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ABSTRACT
Background: As artificial intelligence (AI) continues to advance with breakthroughs in natural
language processing (NLP) and machine learning (ML), such as the development of models like
OpenAI's ChatGPT, new opportunities are emerging for efficient curation of electronic health
records (EHR) into real-world data (RWD) for evidence generation in oncology. Our objective is
to describe the research and development of industry methods to promote transparency and
explainability.

Methods: We applied NLP with ML techniques to train, validate, and test the extraction of
information from unstructured documents (eg, clinician notes, radiology reports, lab reports, etc.)
to output a set of structured variables required for RWD analysis. This research used a
nationwide electronic health record (EHR)-derived database. Models were selected based on
performance. Variables curated with an approach using ML extraction are those where the value
is determined solely based on an ML model (ie, not confirmed by abstraction), which identifies
key information from visit notes and documents. These models do not predict future events or
infer missing information.

Results: We developed an approach using NLP and ML for extraction of clinically meaningful
information from unstructured EHR documents and found high performance of output variables
compared with variables curated by manually abstracted data. These extraction methods resulted
in research-ready variables including initial cancer diagnosis with date, advanced/metastatic
diagnosis with date, disease stage, histology, smoking status, surgery status with date, biomarker
test results with dates, and oral treatments with dates.

Conclusions: NLP and ML enable the extraction of retrospective clinical data in EHR with
speed and scalability to help researchers learn from the experience of every person with cancer.
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INTRODUCTION

A barrier to generating robust real-world evidence (RWE) is access to research-ready datasets
that demonstrate sufficient recency, clinical depth, provenance, completeness, representativeness
and usability. For studies using routinely collected electronic health record (EHR)-derived data, a
considerable amount of data pre-processing and labor-intensive curation is required to create a
dataset with clinically meaningful variables and outcomes needed for analysis (Figure 1).

The challenge is that so much valuable information is trapped within unstructured documents
like clinician notes or scanned faxes of lab reports, where extracting the relevant data is far from
trivial. The traditional approach to having clinical experts manually review patient charts to
abstract data is time consuming and resource intensive.1 This approach limits the number of
patients available for research purposes. Learnings can quickly become outdated—for example
as new biomarkers and treatments emerge, the standards of care change, or new indicators for
social determinants of health are prioritized. In other instances, answers to important research
questions remain infeasible due to limited sample sizes.

Figure 1. Overview of data variables defined by structured and unstructured information in EHR.

Artificial intelligence (AI) advances in the areas of natural language processing (NLP) and
machine learning (ML) have created new opportunities to improve the scale, flexibility, and
efficiency of curating of high-quality real world data (RWD) in oncology.2 3 4 5 6 7 8 9 10 The
definitions of foundational AI/ML terminology are provided in Box 1. When using ML and NLP
for RWE, current guidance emphasizes transparency.11 12 13 14 15 The UK National Institute for
Health and Care Excellence instructs that “where human abstraction or artificial intelligence
tools are used to construct variables from unstructured data, the methods and processes used
should be clearly described”.11
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In response to guidance, the objective of this paper is to describe the general approach for
applied NLP and ML methods that are used by Flatiron Health to extract data from unstructured
documents stored in oncology care EHR. A key distinction in our terminology is the use of
"abstraction" meaning performed by humans and "extraction" meaning performed by models.
Out of scope for this paper are other AI, ML, and NLP innovations and contributions from
Flatiron Health, such as: model-assisted cohort selection1 16; continuous bias monitoring
software17; automated mapping of laboratory data18; prediction of future health events19; and
point-of-care products to improve patient care and clinical trials.20 21

METHODS

Overview
We developed a set of research analysis variables using information from the documents
available in patient charts. Variables were selected when commonly required for retrospective
observational studies in oncology but not consistently available in claims data or structured EHR
data, where a corresponding version was curated by expert abstraction with a large amount of
abstracted data available for training models.22

The variables curated through our ML extraction approach are those where the values are solely
derived from the identification of clinical details in the EHR documents by an ML model in
combination of NLP techniques and rules-based logic. It is important to note that these values are
not predictions or inferences, but rather a direct extraction of information that is clearly
documented in the EHR.

EHR-derived Data Source
This study used the nationwide Flatiron Health EHR-derived de-identified database. The Flatiron
Health database is a longitudinal database, comprising de-identified patient-level structured and
unstructured data.23 1 At the time of this research, the database included de-identified data from
approximately 280 US cancer practices (~800 distinct sites of care).

Structured and unstructured data modalities are available in the database. EHR structured data
elements include, but are not limited to, documented demographics (eg, year of birth, sex,
race/ethnicity, etc.), vitals (eg, height, weight, temperature, etc.), visits, labs, practice
information, diagnosis codes, medication orders, medication administrations, ECOG
performance status, health insurance coverage, and telemedicine (Figure 1). EHR unstructured
data and documents include, but are not limited to, paragraphs of clinic visit notes, PDF scans of
lab results, radiology images with reports, pathology reports, and communications between the
patient and care team (Figure 2). For the purpose of this paper, all the figures contain fictional
representations of documents, sentences, dates and patient IDs.
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Figure 2. Examples of unstructured documents from EHR that are used as inputs for ML-extraction of
information (all dates and patient IDs are fictitious).

Patient Population
The large general cross-tumor cohort includes all patients with at least one International
Classification of Diseases (ICD)-9 or ICD-10 cancer code and at least one unique-date clinic
encounter documented in the EHR (reflected by records of vital signs, treatment administration,
and/or laboratory tests) on or after January 1, 2011. The distribution of patients across
community and academic practices largely reflects patterns of care in the US, where most
patients are treated in community clinics, but can vary between cancer types.

Clinical Expert Abstraction of Variables for Model Development
Critical information in patient charts has been manually abstracted by trained clinical experts (ie,
clinical oncology nurses or tumor registrars), following a set of standardized policies and
procedures. To abstract data from patient charts, we use a foundational technology24 that enables
clinical experts to more easily review hundreds of pages of documents to determine patient
characteristics, treatments, and outcomes documented in the EHR (Figure 3).
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Figure 3. Technology enabled expert abstraction. Abbreviations: P&Ps, Policies and Procedures. All
dates and patient IDs are fictitious.

Years of manual abstraction by a workforce of thousands of abstractors at Flatiron Health have
created a large and high-quality corpus of labeled oncology EHR data. Clinically-relevant details
specific to each cancer type are abstracted from every form of clinical documentation available
in the EHR, including clinic visit notes, radiology reports, pathology reports, etc. Abstractors are
trained to locate and document relevant information by following policies and procedures tested
and optimized for reliability and reproducibility through iterative processes, and oversight is
provided by medical oncologists.

The abstraction process undergoes continuous auditing to monitor abstractor performance, while
proprietary technology links each curated data point to its source documentation within the EHR,
enabling subsequent review. At the individual patient level, this approach provides a recent and
robust longitudinal view into the clinical course, capturing new clinical information as it is
documented within the EHR.

Flatiron Health has abstracted sets of clinically meaningful variables from more than 300,000
people with cancer to develop disease-specific de-identified research-ready databases.23 Limited
by the capacity of human abstractors, there had remained millions of patients with cancer in the
Flatiron Health database for whom no unstructured data had yet been curated to create variables
with the clinical depth needed to generate meaningful insights. If a hypothetical variable required
30 minutes of chart review by a clinical expert to abstract the information of interest for 1
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patient, then it would take a team of 100 full-time abstractors more than 7 years to finish defining
1 variable for a population of 3 million patients.

Overview of Machine Learning Extraction Approach
The objective of this application of NLP and ML methods was to replicate the expert abstraction
process described in the previous section. When developing ML models for extracting
information, all of the clinical abstractor expertise that was incorporated into the manual
abstraction of variables is available to learn from through training. Once iterated upon and placed
in production, ML models can automate information extraction from unstructured clinical data
sources in a way that mimics expert clinical abstractors. Flatiron Health has developed a
collection of proprietary AI/ML algorithms that include, but are not limited to, deep learning
architectures,25 text snippet-based modeling approaches,26 and extraction of patient events and
dates.27 28 29

Alongside the manually-abstracted labels, we use NLP to pull relevant textual information from
charts to use as inputs to train built-for-purpose ML models and model architectures for a given
extraction task. Through this process we can make our end variables appropriate for
disease-specific or pan-tumor (ie, histology-independent) applications. For example, by deciding
whether or not to use model training data sourced from curated disease-specific cohorts or
any-cancer cohorts, we can make our model’s output variables built-for-purpose to be used in an
analysis that generates meaningful RWE for a specific research question.

A range of model architectures were evaluated and considered for the purpose of information
extraction for variables of interest. The model output of variable classes ranged, including:

● binary (eg, metastatic diagnosis Yes/No)
● categorical unordered (eg, never smoker, history of smoking, current smoker)
● categorical ordered (eg, cancer stage I-IV)
● date (eg, 02/05/2019 start of oral treatment X)

Date and classification can come from the same model, separate models, or connected models.

Natural Language Processing to Generate Model Inputs
For each variable of interest, we begin with clinical experts constructing a list of clinical terms
and phrases related to the variable. Since models are trying to extract explicit information from
charts, rather than infer it, only terms that are directly relevant to a specific variable are included
(eg, when extracting a patient’s histology, terms could include “histology,” “squamous,” and/or
“adenocarcinoma,” but do not include treatment or testing terms from which the histology might
be indirectly inferred).
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Next, we use NLP techniques to identify sentences in relevant unstructured EHR documents (eg,
oncology visit notes, lab reports, etc.) that contain a match to one of the clinical terms or phrases.
The contextual information surrounding the clinical term is critical because the words at the
beginning of a sentence may change the interpretation of a key word at the end of a sentence.
ML models can understand if the clinical concept appears and under what context—such as, if
negativity, speculation, or affirmation exists in the surrounding clinical terms (ie, snippets).
Where applicable, any associated dates within these sentences are also identified. These
sentences are then transformed into a mathematical representation that the model can interpret.
The output of this document processing is a broad set of features aimed at fully capturing
document structure, chronology, and clinical terms or phrases.

Machine Learning Model Development

Features and Labels
The features defined by NLP become the inputs provided to the model to score the likelihood
that a given patient document is associated with each class of a particular categorical variable
(eg, histology categories of non–squamous cell carcinoma, squamous cell carcinoma, non–small
cell lung cancer [NSCLC] histology not otherwise specified). The final model output is the
variable value for each patient. The labeled dataset is commonly split into three subsets: a
training set, a validation set, and a test set. The training and validation sets are used to build the
model, which often involves an iterative development process, while the test set is used to
evaluate the performance of the final ML model.

Model Development
The training set comprises labeled data points that are used to optimize the model’s parameter
values. In an iterative process, training examples are provided to the model, its outputs are
compared to the labels, and the parameter values are adjusted in response to errors. By using
manually-abstracted values as labels, the objective of this process is for the model to learn what
answer a human abstractor would give when reading a specific clinical text.

The validation set is used to assess how well the model has learned these associations. Because
the model does not see any data from patients in the validation examples during training, they
can be used to estimate how it will perform on new, unlabeled examples once it is put into
production. Validation performance is commonly assessed using metrics such as precision, recall,
and F1 score (See Box 1 Key Terms in Machine Learning). These aggregate metrics, combined
with review of individual errors, inform decisions about search terms, text preprocessing steps,
and model architectures. Experimentation continues until a final “best” model is identified.

When a ML model is trained to perform a classification task, it outputs scores for each possible
class for each data point. These scores are between 0 and 1 and show the probability that a
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patient belongs to each class, based on information in their electronic health record. However,
the scores may vary if the wording in the records is unusual or if there is conflicting information.
For example, if a patient's cancer stage is being restaged, there may be multiple mentions of
different stages in the record, and the model may assign moderate scores to each stage if the
restaging event is unclear.

To produce a discrete class value, the class with the highest score is often chosen, but other
approaches may optimize performance. In particular, a probability threshold may be chosen such
that a patient will be classified into one class if and only if their score exceeds the threshold. The
optimal threshold depends on factors such as class balance and is typically chosen empirically.30

When no class receives a sufficiently high score, another option is to defer to abstraction to
resolve uncertainty (Waskom et al, in press, 2023).

Figure 4. Illustration of deep learning bidirectional LSTM blocks applied sequentially to produce
representations (aka, embeddings or encodings) that encapsulate the information added to the sentence by

each new word. Abbreviations: LSTM, long short-term memory.

We explored and experimented with a range of ML models and architectures for the purpose of
extracting specific variable information from the EHR. Deep learning architectures included long
short-term memory (LSTM), Gated recurrent units (GRU), and bidirectional encoder
representations from transformers (BERT).31 32 33 These models can learn thousands or millions
of parameters, which enable them to capture subtleties in the text. They read sentences as a
whole and use the words around a clinical term to incorporate surrounding context when
determining the extracted class. When they receive very large texts as inputs, they can figure out
where the relevant information is and focus on this section and its context.

For example, in LSTMs, words are passed into the model sequentially; during each step through
a sentence, the model has access to memory (ie, an internal state) that is impacted by the
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previous word, in effect allowing the model to “remember” the previous word (Figure 4). The
LSTM block combines the new word with the information that came before to derive a more
contextually rich representation of the word. For instance, when the LSTM reads the word
“Advanced,” it remembers (via the model’s internal state) that it was preceded by the word “not”
and is more likely to classify the patient as “not advanced.”

Model Evaluation and Performance Assessment
Once iteration on the ML model is complete, final model performance is measured on a test set
that uses manually-abstracted labels as the source of truth. Test sets are designed to be large
enough to power both top-level metrics and sub-group stratifications on a “held out” set, that is,
on data not used to train the ML model or validate performance during prototyping. This allows
the test set to assess the model’s ability to correctly classify data points that it has never seen
before, which is typically referred to as the “generalization” of the model.

Measuring performance is a complex challenge because even a model with good overall
performance might systematically underperform on a particular subcohort of interest, and
because while conventional metrics apply to individual models, dozens of ML extracted
variables may be combined to answer a specific research question. We use a research-centric
evaluation framework34 to assess the quality of variables curated with ML. Evaluations include
one or more of the following strategies: (1) overall performance assessment, (2) stratified
performance assessment, and (3) quantitative error analysis, and (4) replication analysis. As
variables curated with NLP and ML are expected to be incorporated into the evidence generated
that will guide downstream decision-making, variable evaluation can also include replication of
analyses originally performed using abstracted data. Replication analyses allow us to determine
whether ML-extracted data—either individual variables or entire datasets—are fit-for-purpose in
specific use cases by assessing whether they would lead to similar conclusions.

Specific variable-level performance metrics are only interpretable for cohorts with characteristics
that are similar to the test set, depending on inclusion criteria such as the type and stage of
cancer. As a result, we do not report them here.

Python was the primary coding language used in the development of ML models described here.
Institutional Review Board approval of the study protocol was obtained before study conduct,
and included a waiver of informed consent.

RESULTS

We successfully extracted key information from unstructured documents in the EHR using the
developed proprietary ML models trained on large quantities of data labeled by expert
abstractors. For this paper, we are focusing the results on examples within NSCLC as they were
the first applications we developed. A set of 10 ML models output 20 distinct RWD variables for
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analysis, including initial cancer diagnosis with date, advanced/metastatic diagnosis with date,
disease stage, histology, smoking status, surgery details, biomarker test results, and oral
treatments with dates. Language snippets were the inputs for these models to produce a data
point for each patient for each variable as outputs, illustrated in Figure 5.

Figure 5. Sentences (fictional examples here) from EHR are inputs to deep learning models that produce
a data variable value for each patient as an output. Language snippets are only extracted around key terms
from which a variable might be extracted, and not around terms from which it could be indirectly inferred.
Abbreviations: EHR, electronic health record; PD-L1, programmed death ligand 1.  All dates and patient

IDs are fictitious.

Datatables containing variables curated by an approach using ML had the same appearance and
functionality as variables curated with an approach using technology-enabled expert human
abstraction (Figure 6).
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Figure 6. Illustration of a data table with variables curated by an approach using expert human abstractors
(right) alongside a data table with variables curated by an approach using deep learning models (left)
shows opportunity for exchangeable utility in real-world data analysis. All dates and patient IDs are

fictitious.

Models had high performance when trained for disease-specific applications and
histology-independent (ie, tumor agnostic) patient cohorts. Detailed performance metrics are out
of scope for this paper. Beyond satisfactory ML metrics, we found that in some cases
ML-extraction can achieve similar error rates as manual abstraction by clinical experts (Waskom
et al, in press, 2023), and replication studies suggest that research analysis relying on multiple
variables can reach similar results and conclusions when using variables curated by
ML-extraction compared with human experts (Benedum et al, in press, 2023).35 36

Approaches and learnings related to specific variables are described below.

Application Examples
We have developed ML models for a number of different variables and use cases. A few of the
more prominent models and their associated use cases are described below.

Cancer Diagnosis and Dates
We successfully developed deep learning models focused on the task of extracting initial,
advanced, and metastatic cancer diagnosis and the corresponding diagnosis dates. Historically,
ICD codes have been used as a proxy for diagnosis, as they are well captured in structured EHR
data due to their use in billing. However, we have seen that the precision of ICD codes varies by
disease, is not strongly correlated with disease prevalence in the larger population, and can be
lower than 50%. With that in mind, extracting accurate diagnosis information is imperative to

Page 12 of 25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.02.23286522doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.02.23286522
http://creativecommons.org/licenses/by-nc-nd/4.0/


understanding patient populations, as errors at the diagnosis level propagate to all other
variables. These models build on prior foundational research on extracting information from
longitudinal clinic notes.37 38 A conceptual diagram of the approach is presented in Figure 7. The
initial, advanced, and metastatic variables are generated using multiple, distinct ML models. We
have found success chaining the models together—providing the output of one model as the
input to the next—to prevent conflicting predictions and improve overall accuracy. An early
investigation into model performance has been presented previously.39

Figure 7. Conceptual diagram of machine learning model for extraction of metastatic diagnosis and date.

Additional complexity exists when trying to identify patients with rare cancers, primarily due to
the low number of labels. We have developed techniques to allow our models to successfully
generalize to these diseases, with few or no labels provided during training from the target
disease(s).

Disease Stage and Histology
We successfully developed a deep learning model to extract cancer stage information and a
second ML model to extract the histology of the tumor. One example of how we used this
approach for a disease-specific application was training on patients with NSCLC. This model
was designed to extract main stage (I-IV) and substage (letters A-C) granularity. Histology was
extracted as a non-ordered categorical variable with the possible variable values of
non–squamous cell carcinoma, squamous cell carcinoma, or NSCLC histology not otherwise
specified.

As cancer stage is documented similarly across solid tumor diseases, we were able to scale our
approach to extract disease stage in a tumor-agnostic cohort with a similar deep learning
architecture but training data composed of patients with multiple cancer types. While
hematologic cancers have some important differences from solid organ cancers when it comes to
assigning stage (risk stratification scores, no concept of metastatic disease, etc.), we found
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success using a deep learning model to extract this information for a number of hematologic
cancers. Tumor histology is not as straightforward to scale across cancer types, as different
cancers originate from different possible cell types (and therefore have different histologies).
This means that to date, we use distinct histology models for each type of cancer. Performance
evaluations for disease stage and histology are conducted at each category level and by cancer
type as appropriate for use cases.

Smoking Status
We successfully developed a deep learning model to extract information in the patient chart that
indicates whether or not the patient has any lifetime history of smoking. The categorical variable
output has the possible values as history of smoking, no history of smoking, or unknown. The
most relevant sentences for this model were most often found in social history paragraphs of text
that is a standard section in clinical encounter notes. Critical document categories that enabled
high accuracy of this model included access to oncology clinic visit notes, radiology reports,
surgery reports, lab reports, and pulmonary test result reports. The smoking status model was
trained on a broad dataset of patients that included many cancer types for whom we have
abstracted smoking status.

Surgery and Surgery Date
We successfully developed a deep learning model to extract information about whether the
patient had a primary surgical procedure where the intent was to resect the primary tumor. As
these types of surgeries often happen in outpatient facilities or hospitals, this valuable
documentation lives in unstructured text formats in the oncology EHR. We have abstracted
surgery data in certain disease cohorts but, because of the similarity in documentation
approaches across cancer types, we were able to train a model that is tumor agnostic. This
allowed us to scale surgery status and date in larger patient populations and in new disease types.

Biomarker Testing Results and Result Date
We successfully developed and deployed models to generate variables for biomarker testing,
including extraction of the dates that the patient had results returned (Figure 6). One part of the
model is able to identify whether or not a given document for a patient contains a biomarker test
result. A separate part of the model is able to extract from the document the date a result was
returned and the biomarker result. Early efforts with a regularized logistic regression model were
presented previously40 and more sophisticated models have been developed since.

A model first cycles through every EHR document for a given patient to understand whether or
not the document contains biomarker testing results. These models rely on access to lab reports,
including those saved in the EHR as a PDF or image of a scanned fax. The models are able to
process report documents produced by different labs (eg, Foundation Medicine, Caris, Tempus,
etc.) in addition to the clinician interpretations in visit notes.
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A separate model then extracts the biomarker (eg, included but not limited to ALK, BRAF, EGFR,
KRAS, MET, NTRK, RET, ROS1, or PD-L1) and test result (eg, positive, negative, or unknown).
This approach gives our ML models flexibility to extract biomarkers that the model may not
have seen before in training. For PD-L1, where results are quantitatively reported, a separate ML
model was developed to extract percent staining, with classes of <1%, 1%-49%, ≥49%, and
unknown.

Since patients can receive biomarker testing multiple times throughout the treatment journey and
at multiple facilities, it is possible that a given patient has more than one biomarker test result
and date. For each patient, this allows us to determine biomarker status at different clinical
milestones (eg, advanced diagnosis date, start of second-line treatment, etc.).

Oral Treatments and Treatment Dates
We successfully developed a deep learning model to extract oral treatment information, including
the treatment name, and the span for which the treatment was administered. In contrast to
intravenous therapies such as chemotherapy or immunotherapy in which each dose is ordered
and administered to be given in the clinic or infusion room, oral therapies are prescribed to
patients to be filled by an outpatient pharmacy, which is frequently outside the clinic site. To
have a complete understanding of all cancer treatments received or delayed (eg, postponed
during a hospitalization), it is necessary to enumerate the use of oral treatments through review
of unstructured clinician visit notes, prescriptions, and communications with the patient or
patient representative. Important information to select within the paragraphs of text include the
treatment name, start date, and end date. We previously published an initial framework38 for
extracting drug intervals from longitudinal clinic notes, prescriptions, and patient communication
documents and have developed more sophisticated and accurate methods since then. We found
the visit notes contained key pieces of information about treatments being held or started when
patients were hospitalized.

The model is trained to select mentions of a specific list of drug names used for oral treatment in
the specific cancer type, along with the start date and end date. These oral treatment variables are
generated using three distinct ML models. The list of oral treatments of interest were specific to
each disease and defined by oncology clinicians. Expert abstraction from charts includes
collection of treatment start dates and discontinuation dates that were used for ML model
training.

DISCUSSION
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This paper described one approach to curating real-world oncology data variables from
unstructured information in EHR using NLP and ML methods. Model development was possible
with access to a large and high quality corpus of labeled oncology EHR data produced via
manual abstraction by a workforce of thousands of clinical expert abstractors over the course of
several years. We now have models that are able to meet or even exceed human abstraction
performance on certain tasks. Using a performance evaluation framework34 for variables curated
using the approach of ML extraction we affirmed high quality and fitness-for-use in RWE
generation. We have shown that validations using the combination of multiple ML-extracted
variables in one RWD analysis demonstrated no meaningful difference in RWE findings based
on replications with the Flatiron Health variables curated by ML extraction compared with
expert human abstraction (Benedum et al, in press, 2023).36 35

Crucial information about clinical details may be recorded only within free-text notes or
summaries in unstructured EHR documents. Our models primarily rely on deep learning
architectures, because curating data from such sources usually requires techniques that capture
the nuances of natural language. At the same time, we select model architectures on a
case-by-case basis depending on what works best for each variable, and we have found that the
quality of the training data and labels can be just as if not more important to success. Progress in
AI research is rapidly accelerating, as demonstrated by the impressive generative abilities of
models like gpt3 and its ChatGPT application. We expect that future advances will likewise
make deeper and more nuanced clinical concepts accessible to ML extraction, although the
generative framework itself may remain more suited for tasks such as summarization41 than for
scalable curation of structured real-world datasets.

The mission to improve and extend lives by learning from the experience of every person with
cancer is more important than ever. With increasingly specific combinations of patient
characteristics, disease, and therapy, we need to learn from as many relevant examples as
possible to have statistically meaningful results. ML expands the opportunity to learn from
patients who have been oppressed or historically marginalized in oncology clinical trials.42 43 As
oncology care rapidly evolves, and the treatment landscape becomes more
personalized—targeting new biomarkers, finely tuned to increasingly particular patient
profiles—transparent fit-for-purpose applications of ML will have increasing importance. With
high performance models, we can truly learn from every patient, not just a sample. It also creates
an opportunity to improve the completeness of RWD variables that were previously defined by
only structured data elements, reducing potential bias in evidence.

There are strengths and limitations to the EHR curation approaches described here. Strengths
include the large size, representativeness, and quality of training data used; success across a
multitude of cancer types; and the explainability of approach to finding clinical details in
documents. Massive volumes of high-quality expert abstracted data were a unique advantage for
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training high-quality ML models. Researchers at Stanford have confirmed similar capabilities
with a different EHR dataset—detecting the timeline of metastatic recurrence of breast cancer.44

The ML models described here were trained for and applied only in a US population.23 While the
most suitable model architectures for each variable may be transferable across country borders, a
limitation of this approach is that models must be re-trained with local data for highest
performance.

The capability to build ML models that can extract RWD variables accurately for a large number
of patients further enables the possible breadth and depth of timely evidence generation to
answer key policy questions and understand the effects of new treatment on health outcomes.
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AI, artificial intelligence; BERT, bidirectional encoder representations from transformers;
EHR, electronic health records; LSTM, long term short memory; ML, machine learning; NPV,
negative predictive value; NSCLC, non–small cell lung cancer; P&Ps, Policies and Procedures;
PPV, positive predictive value; RWD, real world data; RWE, real-world evidence.
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Box 1. Key Terms in Machine Learning

Foundational machine learning (ML) definitions

● Class: One of the possible values that a binary or categorical variable can take.
● Labels: The known classes associated with data used to train or evaluate an ML model.
● ML-Extracted: Algorithmic extraction of data from documented evidence in the patient chart (either

structured or unstructured) at the time of running the model. Techniques include ML and NLP, in
contrast to other data processing methods such as abstraction or derivation.

● Model: An ML algorithm with a specific architecture and learned parameters that takes inputs (eg, text)
and produces outputs (eg, extracted diagnosis).

● Natural Language Processing (NLP): A field of computational systems (including but not limited to
ML algorithms) that enable computers to analyze, understand, derive meaning from, and make use of
human language

● Score: A continuous output from a model that can be interpreted as the model-assigned probability that a
data point belongs to a specific class.

● Threshold: A cutoff value that defines classes when applied to continuous scores. Binary variables (eg,
whether a patient has had surgery) have a natural default threshold of 0.5, but different thresholds might
be leveraged depending on the relative tolerance for false positives vs. false negatives required.

Performance metric definitions

● Sensitivity (Recall): The proportion of patients abstracted as having a value of a variable (ie, group
stage = IV) that are also ML-extracted as having the same value.

● PPV (Precision): The proportion of patients ML-extracted as having a value of a variable (ie, group
stage = IV) that are also human abstracted as having the same value.

● Specificity: The proportion of patients abstracted as not having a value of a variable (ie, group stage
does not = IV) that are also ML-extracted as not having the same value.

● NPV: The proportion of patients ML-extracted as not having a value of a variable (ie, group stage does
not = IV) that are also abstracted as not having the same value.

● Accuracy: The proportion of patients where the ML-extracted and abstracted values are identical. For
variables with more than 2 unique values (eg, group stage), accuracy within each class is calculated by
binarizing the predictions (eg, for Accuracy of group_stage = IV, all abstracted and ML-extracted values
would be defined as either “IV” or “not IV”.

● F1 Score: Computed as the harmonic mean of sensitivity and PPV. For a binary classifier, the threshold
that maximizes F1 can be considered the optimal balance of sensitivity and PPV.
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