation of high-quality RWD is a set of clinically-backed standardized policies and
procedures for abstracting information from clinical documents. These standardized policies aim
to optimize accuracy and consistency, reduce ambiguity, and specify the handling of known
edge cases. The objective is that RWD curation should be reliable, with different abstractors
producing the same results when performing the same task. This objective is not always
satisfied, either due to remaining ambiguity in the policies and procedures, conflicting
information in the chart, insufficient training, or human error.6

ML-extracted RWD
An ML model implements a function from inputs to outputs with parameters that are learned
from data. Unlike a rules-based system that would require hard-coding of every possible nuance
in clinical documentation, ML models can be trained to curate RWD using labeled data, such as
the datapoints generated by human abstractors (Adamson, et al., in press, 2023). Whereas
abstractors can be explicitly instructed on the policies and procedures, an ML model must learn
those policies implicitly, based on statistical relationships it is exposed to during training. Its
ability to correctly apply learned policies to unseen examples will depend on a number of
factors, including the capacity of the model, the choice of feature representations for the inputs,
and the scale, representativeness, and quality of the training data.
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For many model architectures, the raw output of the function is a vector of continuous scores,
even when the model is trained to perform a classification task. These scores provide additional
information that can be useful for interpreting model outputs. In particular, the score
corresponding to the predicted class can be interpreted as a measure of the model’s
confidence. When a model is well-calibrated, low-confidence scores can be used to identify
extracted datapoints that are potentially incorrect.

Importantly, the objective when applying ML for RWD curation is to extract explicit
documentation of clinical information in the medical record, not to predict future outcomes or to
infer latent attributes of a patient based on proxy measures. Therefore, model performance can
be evaluated by comparing to human abstractors performing an equivalent task, and a
high-performing model could be used as a “drop-in” replacement for or complement to manual
curation.

Hybrid RWD
This work presents a method for using ML to scale the production of RWD even when model
performance does not, on its own, match that of human abstractors. We refer to this method as
“hybrid,” because it curates a single variable using both manual abstraction and ML extraction.
The key aspect is that model confidence scores determine the source for each datapoint:
curation is deferred to clinically-trained humans when model confidence falls below a threshold.

Our approach to curating a hybrid variable is as follows (Figure 1A). First, a full set of
ML-extracted datapoints and confidence scores are obtained. The confidence scores are then
compared to a variable-specific threshold. Datapoints with confidence scores below the
threshold are sent to be manually abstracted. Finally, the results are merged into a single
variable, with manually-abstracted datapoints replacing the low-confidence extracted datapoints.

The threshold that determines whether a datapoint should be manually abstracted is a key
parameter in this approach. With a lower threshold, less manual effort is required, but more
model errors may be introduced. At the margin, increasing the threshold incurs additional
manual effort to replace the lowest-confidence model outputs. The choice of threshold therefore
governs a tradeoff between scale and quality. Yet this tradeoff may not always be
straightforward: because human abstractors also make errors, overly stringent thresholds may
yield diminishing or even negative quality returns. As a result, it is important to characterize
empirically how effort and quality vary across thresholds.
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Figure 1: Diagrams illustrating the hybrid curation process. (A) The overall workflow for curating
a hybrid variable. The confidence score associated with an ML datapoint is compared to a
threshold, which determines whether the ML datapoint is used directly or if a human needs to
manually abstract it. The resulting structured dataset includes a mixture of ML-extracted and
manually-abstracted datapoints. (B) The label adjudication workflow. Labels used for selecting
hybrid thresholds result either from a three-way agreement between model and abstractors or
from the judgment of an expert adjudicator.

Label adjudication
To evaluate hybrid variable performance at different thresholds, we curate a set of reference
standard labels. Our approach aims to identify and remove label errors, which would otherwise
distort our understanding of hybrid variable quality and cause us to overestimate the necessary
amount of abstraction.9

The labels are curated in two stages (Figure 1B). Each chart is first reviewed independently by
two human abstractors, and the resulting datapoints are compared to the model outputs. Any
case with a disagreement among these three sources is then flagged for further review by an
adjudicator. Adjudication is performed by clinical experts who have demonstrated
consistently-high abstraction performance and been trained to conduct quality control on specific
variables.

When reviewing disagreements, the adjudicators have access to the entire chart along with a
record of the documents that abstractors accessed and any associated notes that they
generated. They also have the option of consulting with a medical oncologist. Their goal is to
identify the correct value for each datapoint as per the standardized policies and procedures,
which may or may not be one of the values selected by the abstractors or model.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2023. ; https://doi.org/10.1101/2023.03.06.23286770doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.06.23286770
http://creativecommons.org/licenses/by-nc-nd/4.0/


Threshold selection
Using the reference standard labels, we apply an empirical, simulation-based approach to
threshold selection. A set of candidate thresholds is first identified by sampling between 0 and 1
in steps of 0.01. At each threshold, a simulated hybrid variable is formed. Where model
confidence exceeds the threshold, the ML-extracted datapoint is used. Otherwise, we use the
datapoint provided by the first abstractor during label curation. This mimics the process of
replacing a low-confidence extracted value with the answer from a single abstractor. We then
compute the error rate of the resulting hybrid variable and note the proportion of datapoints
sourced from abstraction. Note that datasets may undergo subsequent cross-variable quality
control checks that are not reflected in the error rate estimate.

After completing this process, we have a pair of metrics—abstraction rate and error rate—for
each candidate threshold. These metrics quantify the tradeoff between effort and quality,
allowing us to select an operating threshold that is appropriate for the expected use case. The
following proof-of-concept study demonstrates that it is possible to find thresholds that produce
satisfactorily low error rates with relatively small amounts of abstraction.

Proof-of-concept methodology

Data sources
We used the nationwide de-identified Flatiron Health longitudinal EHR-derived database,
comprising de-identified patient-level structured and unstructured data, curated via
technology-enabled abstraction originating from ~ 280 US cancer clinics (approximately 800
sites of care).10,11 Institutional Review Board approval of the study protocol was obtained prior to
study conduct, and included a waiver of informed consent.

Cohort selection
For this proof-of-concept, we focused on a cohort of patients with non-small cell lung cancer
(NSCLC). The cohort was initially limited to patients with a structured International Classification
of Diseases (ICD) code for lung cancer and at least two EHR-documented clinic visits on or after
January 1, 2011. We refined this cohort to patients with a clinically-documented NSCLC
diagnosis as determined using ML model predictions10 and confirmation by two separate human
abstractors. The analyses in this paper were performed on a random subset of this remaining
cohort (N = 2373) that had been held out from the training of any ML models.

Variable definitions
This investigation considered three clinically meaningful real-world variables: the date of the
patient’s initial NSCLC diagnosis, whether the cancer had ever been diagnosed as advanced,
and the histology of the tumor.
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Initial diagnosis date
The initial diagnosis date corresponds to the date on which the patient’s NSCLC diagnosis was
confirmed. For the purposes of threshold selection in this investigation, the manually-abstracted
or ML-predicted diagnosis date is considered “correct” if it is within 30 days of the reference
standard date.

Advanced status
Advanced lung cancer is defined as stage IIIB, IIIC, IV (including IVA, IVB) at diagnosis or the
subsequent development of recurrent or progressive disease for patients initially diagnosed with
stage I–IIIA disease.

Histology
The histology variable has three possible classes: “Squamous cell carcinoma,” “Non-squamous
cell carcinoma,” and “NSCLC histology, not otherwise specified” (NOS). Histologies without
explicit mention of being squamous or non-squamous are grouped within the NOS class.

Manual abstraction
Manual abstraction of these variables followed a standardized set of policies and procedures
defined in collaboration with oncologists to ensure that the operational definition matched the
intended clinical concept. Abstraction was performed using Flatiron Health’s proprietary
software platform. Within this system, unstructured documents were processed using Optical
Character Recognition (OCR), categorized using a rules-based system, and surfaced to
abstractors with supporting tools such as text search. Abstractors were required to have a
minimum of 1 year of oncology experience, with more than 90% having one of the following
licenses or certifications: nurse practitioner (NP), registered nurse (RN), licensed practical nurse
(LPN), physician’s assistant (PA), doctor of pharmacy (PharmD), registered pharmacist (RPh),
certified radiologic technologist (ARRT), certified clinical research associate (CCRA), certified
clinical research professional (CCRP), or certified clinical research coordinator (CCRC). All
abstractors passed an abstraction assessment pre-hire along with task-specific training and
knowledge assessments. The same basic qualifications applied to adjudicators, who were also
trained on quality control procedures.

ML model construction
The ML models first scan charts for mentions of clinically-relevant terms and extract “snippets”
of text surrounding these mentions. The snippets are then vectorized and passed into a
classifier architecture.10,12

For the initial diagnosis date and advanced status variables, the model is a deep neural network
based on dense word embeddings and a bidirectional GRU encoder13 Diagnosis date
predictions are made for multiple timepoints and then aggregated to identify the most likely date.
For the histology variable, the classifier uses TF-IDF vectorization and gradient-boosted
decision trees.14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2023. ; https://doi.org/10.1101/2023.03.06.23286770doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.06.23286770
http://creativecommons.org/licenses/by-nc-nd/4.0/


The three models were trained independently on overlapping but distinct sets of patient charts.
Training sets varied by model based on availability of labels but included more than 25,000
examples in all cases. Training was performed using a supervised objective with
manually-abstracted datapoints serving as labels. All models were constructed with a final
softmax layer and trained with a cross-entropy loss function to encourage good calibration. Note
that the hybrid methodology generalizes across these distinct architectures with no further
accommodations.

RWD-defined cohort comparisons
Given the emergent role of ML-extracted RWD for scientific and health outcomes research,15 it
is critical to go beyond accuracy metrics and establish that hybrid variables are fit for purpose
when used in retrospective research. As such, we replicated a cohort selection task using either
a fully-abstracted or hybrid version of the NSCLC dataset and compared the resulting patient
characteristics. The goal of this analysis was to evaluate whether the selected cohorts remained
similar despite differences in the underlying data curation methodology.

Cohort selection included patients who had an initial diagnosis date on or after 2018, advanced
NSCLC, and non-squamous histology. We selected these criteria to identify patients who might
benefit from recent advances in NSCLC management, including molecular testing and targeted
therapies. For the two resulting cohorts, we compared baseline patient characteristics available
in structured EHR fields, using categorical variables to define practice type, region, sex, race,
age at first visit, year at first visit, and follow-up duration from first visit. Patient characteristic
distributions were summarized with counts and proportions, and cohort similarity was evaluated
using the Absolute Standardized Mean Difference (ASMD) metric. We report the point estimate
of ASMD as well as bootstrap confidence intervals generated with 100 resamples of the
selected cohorts, using the conventional cutoff of ASMD less than 0.1 to indicate “cohort
similarity.”16

Results

Overall performance metrics
We evaluated the performance of single-abstracted and ML-extracted data using the reference
standard labels, which provide a common basis for comparison. The diagnosis date variable
was evaluated using a 30-day agreement metric, while the advanced status and histology
variables were evaluated using weighted-macro-average F1 over each class.

Overall performance for both single-abstracted and ML-extracted data exceeded 0.9 across all
three variables (Table 1). When compared directly, manual abstraction significantly
outperformed the ML model, although the difference was small in absolute terms (< 0.05 pts).
Therefore, replacing all abstracted datapoints with ML datapoints would incur a small but
measurable decrease in the quality of the dataset.
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Diagnosis date Advanced status Histology

Abstraction 0.973 (0.967, 0.979) 0.965 (0.957, 0.972) 0.973 (0.966, 0.979)

Model 0.942 (0.933, 0.952) 0.939 (0.929, 0.948) 0.957 (0.949, 0.965)

Difference 0.031 (0.021, 0.042) 0.026 (0.015, 0.037) 0.015 (0.005, 0.025)

Table 1: Performance metrics when compared to the reference standard. Diagnosis date scores
represent accuracy within a 30-day window. Advanced status and histology scores represent
weighted macro-average F1. 95% confidence intervals were calculated using a bootstrap.

Model confidence scores
Overall, model confidence was high (Figure 2). Median confidence scores were 0.95 for
diagnosis date and advanced status and 0.96 for histology; at least two thirds of the extracted
datapoints had a confidence score above 0.9 (diagnosis date, 67%; advanced status, 69%;
histology, 80%).

Figure 2: Distributions of model confidence for three variables of interest. Each bin width is
0.05.

For the hybrid methodology to be effective, most model errors should occur when there is low
confidence in the extracted datapoint. Consistent with this requirement, more than 50% of all
model errors occurred in the lowest decile of model confidence. Abstraction errors were also
more likely to occur when the model’s confidence was low, but the abstraction error rate in the
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lowest decile was less than half the model error rate (Figure 3). Beyond the lowest two deciles
of confidence, model error rates appeared equivalent to or lower than abstractor error rates.

Figure 3: Error rates for extracted and abstracted data when stratified by deciles of model
confidence. Error bands represent 95% bootstrap confidence intervals.

Hybrid variable evaluation
We simulated hybrid variables across a range of candidate thresholds and evaluated them using
the reference standard labels. At each candidate threshold, we obtained two metrics: the
proportion of the cohort that would be deferred to manual abstraction and the error rate of the
resulting hybrid variable (Figure 4). Consistent with our expectation of a tradeoff between
abstraction effort and data quality, the highest error rates were observed at thresholds resulting
in 0% abstraction. Raising the threshold slightly to include some abstracted datapoints rapidly
decreased error rates: the absolute difference between hybrid and fully abstracted variables fell
below 1% when abstracting no more than 10% of the cohort for any variable (diagnosis date,
9.9%; advanced status, 5.4%; histology, 0.8%).
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Figure 4: Hybrid variable evaluation. Curves are drawn by simulating performance across a
range of candidate thresholds (evenly spaced by 0.01). The x axis shows the abstraction rate
(proportion of the cohort with a confidence score below the threshold), and the y axis shows the
corresponding hybrid variable error rate. Error rates are normalized by the value for a
fully-abstracted variable (abstraction rate = 1); relative error rates below 1 indicate fewer errors
in the hybrid variable. Thick blue lines represent a curve derived from the entire cohort; thin gray
lines represent curves derived from bootstrap replicates of the cohort (100 total).

Surprisingly, the lowest error rates were not achieved with thresholds resulting in 100%
abstraction. When the model was highly confident, it tended to be more accurate than human
abstractors (Figure 3). Therefore, the error-minimizing threshold for both advanced status and
histology required abstracting less than a quarter of the cohort (advanced status, 21.2%;
histology; 21.5%). At these thresholds, hybrid error rates were significantly lower than
full-abstraction error rates (P < 0.05; bootstrap test). In contrast, the diagnosis date error rate
was numerically lowest when abstracting a minority of the cohort (43.5%), but it was not
significantly lower than the full abstraction error rate at any threshold. Therefore, the hybrid
methodology allows us to increase cohort sizes while maintaining—and in some cases
improving—the accuracy of the curation process.

RWD-defined cohort comparisons
While there are several potential objectives for selecting a confidence threshold, for this
investigation we aimed to minimize abstraction effort without increasing error rates relative to
manual abstraction (i.e., we chose a threshold corresponding to the left-most intersection
between the blue and dashed lines in Figure 4). This approach resulted in an abstraction
workload of 37.8%, 13.0%, and 4.0%, respectively, for the diagnosis date, advanced status, and
histology variables. A total of N=517 patients were selected using abstracted variables, while
N=526 patients were selected using hybrid variables. There were N=495 (90%) patients in the
intersection of the cohorts. Distributions of patient characteristics were consistently similar
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between cohorts, with ASMDs ranging from 0.012 to 0.034 (Figure 5). All patient characteristics
had ASMDs less than 0.1. Therefore, cohorts curated using hybrid methodology are similar to
cohorts derived using only abstraction, even when using automated extraction for the majority of
cases.

Figure 5: Comparison of cohorts selected using hybrid variables (N=526) vs abstracted
variables (N=517). Stacked bar plots show the proportions of categories for each patient
characteristic. Cohort selection included patients who had an initial diagnosis date on or after
2018, advanced NSCLC, and non-squamous histology. ASMD: Absolute Standardized Mean
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Difference is calculated for each characteristic comparing hybrid to abstracted cohorts (95%
confidence intervals derived using bootstrap resampling). ASMD < 0.1 is the typical cutoff to
define “similarity.”

Discussion
We introduce a hybrid curation methodology that integrates clinical expertise and machine
learning to scale the production of high-quality real-world data. By relying on models when
confident, the methodology focuses abstraction effort on the hardest tasks. This increases the
achievable cohort size for a given quantity of abstraction resources. As an example, we
demonstrate the feasibility of abstraction rates that imply a nearly three-fold expansion of cohort
sizes with no additional human effort.

Critically, we show that scaling need not come at the expense of quality. Given the complexity of
information in an EHR, abstraction remains important: humans can synthesize disparate data
sources, incorporate contextual information, and reason about edge cases. Nevertheless, we
find that ML can outperform abstraction in some situations. Why might this be? ML excels at
surfacing “needles in the haystack” of voluminous medical records. And even highly-trained
abstractors suffer from cognitive fatigue and make mistakes when performing repetitive tasks.
Hybrid data curation allows us to leverage the strengths and minimize the weaknesses of each
method.

Unstructured data has long been recognized as a critical source of information about patient
treatment and outcomes, particularly in oncology.17 Yet scalable extraction remains a challenge.5

Automated methods and human abstraction are generally viewed as competing alternatives.18,19

This work offers a new paradigm in which ML and human abstraction are jointly leveraged.

Because human abstraction is imperfect, label adjudication is key to the hybrid curation
process. Consider the following: were single-abstracted data treated as the reference standard,
a hybrid system could succeed only if the model agreed with every abstracted datapoint, even
when incorrect. By conducting a three-way comparison and adjudicating disagreements, we
establish a robust evaluation framework that overcomes these limitations. This allows us to
more objectively assess performance and optimize the balance between manual abstraction
and automated extraction. While other authors have proposed adjudication frameworks for
labeled data, these generally rely only on pairwise comparisons.20 21

Advantages of our thresholding methodology include its generalizability across model
architectures—only requiring confidence scores to be rank calibrated—and the flexibility it
affords for balancing scale and quality as appropriate for a given use case. One could choose
threshold values that maintain quality relative to abstraction or trade either objective against the
other as needed. While the models used here are highly accurate, we expect that the method
can still be beneficial when there is a larger gap between abstractors and models, although the
amount of abstraction required to maintain quality may be higher. Notably, our framework
incorporates the special cases of using only abstraction (threshold of 1) or only ML-extraction
(threshold of 0), and it would reveal when one of these choices is optimal.
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This work represents a natural step in the broader effort to combine human abstraction with ML
for scalable data curation. Previously, ML has been employed to automate cohort identification
upstream of abstraction, filtering out patients that are unlikely to meet cohort inclusion criteria.10

Likewise, Marucci-Wellman et al.21 used ML to identify and filter out “easy” abstraction tasks,
although in the absence of reference standard labels, they guide thresholds solely by resource
constraints and do not consider quality objectives. Alternatively, human expertise can directly
improve model performance through a feedback mechanism, where the model selectively
queries experts to provide additional input on “hard” cases.22 This iterative approach has proven
useful for reducing the effort required to extract diagnosis dates from unstructured records, akin
to one of the tasks here.23 Other authors have proposed schemes to allocate cases between
humans and models,24,25 although they primarily focus on the model training process.

An alternate approach for increasing real-world cohort sizes is to link and pool observations
across multiple data sources, such as structured EHR fields, administrative claims, and tumor
registries.26,27 An advantage of our method is that both abstracted and ML datapoints are based
on a common source, reducing heterogeneity and potential bias. As illustrated in the cohort
comparison, data curation via our method produced very similar cohorts compared to
abstraction alone. Such scalable, high-quality extraction from unstructured text data facilitates
rapid and accurate production of real-world evidence.28

Conclusion
This work offers a novel approach to scalable data curation that jointly leverages ML and human
expertise. The proposed hybrid framework is quite flexible to different data types and ML
models, making it generally applicable to a variety of curation tasks. Hybrid curation holds
significant potential for real-world evidence, enabling the study of larger patient cohorts while
remaining fit-for-use in a range of research and policy applications.
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