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Abstract 
Vaccines can provide protection against infection or limit disease progression and severity. Vaccine 

efficacy (VE) is typically evaluated independently for different outcomes, but this can cause biased 

estimates of VE. We propose a new analytical framework based on a model of disease progression 

for VE estimation for infections with multiple possible outcomes of infection: Joint analysis of 

multiple outcomes in vaccine efficacy trials (JAMOVET). JAMOVET is a Bayesian hierarchical 

regression model that controls for biases and can evaluate covariates for VE, the risk of infection, 

and the probability of progression. We applied JAMOVET to simulated data, and data from COV002 

(NCT04400838), a phase 2/3 trial of ChAdOx1 nCoV-19 (AZD1222) vaccine. Simulations showed that 

biases are corrected by explicitly modelling disease progression and imperfect test characteristics. 

JAMOVET estimated ChAdOx1 nCoV-19 VE against infection (𝑉𝐸𝑖𝑛) at 49% (95% CI 37-59) and 

progression to symptoms (𝑉𝐸𝑝𝑟) at 44% (95% CI 27-58). This implies a VE against symptomatic 

infection of 72% (95% CI 63-80), consistent with published trial estimates. 𝑉𝐸𝑖𝑛 decreased with age 

while 𝑉𝐸𝑝𝑟 increased with age. JAMOVET is a powerful tool for evaluating diseases with multiple 

dependent outcomes and can be used to adjust for biases and identify predictors of key outcomes. 

 

  



1 Introduction 
 

The evaluation of vaccine efficacy and effectiveness in clinical trials and post-licensure studies needs 
to be carefully designed and interpreted to be statistically efficient and unbiased – thereby providing 
maximum value of information for policy decisions and scientific understanding. Infectious diseases 
have several features that undermine these goals, including heterogeneity in risk of infection and 
disease progression, rapid dynamics, and outcomes that depend on the vaccination status of 
contacts. Mathematical and statistical modelling can determine how these features affect the 
validity of vaccine efficacy (VE) estimates1-4 and is increasingly important for study design, power 
calculations and analysis of results5. Insights from models support innovative trial designs that can 
make the difference between success or failure in the evaluation of VE6. 
 
Infection typically results in multiple dependent outcomes, reflecting disease natural history 
(e.g., different degrees of disease severity) or different disease presentations (e.g., symptom 
groupings) (Figure 1). Estimates of VE vary when measured against these different outcomes. For 
example, VE of licensed rotavirus vaccines is usually lower when measured in studies of less versus 
more severe disease7. In some cases, estimated VE against intermediate outcomes such as 
asymptomatic infection may be negative – not because vaccination increases infection but because 
it prevents progression to symptomatic or more severe disease8.  
 

 
 

Figure 1. Vaccine effects and detection methods at different stages of infection and disease progression. 

 
Typically, in clinical trial analyses, VE is evaluated from the relative risk of each outcome separately, 
and common statistical approaches include Poisson and Cox proportional hazards regression9. In 
addition to the challenges in interpretation of VE against intermediate outcomes, independent 
analysis of each outcome is susceptible to biases. For example, a differential detection bias arises if 
less severe outcomes are less likely to be detected and vaccination prevents disease progression, 
resulting in an overestimation of the overall VE against infection10. This is because the act of the 
vaccine in preventing an infection from progressing from one stage to another results in that 
infection becoming less likely to be detected, contributing to apparent efficacy against infection. 
Other important biases are also rarely incorporated into classical clinical trial analyses. For example, 
the accumulation of false positives in both trial arms as a result of using a test with imperfect 
specificity can lead to underestimation of VE11,12. This bias can be particularly impactful in a setting 
where the number of false positives is large in comparison to the total number of cases included in 
the analysis, which can occur if testing is performed frequently, the force of infection is low, and if 
test sensitivity is also low. This impact of false positives is not usually adjusted for in clinical trial 
analyses as the direction of potential bias is towards an under- rather than over-estimation of VE, 
thus the resultant analysis is conservative, which is usually preferred. 
 



Multistate Markov models are a powerful and flexible tool, typically used to analyse longitudinal 

data on disease progression in population cohorts13,14. However, they have not been used in the 

context of vaccine efficacy evaluation in clinical trials14-16. This is surprising given the progressive 

nature of many vaccine-preventable diseases, as the multistate model approach lends itself to 

identifying the stage in the disease process at which the vaccine is effective.  

In this paper, we propose a new analytical framework for the integrated analysis of VE for infections 

with multiple disease outcomes that is an adaptation of the multistate model framework: Joint 

analysis of multiple outcomes in vaccine efficacy trials (JAMOVET). JAMOVET can control for biases 

and evaluate predictors of VE, the risk of infection, and the probability of progressing to each 

disease stage. We first validate the model using simulated data and then apply it to data from a 

phase 3 COVID-19 vaccine trial.  

 

 

 



2 Methods 

2.1 Model Framework 
JAMOVET can be described as a hierarchical multivariable generalized regression model. It models 

multiple progressive stages of a disease and may have covariates for the parameters describing 

disease progression and VE. The basic model framework can be illustrated by first considering the 

simple case of a clinical trial of a vaccine against an infection that may be symptomatic or 

asymptomatic. We adopt a regression framework such that the number of symptomatic infections 

experienced by individual 𝑖 in a given time period (e.g., length of follow-up) is assumed to follow a 

Poisson distribution 

𝐶𝑖~ Poisson(Λi𝜃𝑖) 

Equation 1 

where Λi and 𝜃𝑖 are the cumulative hazard or force of infection (FOI) and the probability of 

symptoms for that individual, respectively. 

With perfect test sensitivity and specificity, the number of asymptomatic infections is given by  

𝐴𝑖~Poisson(Λ𝑖(1 − 𝜃𝑖)) 

Equation 2 

The cumulative FOI is estimated in a log-linear regression model with an offset for follow-up time 

and vaccination status as an indicator variable (0=placebo, 1=vaccine).  

log(Λ𝑖) = 𝛼 + 𝛽 × 𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑𝑖 + log(𝑡𝑖) 

Equation 3 

where 𝛼 is the log of the average FOI in the placebo arm during the follow-up period and 𝛽 is the log 

relative risk of infection as a result of vaccination. The VE against infection, 𝑉𝐸𝑖𝑛, can be calculated 

as 

𝑉𝐸𝑖𝑛 = 1 − 𝑒𝛽 

Equation 4 

The probability of symptoms is estimated using logistic regression and depends on vaccination 

status. 

𝑙𝑜𝑔𝑖𝑡(𝜃𝑖) = 𝛾 + 𝛿 × 𝑣𝑎𝑐𝑐𝑖𝑛𝑎𝑡𝑒𝑑𝑖 

Equation 5 

Where 𝛾 is the log odds of symptom development in the placebo arm and 𝛿 is the log odds ratio of 

symptom development in the vaccine compared to the placebo arm. We estimate VE against 

progression, 𝑉𝐸𝑝𝑟 from the relative risk (RR) of progression in the vaccine compared with the control 

arm (𝑉𝐸𝑝𝑟 = 1 − 𝑅𝑅, rather than using the odds ratio 1 − 𝑒𝛿)17. 

 

 



2.2 Model extensions 
JAMOVET can be extended to account for additional stages of severity (Supplementary Methods), 
imperfect test characteristics and differential detection of different outcomes, such as a lower 
probability of detecting asymptomatic infections compared to symptomatic. For example, consider 
the case where regular samples are taken from asymptomatic individuals to test for the presence of 
infection (as was done in some COVID-19 vaccine trials). If 𝜎 is the probability of detecting an 
asymptomatic infection, 𝑚𝑖 is the number of tests taken by individual 𝑖, and 𝑞 is the test specificity 
for asymptomatic infections (ignoring false positive symptomatic infections that are likely to be 
rare), then the number of asymptomatic infections is given by: 
 

𝐴𝑖~Poisson(Λ𝑖(1 − 𝜃𝑖)𝜎𝑖 +𝑚𝑖(1 − 𝑞)) 

Equation 6 

The model can also be extended to model covariates on the force of infection and probability of 

symptoms by including these terms in their respective regression equations. Interaction terms on 

the vaccination indicator variables also allows for covariates on 𝑉𝐸𝑖𝑛 and 𝑉𝐸𝑝𝑟 to be modelled 

(Supplementary Methods). 

2.3 Application to simulated data 
To demonstrate the accuracy of the approach we applied JAMOVET to four simulated datasets. All 

datasets had a sample size of 10,000, similar to the COV002 ChAdOx1 nCoV-19 (AZD1222) vaccine 

trial, and participants were followed up for one year and censored after infection. For all 

participants, the true Λ = 10% per year, 𝜃 = 0.6, 𝑉𝐸𝑖𝑛 = 50% and 𝑉𝐸𝑝𝑟 = 50%. This corresponds 

to a true VE against symptomatic infection (𝑉𝐸𝑠𝑦𝑚 = 1 − (1 − 𝑉𝐸𝑖𝑛)(1 − 𝑉𝐸𝑝𝑟)) of 75% and VE 

against asymptomatic infection (𝑉𝐸𝑎𝑠𝑦𝑚 = 1 − ((1 − 𝜃)(1 − 𝑉𝐸𝑖𝑛) + 𝜃(1 − 𝑉𝐸𝑖𝑛)𝑉𝐸𝑝𝑟)/(1 − 𝜃)) 

of 12.5%18.  

In dataset 1, we introduced no bias from imperfect test characteristics or differential detection 

(Table 1). In dataset 2, we simulated false positives using a test with specificity of 99.9%, with weekly 

asymptomatic testing. In dataset 3, we made asymptomatic infections 50% less likely to be detected 

than symptomatic infections (representative of either imperfect test sensitivity or incomplete 

adherence to testing). Finally, in dataset 4, we assumed weekly testing with a 99.9% specific, 100% 

sensitive test, with 50% adherence to asymptomatic testing. The asymptomatic infection positive 

predictive values across trial arms and datasets varied between 38% (95% CI 34-43) and 100% (95% 

CI 100-100) (Supplementary Table 1). We applied JAMOVET to each dataset, adjusting for biases 

where appropriate, to estimate the FOI, 𝑝𝑠, 𝑉𝐸𝑖𝑛, 𝑉𝐸𝑝𝑟 , 𝑉𝐸𝑠𝑦𝑚and 𝑉𝐸𝑎𝑠𝑦𝑚. We compared the 

results to a separate analytical approach where 𝑉𝐸𝑖𝑛, 𝑉𝐸𝑠𝑦𝑚and 𝑉𝐸𝑎𝑠𝑦𝑚were estimated 

individually using standard Poisson regression with an offset for time. Both JAMOVET and the 

standard separate analysis were conducted without covariates on any parameters. 

Table 1. Parameter values in simulated datasets. 

Scenario Test specificity (𝒒,%) Prob. asymptomatic infection detection (𝝈,%) 

1 100.0 100.0 

2 99.9 100.0 

3 100.0 50.0 

4* 99.9 50.0 
*Modelled as incomplete adherence to testing rather than imperfect test sensitivity (50% detection of true 
positives and false positives) 



2.4 Application to COV002 phase III trial 
We then applied JAMOVET to data from the University of Oxford sponsored phase 2/3 clinical trial, 

COV002 (NCT04400838). COV002 is a single-blind, multicentre, randomised phase 2/3 trial assessing 

the safety and efficacy of the SARS-CoV-2 ChAdOx1 nCoV-19 (AZD1222) vaccine. The full protocol 

and statistical analysis plan have been previously published in detail19-22. Participants were adults 

aged 18 years and older, enrolled at 19 study sites across the United Kingdom to either the phase 2 

(immunogenicity) or phase 3 (efficacy) cohort. Enrolment began on May 28, 2020 and targeted 

participants in occupations with potentially high SARS-CoV-2 exposure, such as healthcare workers 

(HCWs). Participants were randomly assigned to receive the ChAdOx1 nCoV-19 vaccine or a control 

vaccine. In this analysis we have data until the February 25th, 2021 data cut, thus most infections 

were due to alpha or earlier variants. 

Symptomatic infections were detected through responsive symptomatic reporting and RT-PCR 

testing, while asymptomatic and pre-symptomatic infections were detected through regular 

asymptomatic RT-PCR swab testing. Any infections detected through asymptomatic swab collection 

that became symptomatic (i.e., pre-symptomatic infections) were classified as a single event of a 

symptomatic case.  

We used the baseline-seronegative subset of the phase III (efficacy) cohort for this analysis and 

excluded participants who did not receive two doses of vaccine or the control, or who experienced a 

SARS-CoV-2 infection before two weeks following their second dose (n=9139). As study participants 

were allowed to unblind once SARS-CoV-2 vaccines became publicly available, we censored after i) 

SARS-CoV-2 infection, ii) unblinding, and iii) February 25th, 2021, whichever was earliest. 

Test specificity was based on published estimates for a low prevalence setting (99.945%23) and we 

made the simplifying assumption that all symptomatic infections were detected. The probability of 

asymptomatic infection detection was estimated for each individual as a function of their adherence 

to weekly asymptomatic testing and PCR test sensitivity to asymptomatic SARS-CoV-2 infections over 

time since infection24 (Supplementary Methods). 

Yearly FOI, probability of symptoms, 𝑉𝐸𝑖𝑛 and 𝑉𝐸𝑝𝑟 were directly estimated in the model, with  

𝑉𝐸𝑠𝑦𝑚 and 𝑉𝐸𝑎𝑠𝑦𝑚 calculated from 𝑉𝐸𝑖𝑛 and 𝑉𝐸𝑝𝑟, as above10,25. 

We adjusted for covariates on the FOI, probability of symptoms (PS), 𝑉𝐸𝑖𝑛 and 𝑉𝐸𝑝𝑟. Candidate 

covariates were: 

• Age 

• Sex 

• Body mass index (BMI) 

• Ethnicity 

• HCW status 

• Comorbidities 

Both categorical and continuous covariates were considered (Supplementary Table 2). 

Variable selection was based on model fit, measured by leave one out (loo) cross validation using the 

loo R package26. A univariable model was fit for each variable for each parameter 

(FOI/PS/𝑉𝐸𝑖𝑛/𝑉𝐸𝑝𝑟) and those that improved the model fit compared to a model without any 

covariates were selected for a full model. Any variables that improved the fit for 𝑉𝐸𝑖𝑛 were also 

selected for FOI and any that improved the fit for 𝑉𝐸𝑝𝑟 were also selected for the probability of 

symptoms, PS. Variables were then removed from the full model by backwards selection, 



incrementally removing the variable with the smallest effect until the model fit no longer improved. 

The type of variable (categorical/continuous) was selected as the one that gave the best model fit. 

We compared the results of this final model with the results of an unadjusted model, and models 

that adjust only for i) imperfect test specificity, ii) differential detection, and iii) covariates. 

2.5 Model fitting and parameter estimation 
We implemented all models using Hamiltonian Monte Carlo algorithms, as implemented in the Rstan 

package27 in the R statistical environment28. All intercept parameter priors were given a Cauchy 

distribution with centre 0 and scale 1029. Other regression coefficients were given Cauchy priors with 

centre 0 and scale 2.5. Continuous predictors were scaled to have mean 0 and standard deviation 

0.5, while categorical predictors were converted to dummy binary predictors and were shifted to 

have a mean of 0 and differ by 1 in their lower and upper conditions. Sensitivity analysis using 

uniform, non-informative priors on all regression coefficients, bounded between -50 and 50 showed 

consistent results, so these priors were used for the simulation models. All analyses were run with 4 

chains, with a warmup period of 1000 iterations and a total of 2000 iterations. Convergence was 

diagnosed based on the �̂� convergence diagnostic (all �̂� values were below 1.05 for all parameters) 

and trace plots that indicated good mixing. Code is available at: 

https://github.com/lucyrose96/JAMOVET.  

https://github.com/lucyrose96/JAMOVET


3 Results 

3.1 Simulation results 
Applied to simulated data with perfect test characteristics, the separate models and JAMOVET 

produced accurate and comparable results (Table 1, Scenario 1). For data simulated with imperfect 

test specificity for asymptomatic infections (Table 1, Scenarios 2 & 4), the separate analysis 

underestimated 𝑉𝐸𝑖𝑛 (true = 50%, Scenario 2 estimated = 32.40% [95% CI 24.35 to 56.88], Scenario 4 

estimated = 44.19 [95% CI 34.76-51.91]), while JAMOVET with bias adjustment accurately estimated 

all VE outcomes (Figure 2). When asymptomatic infections were 50% less likely to be detected than 

symptomatic infections (Table 1, Scenario 3), the separate analytical approach overestimated 𝑉𝐸𝑖𝑛 

by an absolute difference of 8.8% (95% CI 1.1 to 16.1), while JAMOVET gave an unbiased estimate 

(absolute difference 0.1% [95% CI -9.8 to 9.5]). 

 

Figure 2. Vaccine efficacy against infection (𝑉𝐸𝑖𝑛) estimates for separate analysis and JAMOVET analysis with bias 
adjustment. 

3.2 COV002 results 
298 (3.43%) and 291 (3.35%) participants experienced symptomatic and asymptomatic SARS-CoV-2 

infections before 25th February 2021, respectively. Most symptomatic cases were of mild or 

moderate severity, with only three participants requiring hospitalisation as a result of SARS-CoV-2 

infection and two classifying as severe (Supplementary Table 3). The median proportion of expected 

tests returned was 88.0%. Combined with known test sensitivity, this gave a median estimated 

probability of asymptomatic infection detection of 78.8% (IQR 70.3 to 83.4).   

Applying JAMOVET to COV002 without bias adjustment gave almost identical VE estimates to those 

reported from the trial (Table 3)30. It also estimated the yearly FOI at 31% (95% CI 28-34) and the 

probability of symptoms at 59% (95% CI 54-64). Adjusting for false negatives and incomplete 

adherence to regular asymptomatic testing decreased the estimated 𝑉𝐸𝑖𝑛 by an absolute difference  



 

Table 2. Vaccine efficacy estimates using separate analysis and JAMOVET analysis on simulated datasets. 

True 
parameter 
value (%)1 

Model estimated value (%) 

Scenario 1 
Specificity and prob. 

asymptomatic infection 
detection = 100% 

Scenario 2 
Specificity = 99.9% 

Scenario 3 
Prob. asymptomatic infection 

detection = 50% 

Scenario 4 
Specificity = 99.9% and prob. 

asymptomatic infection 
detection = 50%3 

Separate JAMOVET2 Separate JAMOVET2 Separate JAMOVET2 Separate JAMOVET2 

𝑽𝑬𝒊𝒏 50 49.51 49.90 32.40 49.73 58.83 49.86 44.19 49.15 

(41.28-56.85) (41.84-57.43) (24.35-40.17) (38.23-60.44) (51.07-66.07) (40.18-59.45) (34.76-51.91) (34.29-62.55) 

𝑽𝑬𝒑𝒓 50 - 49.89 - 49.21 - 49.72 - 49.77 

- (39.02-59.37) - (34.64-61.23) - (35.87-60.52) - (32.63-63.07) 

𝑽𝑬𝒔𝒚𝒎 75 74.41 74.90 74.30 74.75 74.42 74.91 74.33 74.84 

(67.89-80.46) (68.35-80.84) (67.22-81.12) (67.75-81.57) (67.81-80.43) (68.27-80.85) (67.49-81.04) (68.17-81.52) 

𝑽𝑬𝒂𝒔𝒚𝒎 12.5 10.76 12.14 4.43 10.09 8.96 11.72 3.53 7.67 

(-9.15-27.59) (-7.01-28.53) (-8.42-16.69) (-21.39-37.44) (-18.91-32.40) (-14.88-34.99) (-17.32-20.71) (-38.19-41.34) 

1 𝑽𝑬𝒊𝒏and 𝑽𝑬𝒑𝒓were parameters in the models. 𝑽𝑬𝒔𝒚𝒎and 𝑽𝑬𝒂𝒔𝒚𝒎were calculated from these parameters: 𝑽𝑬𝒔𝒚𝒎 = (𝟏 − 𝑽𝑬𝒊𝒏)(𝟏 − 𝑽𝑬𝒑𝒓) and 𝑽𝑬𝒂𝒔𝒚𝒎 =
(𝟏−𝜽)(𝟏−𝑽𝑬𝒊𝒏)+𝜽(𝟏−𝑽𝑬𝒊𝒏)𝑽𝑬𝒑𝒓

(𝟏−𝜽)
, 

where 𝜃 is the probability of symptoms in the unvaccinated. 
2 Joint analysis of multiple outcomes in vaccine efficacy trials with bias-correction applied. 
3 Modelled as incomplete adherence to testing rather than imperfect test sensitivity (50% detection of true positives and false positives) 
 



 

of 4% and increased the estimated 𝑉𝐸𝑝𝑟 by 6%. Accounting for imperfect test specificity made a 

greater difference to the model estimates, increasing estimated 𝑉𝐸𝑖𝑛 by 5% and decreasing 

estimated 𝑉𝐸𝑝𝑟 by 6%. As expected, adjusting for a lower probability of detecting asymptomatic 

infections decreased the estimated probability of symptoms, while accounting for false positive 

asymptomatic infections increased this parameter. 

Table 3. JAMOVET estimates for COV002 analysis population with bias and covariate adjustments. 

 Trial-
reported 
results 30 

Joint model estimated mean (95% CI) 

 No 
adjustment 

Sensitivity1 only Specificity 
only 

Covariates 
only 

All 
adjustments 

𝑉𝐸𝑖𝑛 (%) 51 (41-59) 51 (42, 59) 47 (37, 56) 56 (47, 64) 49 (40, 58) 49 (37-59) 

𝑉𝐸𝑝𝑟  (%) - 41 (29, 53) 47 (33, 59) 35 (20, 48) 45 (31, 57) 44 (27-58) 

𝑉𝐸𝑠𝑦𝑚  (%) 72 (63-79) 71 (63, 78) 72 (63, 79) 71 (63, 79) 72 (63, 80) 72 (63-80) 

𝑉𝐸𝑎𝑠𝑦𝑚  (%) 15 (-12-35) 22 (2, 39) 22 (2, 39) 28 (4, 48) 11 (-18, 
32) 

13 (-88-39) 

Yearly FOI (%) - 31 (28, 34) 37 (33, 40) 28 (25, 31) 30 (27, 33) 31 (27-35) 

Prob. Symptoms 
(%) 

- 59 (54, 64) 50 (45, 55) 64 (59, 69) 56 (51, 61) 54 (48-60) 

𝑉𝐸𝑖𝑛 = Vaccine efficacy against infection; 𝑉𝐸𝑝𝑟 = vaccine efficacy against progression to symptoms, 𝑉𝐸𝑠𝑦𝑚 = vaccine efficacy against 

symptomatic infection, 𝑉𝐸𝑎𝑠𝑦𝑚 = vaccine efficacy against asymptomatic infection. 
1Accounts for imperfect PCR test sensitivity and incomplete adherence to regular asymptomatic testing. 

 

Several variables were identified as predictive of one of the four key parameters. This is shown in 

Figure 3, where the reference is an example subgroup with the following characteristics: 30 years, 

non-healthcare worker, not obese, and white ethnicity. Other example subgroups are shown in black 

to show how modifying one of the characteristics changes each estimate. The FOI decreased with 

age, while HCWs, especially those seeing COVID-19 patients had a greater risk of SARS-CoV-2 

infection. The probability of developing symptoms was slightly higher in HCWs who saw COVID-19 

patients and people classifying as obese (BMI ≥30) or identifying as non-white ethnicity. While 𝑉𝐸𝑖𝑛 

decreased with age (reference age 30 years = 58% [95% CI 45 to 69] vs reference age 60 years = 39% 

[95% CI 15 to 58]), 𝑉𝐸𝑝𝑟 increased with age (reference age 30 years = 42% [95% CI 25 to 58] vs 

reference age = 60 years 62% [95% CI 38 to 78]), such that the 𝑉𝐸𝑠𝑦𝑚 was approximately the same 

across age groups (reference age 30 years 76% [95% CI 66 to 84] vs reference age 60 years 84% [95% 

CI 73 to 84]).  

Overall, adjustment for these covariates and the biases lead to slightly lower 𝑉𝐸𝑖𝑛 estimates than 

reported during the trial, (49% [95% CI 37-59] vs 51% [95% CI 41-59] for JAMOVET vs published 

estimates respectively) but gave consistent results for 𝑉𝐸𝑠𝑦𝑚 and 𝑉𝐸𝑎𝑠𝑦𝑚. The JAMOVET model also 

estimated FOI at 31% (95% CI 27 to 35) per year and the probability of symptoms at 54% (95% CI 48 

to 60) for the trial population as a whole. 

 



  

 

Figure 3. Absolute estimates with 95% credible intervals for each model parameter for example subgroups in the COV002 
trial, using the final model (adjusting for sensitivity, specificity, adherence to testing and covariates). Reference = aged 30 

years, non-healthcare worker, not obese, white. All other estimates are example subgroups with the reference 
characteristics and a single characteristic modified. 

 

  



4 Discussion 
In this paper we have demonstrated the utility and benefits of JAMOVET for the analysis of two 

dependent VE outcomes (symptomatic and asymptomatic infection). We have shown its accuracy in 

estimating VE in the presence of strong biases and demonstrated the additional benefits of 

evaluating socio-demographic predictors of the risk of infection, progression, and VE against each of 

these outcomes. It therefore provides an integrated, unbiased analytical approach that has 

considerable advantages over classical separate analyses. 

Our simulations showed the large biases that can be corrected using JAMOVET. In our simulation 

scenarios, the separate analysis approach underestimated 𝑉𝐸𝑖𝑛 by an absolute difference of 17.6% 

(95% CI -9.8 to 25.65) when test specificity was imperfect; when there was differential detection of 

infections based on symptom status, 𝑉𝐸𝑖𝑛 was overestimated by 8.8% (95% CI 1.1 to 16.1). 

JAMOVET accurately estimates all VE outcomes in the presence of such biases because it explicitly 

models the accumulation of false positives and differences in probabilities of detection of different 

outcomes.  

Applied to the COV002 data, the effects of the bias adjustments were relatively small. For example, 

adjusting for specificity increased the estimated 𝑉𝐸𝑖𝑛 by 6% while adjusting for differential detection 

decreased it by 4%. The modest effect of the specificity adjustment is likely because the assumed 

test specificity was high (99.945%31) - we did not account for any potential cross contamination, 

which could cause additional false positives32. When including both covariates and bias adjustment, 

each counteracted the other (differential detection giving an upwards bias for 𝑉𝐸𝑖𝑛 and imperfect 

test specificity giving a downwards bias). Overall, adjusting for biases and covariates, JAMOVET gave 

a slightly lower estimate for 𝑉𝐸𝑖𝑛 than reported in the trial30, but all other VE estimates were 

consistent (importantly, JAMOVET 𝑉𝐸𝑠𝑦𝑚 = 72% [95% CI 63-80], trial-reported 𝑉𝐸𝑠𝑦𝑚 = 72% [95% CI 

63-79], demonstrating robustness to bias-adjustment in this case. 

Several predictors of the risk of SARS-CoV-2 infection, probability of progressing to symptoms, and 

VE were identified for the COV002 data. We identified age as the only predictor of 𝑉𝐸𝑖𝑛, with 

participants aged 60 years estimated as having a 𝑉𝐸𝑖𝑛 a third lower than participants aged 30 years. 

This is supported by vaccine effectiveness research on the Pfizer-BioNTech (BNT162b2) and the 

Oxford-AstraZeneca COVID-19 vaccines33, in which a greater reduction in risk of post-vaccination 

infection was found in participants aged 55 years or younger than in those older than 55 years. 

However, we also showed that while vaccinated older participants had poorer protection against 

infection, their risk of symptomatic COVID-19 was approximately the same as younger participants 

because they showed greater vaccine-induced protection against progression to symptoms. This is 

supported by vaccine effectiveness research by Antonelli et al.34, who found a greater reduction in 

risk of symptom development in the over 60s than in any other age group. It may reflect the 

remodelling of the immune system with age, with impaired antibody protection but maintenance of 

an effective T cell response35,36. We also identified non-white ethnicity as a predictor of higher𝑉𝐸𝑝𝑟. 

Due to a small proportion of participants enrolled from ethnic minority groups, we did not have the 

statistical power to examine this result to a greater resolution, so this may be a target area for 

further research. 

As has been previously shown, HCWs who saw COVID-19 patients and people of younger age had a 

higher risk of SARS-CoV-2 infection 34,37,38 compared with non-healthcare workers and people of 

older age. Our results and previous work suggest that obesity and non-white ethnicity are associated 

with more severe COVID-19 outcomes39,40. We also found a higher probability of symptoms in HCWs, 

particularly those that saw COVID-19 patients. High viral dose, likely experienced by many HCWs, has 



been postulated to be associated with increased symptom severity41,42.  However, evidence is limited 

and moreover, personal protective equipment became widespread later in the pandemic. An 

alternative explanation is that, despite our adjustment for adherence to weekly asymptomatic 

testing, there may still be some residual differential detection bias, leading subgroups with poorer 

weekly asymptomatic testing adherence (such as HCWs and younger age groups]) to have 

inaccurately high estimates for the probability of symptoms. 

Bias adjustment for imperfect test sensitivity and specificity required prior estimates of the 

probability of detecting each type of outcome and the rate of accumulation of false positives (we 

could not estimate these parameters within the model). Test specificity is usually known, but the 

number of false positives arising from contamination within the lab is more difficult to quantify, and 

the relative probabilities of detecting each outcome may also be difficult to estimate. In our analysis 

we had good literature on PCR sensitivity for asymptomatic infections and on the adherence to 

regular testing, which allowed us to estimate an individual-based probability of asymptomatic 

infection detection. Even so there is a risk of residual bias resulting from unadjusted differential 

detection.  

We have only applied our estimation framework to a model of disease progression with two stages. 

However, the model can be extended to multiple stages including more severe outcomes or 

alternative disease pathways (Supplementary Methods). In addition, the application of our model to 

COV002 was limited by the sample size, as we were not able to evaluate all predictors at their 

smallest category resolution or additional levels of severity beyond symptoms. If applied to a larger 

clinical trial or vaccine effectiveness study, VE against progression to more severe outcomes could 

be estimated. For example, this framework could be applied to cohort studies of vaccine 

effectiveness to estimate VE against progression to hospitalisation, admission to intensive care and 

death. In addition, JAMOVET can also be used to investigate immune correlates of protection (CoPs), 

through their mediating effects on VE against infection and disease progression.  

There are many benefits of using a Bayesian approach, implemented in Rstan, for our analytical 

framework. Firstly, it provides posterior probability distributions and 95% credible intervals for 

model parameters, including VE, which have a more natural interpretation than frequentist 

maximum likelihood confidence intervals. Secondly, the Bayesian framework provides a natural 

inferential framework for complex hierarchical models that allows the incorporation of prior 

knowledge in the form of prior probability distributions for parameters. This prior knowledge may 

come from other vaccine trials or epidemiological studies that provide information, for example, on 

how the risk of infection or probability of disease progression depend on covariates (such as age, 

ethnicity, sex, etc.). In the absence of prior knowledge (as in the analysis presented here), non-

informative priors can be used, and the Bayesian posterior probabilities will be equivalent to the 

model likelihood as derived in maximum likelihood (frequentist) approaches. Finally, Rstan provides 

an open-source, computationally efficient platform in which code is simple and straightforward to 

edit, allowing users to extend models of infection and disease to their specific scenario of interest. 

In conclusion, JAMOVET is a powerful tool for evaluating vaccine trials against infections with 

multiple dependent outcomes and identifying the stages in the disease process at which the vaccine 

acts. It can be used to correct for known biases and identify predictors of key outcomes, enabling 

more targeted vaccine development and distribution. 
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