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Abstract

Pandemic preparedness requires institutions, including public health authorities and governments, to detect,

survey and control outbreaks. To maintain an accurate, quantitative and up-to-date picture of an epidemic

crisis is key. For SARS-CoV-2, this was mostly achieved by ascertaining incidence numbers and the effec-

tive reproductive number (Reff), which counts how many people an infected person is likely to infect on

average. These numbers give strong hints on past infection dynamics in a population but fail to clearly char-

acterize current and future dynamics as well as potential effects of pharmaceutical and non-pharmaceutical

interventions. We show that, by using and combining infection surveillance and population-scale contact

statistics, we can obtain a better understanding of the drivers of epidemic waves and the effectiveness of

interventions. This approach can provide a real-time picture, thus saving not only many lives by quickly

allowing adaptation of the health policies but also alleviating economic and other burdens if an intervention

proves ineffective. We factorize Reff into contacts and relative transmissibility: Both signals can be used,

individually and combined, to identify driving forces of an epidemic, monitoring and assessing interventions,

as well as projecting an epidemic’s future trajectory. Using data for SARS-CoV-2 and Influenza from 2019

onward in Germany, we provide evidence for the usefulness of our approach. In particular, we find that the

effects from physical distancing and lockdowns as well as vaccination campaigns are dominant.

1. Introduction1

Infectious diseases represent serious threats to2

an ever increasingly connected humankind, on par3

with e.g. natural disasters and infrastructure fail-4

ures. Epidemic preparedness – the ability to pre-5

dict and mitigate future epidemic outbreaks – has6

thus risen to one of the most pressing challenges in7

modern societies and recently focused a wealth of8

∗Corresponding author: steven.schulz@netcheck.de.

research efforts building on a variety of data [1] in9

response to awareness elicited by the SARS-CoV-210

pandemic [2].11

Epidemic dynamics are shaped at the crossroads12

of human and viral driving forces: a pathogen’s re-13

productive cycle, defining its relative transmission14

rate upon physical proximity between individuals15

with full or partial susceptibility, as well as hu-16

man behaviour, via the frequency of transmission-17

prone contacts between individuals itself [3]. Criti-18

cal events such as the emergence of fitter mutants or19
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collective shifts in human activity patterns set the20

pace for new epidemic waves. Real-time monitoring21

of these forces during an epidemic, whether it is fu-22

eled mostly by increased contact levels or changes23

in relative transmissibility, is of paramount value24

for epidemic forecasting as well as the ability to set25

up informed, targeted mitigation strategies and es-26

timating the effects of (non-)pharmaceutical health27

policies [4].28

Using SARS-CoV-2 and Influenza as key exam-29

ples of airborne transmissible contagions, we show-30

case monitoring and forecast tools for epidemic31

crises centered around a crowdsourcing-based, real-32

time method to assess levels of physical proxim-33

ity in a population using GPS location informa-34

tion, the Contact Index CX [5]. We show that di-35

verging trends between contact levels and indepen-36

dently recorded infection surveillance are indica-37

tors of altered relative viral transmissibility. Using38

2020-specific data as a baseline for purely contact-39

driven SARS-CoV-2 epidemics, all observed transi-40

tion points are explained by the onset of key im-41

mune escape variants (alpha, delta, omicron). The42

resulting dual evolution, Contact Index CX and rel-43

ative transmissibility T , provides a highly transpar-44

ent and timely picture of ongoing epidemics, includ-45

ing the possibility to identify likely driving forces in46

future epidemic waves.47

2. Materials and Methods48

2.1. Contact metrics relevant for epidemics49

Contact networks are a representation of human50

interactions [6] with immediate implications for the51

spread of contagions in a population [7, 8]. Nodes52

represent individuals and edges are drawn between53

pairs of nodes in the event of contact between them54

(Figure S3(a)). A contagion can propagate through55

a population along paths following the links of the56

network.57

Intuitively, transmission levels scale with the58

average number of links per node ⟨k⟩ =59

∑
k≥0 kP (k) = 2L/N [3], where P (k) is the dis-60

tribution of these numbers across a network and61

N (L) is the number of nodes (links). Beyond62

this local property, more global topological network63

features – how contacts are collectively configured64

across the network – do also affect the course of epi-65

demics [3] by fueling and constraining the number66

of available paths. Groundbreaking epidemiological67

and network-theoretical work established that the68

effective reproduction number Reff , quantifying epi-69

demic spreading, scales with ⟨k2⟩
⟨k⟩ [3, 9, 10, 11, 12],70

i.e. the presence of very social nodes (superspread-71

ers) with outstanding k mediate enhanced propa-72

gation. Typical social networks are very inhomoge-73

neous in terms of social activity, with outstanding74

community structure and few individuals responsi-75

ble for most contacts [9]. The pivotal role of the76

second moment ⟨k2⟩ =
∑

k≥0 k
2P (k) is intuited by77

the friendship paradox [13]: An individual’s friends78

are on average more social than oneself; in other79

words, the number of next-nearest neighbors ⟨k2⟩ in80

the network exceeds the expectation ⟨k⟩2 from the81

number of nearest neighbors, a mere consequence82

of non-zero variance in P (k): ⟨k2⟩ − ⟨k⟩2 > 0.83

2.2. Assessing contact levels in real-world networks84

The contact network relevant to transmission of85

airborne viruses such as Influenza and SARS-CoV-286

arises from physical proximity between individuals.87

Compared to (virtual) social networks, such real-88

world networks are expected to have distinct prop-89

erties, as they are constrained by geography and90

physical distance, but are also tremendously more91

difficult to track at the population scale. Coarse92

contact and mixing patterns in real-world networks93

have been inferred using limited data gathered from94

surveys [14, 15] or viral phylogeny [16]. Locally95

confined real-world networks, such as on cruise96

ships [17], school campuses [18] or within towns [19]97

have been measured using Bluetooth communica-98

tion between nearby mobile devices.99
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We use a previously developed approach to probe100

population-scale real-world contact networks based101

on crowdsourced datasets of GPS locations [20, 5]102

to measure the Contact Index CX = ⟨k2⟩
⟨k⟩ as a103

statistical measure of contact levels relevant for104

epidemics [5]. The crowdsourcing data is col-105

lected in near real-time via opt-in from each of an106

anonymized panel of 1 million mobile app users107

(roughly 1% of Germany’s population) and con-108

sists of ≈ 100 daily samples per device tagged with109

time and GPS location information. It allows us110

to reconstruct samples of the actual contact net-111

work realized in the population: Contacts (links)112

are drawn between devices (nodes) co-located in113

space and time (Supp Mat S1).114

2.3. Network sampling correction115

The incomplete nature of such crowdsourced data116

represents a major challenge: Contacts from unin-117

volved or inactive devices are not captured, giv-118

ing rise to missing nodes and links in the net-119

work. This aspect of our data can be crafted into120

a network sampling framework [21, 22] in which121

nodes and edges are randomly removed with prob-122

abilities p and q, respectively (Figure S3(a,b) and123

Supp Mat S2). These sampling parameters also124

change over time, mostly in response to software125

updates and app usage, and are heterogeneous in126

space. Our improved mathematical modeling based127

on Horvitz-Thompson theory disentangles actual128

changes in contact levels from signals unrelated to129

the users’ contact behaviour, thus achieving per-130

sistent and comparable results across the full time131

span since the beginning of measurement in 2019132

(Supp Mat S2 and Supp Mat S3).133

Importantly, abstractions of contact networks ex-134

ist in two distinct flavours: weighted versus un-135

weighted [23]. Links may be endowed with weights136

wij ∈ {0, 1, 2, . . . } representing the duration or137

multiplicity of contact between individuals i and138

j [24] or simply indicate the presence or absence of139

contact aij = sgn(wij) ∈ {0, 1} (Figure S3(c)). In140

the epidemiological context, we assume that net-141

work topology, represented by aij , is more im-142

portant than the recurrence of contacts between143

the same individuals: For instance, the (statisti-144

cal) contribution to viral spread from a cluster of145

short contacts at a crowded event would outpace a146

lengthy contact between an isolated couple while in147

lockdown. We thus focus on unweighted networks148

and exclude contact duration in our analyses other149

than in the fact that short contacts are unlikely to150

be recorded during the random sampling inherent151

to the crowdsourcing method.152

However, network sampling destroys topological153

information about underlying complete networks154

(Figure S3(c)); the success of Horvitz-Thompson155

theory [21] to establish a connection between orig-156

inal and sample networks relies in the use of157

weighted links. To establish the same connection158

for unweighted networks, we devised a Bayesian159

framework which encodes missing topological infor-160

mation as a prior weight distribution P (w|w > 0)161

(Supp Mat S2). We find that available complete162

real-world networks in various contexts [17, 18, 19]163

appear to show strikingly similar weight distribu-164

tions (Figure S3(d)), which suggests a universal165

shape of P (w|w > 0) also applicable to our prob-166

lem. These distributions are consistent with power167

laws with small exponents [25, 26], a repeatedly168

demonstrated feature of complex networks [27] and169

beyond [28]. Yet, we do not imply that power laws170

are the true mechanism behind network weights,171

as a variety of other distribution classes are easily172

confounded with power laws [28, 29, 30].173

3. Results174

3.1. Evolution of CX since 2019175

By means of our refined correction method for176

network sampling effects, we achieve a consistent177

measurement of contact levels since the begin-178

ning of crowdsourcing in 2019, despite the time-179

dependent sampling. That is, we cover the prelude180
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and entire course of the SARS-CoV-2 epidemic in181

Germany (Figure 1(a)). The gap in February 2020182

is explained by missing data due to the rollout of a183

major crowdsourcing software update.184

Holiday season comes along with reduced CX un-185

der normal conditions, as shown by the Fall and186

Christmas breaks in 2019, thus showing a reduction187

of transmission-prone contacts. The onset of the188

first SARS-CoV-2 wave in March 2020 induced an189

unequivocally more pronounced drop in CX, prob-190

ably explained by a more systematic cessation of191

super-spreading activities.192

Since onset of the SARS-CoV-2 pandemic,193

changes in contact behaviour as reflected by CX194

underwent several periods of spiking (partial or195

complete deregulation of mass events in fall 2020,196

fall 2021 and spring 2022) and damping (winter197

wave 2020, emergence of the omicron variant in198

late 2021). Overall, a similar evolution is observed199

between CX and the rigor of SARS-CoV-2-related200

policy as measured by the Government-Response201

Index [31] (Figure S1(a)), thus indicating broad202

awareness of the situation at the population and203

governance levels albeit no causal link shall be im-204

plied.205

Interestingly, recent CX values have not yet re-206

turned to pre-pandemic levels by a factor of 2 to 3,207

despite a return to no contact-related restrictions208

in 2022. This suggests the existence of a hystere-209

sis effect in addition to the fast response of CX210

discussed above: The collective behaviour has not211

returned to its unperturbed state in response to re-212

laxed conditions, possibly as a result of continued213

broad perception of disease risk [32, 33].214

From a dimensional viewpoint, CX represents215

an average number of (next-nearest) contacts per216

(nearest) contact: Comparing values of CX across217

areas with vastly different population densities218

within Germany supports our expectation that CX219

scales (non-linearly) with the absolute propensity220

of physical proximity between individuals (Fig-221

ure S4(d) and Supp Mat S3).222

3.2. Deciphering epidemic forces: contacts vs. rel-223

ative transmissibility224

In 2020, SARS-CoV-2 epidemic trends were pri-225

marily driven by trends in contact levels, as both226

immune escape variants and vaccines were not yet227

relevant and relative SARS-CoV-2 transmissibility228

– its intrinsic transmission probability per contact229

– was thus constant (Figure 1(b)): Official daily230

now-cast reproduction numbers Reff , independently231

recorded from national infection surveillance [34],232

correlate well with daily CX, but CX shows a233

time lead of approximately 2 − 3 weeks over Reff234

(Figure S1(a, right inset)) [5], explained by incu-235

bation time as well as testing and reporting de-236

lays. This underlines the predictive character of237

real-time contact metrics for wild-type dominated238

epidemics [20]. Since then, the correlation between239

Reff and CX has repeatedly changed, with the re-240

sulting signal quantifying shifts in relative transmis-241

sibility accountable to key epidemic changes other242

than contacts.243

The effective reproduction number Reff is defined244

by Reff = ⟨k⟩ · U · τ , where ⟨k⟩ denotes the contact245

number per day, U the probability of transmission246

per contact, and τ the mean duration of infectivity247

in days. Both U and τ are determined by physio-248

logical processes involved in transmission and, to-249

gether, define the intrinsic transmission efficiency250

(per contact) T = U · τ .251

Furthermore, as we assume CX = ⟨k2⟩
⟨k⟩252

replaces ⟨k⟩, we replace the definition by253

Reff = (a + b · CX) · T . A linear relationship of254

this form between CX and Reff is motivated by our255

findings in 2020. We use values for a and b obtained256

from a linear regression between CX and wild-type257

Reff data at the optimal time delay of ∆t = 16 days258

(Figure S1(a, left inset) and Supp Mat S4). Upon259

interpreting RWT(CX) ≡ a+b·CX as the wild-type260
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specific reproduction number, we have that261

Reff = RWT(CX) · T, (1)

where T represents relative transmissibility with re-262

spect to wild-type in a fully susceptible population263

(TWT = 1). Note that, in contrast to now-cast data,264

Eq. (1) assigns reproduction numbers to the day of265

contact/infection.266

From independently recorded values for Reff and267

CX, we can determine the relative transmissi-268

bility of the contagion by factoring out contact-269

related contributions from overall infection dynam-270

ics as T = Reff

RWT(CX) for any given day. We ex-271

pect network-wide propagation of transmissibility-272

related information to be slow compared to network273

dynamics itself and, thus, T to undergo evolution274

on longer timescales. We interpret fast signal in275

T as random fluctuations from the measurement of276

Reff and capture actual trends by ⟨T ⟩, centered av-277

erages over sliding time windows of 2 months (Supp278

Mat S4).279

3.3. Epidemic evolution of relative SARS-CoV-2280

transmissibility281

The evolution of relative SARS-CoV-2 transmis-282

sibility ⟨T ⟩ is shown in Figure 1(b). This time se-283

ries reenacts the various phases of the SARS-CoV-2284

pandemic:285

Relative SARS-CoV-2 transmissibility ⟨T ⟩ is ap-286

proximately equal to unity throughout 2020, an287

initial period purely driven by unperturbed wild-288

type epidemics that we used to “calibrate” CX and289

Reff which evolve on shorter timescales. It sub-290

sequently follows a tug-of-war pattern shaped by291

alternating epidemic forces beyond contacts: im-292

mune escape variants and development of popula-293

tion immunity through infection and vaccination.294

Three waves of increased relative transmissibility295

are explained by the takeover of fitter virus lin-296

eages (Figure 1(b)), specifically alpha (spring 2021),297

delta (summer 2021) and omicron BA.1/BA.2 (win-298

ter 2021/22). We hypothesize that subsequent re-299

laxation of ⟨T ⟩ after each wave may be attributed to300

natural immunity, while the superposed long-term301

downward trend may be explained by the additional302

immunity acquisition through (initial and booster)303

vaccination campaigns. Interestingly, the effect of304

omicron BA.4/BA.5 takeover in summer 2022 on305

⟨T ⟩ is nowhere close to those of previous variants.306

Comparing correlations with different parame-307

ters rules out the possibility that the measured ⟨T ⟩308

is shaped by factors confounding the reproduction309

numbers or CX values (Figure S1(b,c) and Supp310

Mat S4). These possible confounders include viral311

prevalence, CX itself through higher-order effects312

from network sampling not captured by our mod-313

eling and other topological network features (such314

as clustering, small-world properties) as well as Reff315

itself through changes in testing strategies and sys-316

tematic under-reporting of infections [35]. For in-317

stance, testing individuals indiscriminately versus318

focusing test capacities on suspected infection cases319

may lead to incomparable snapshots of ongoing in-320

fection dynamics. Overall, strong positive correla-321

tion is exclusively observed between ⟨T ⟩ and variant322

dynamics (Figure S1(b,c)) [36]. In this analysis, we323

use test positivity [37] and results from local preva-324

lence studies [38] as proxies for overall prevalence.325

Also, we neglect possible effects from network sam-326

pling on different topological measures [39, 40], but327

we expect trends to be conserved as long as the328

sampling process remains unchanged.329

We note the absence of seasonal oscillations in330

⟨T ⟩ as well as clear signatures of mask mandates331

(in effect across many social contexts between April332

2020 and April 2022). A seasonal oscillation in ⟨T ⟩,333

larger values in winter and smaller values in sum-334

mer, might be expected from the shift of human ac-335

tivity between in- and outdoor settings. Also, pre-336

vious research established the effectiveness of mask337

usage at reducing transmission of respiratory dis-338

eases (reviewed in [41]). Overall, our results sug-339
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gest that, at least in the epidemic stage of SARS-340

CoV-2, infection rates were predominantly driven341

by the strong variability in contacts as well as the342

repeated emergence of more transmissible variants,343

in line with previous findings [42, 43, 44].344

3.4. Forecast of infection level and trend changes345

The challenge of epidemic forecast consists in the346

accurate prediction of current and future reproduc-347

tion numbers Reff . Using the rationale that trends348

in infection levels carry the combined signature of349

trends in contact and relative transmissibility lev-350

els, we propose to construct predictions according351

to352

Rtrue(t) = RWT(CX(t)) · ⟨T (t)⟩, (2)

where Rtrue is assigned to the projected day of con-353

tact/infection. The key difference to Eq. (1) is the354

use of ⟨T ⟩ which eliminates noise from reproduc-355

tion numbers. Importantly, we therefore expect356

that our prediction Rtrue represents actual epidemic357

trends (ground truth) more accurately than epi-358

demic surveillance (Reff).359

Figure 1(c) shows Rtrue together with data from360

infection surveillance, both plotted with respect to361

their date of recording (assuming real-time CX362

measurement). This shows how our prediction363

overall anticipates current epidemic trends that364

are observed via infection surveillance only about365

∆t = 2 − 3 weeks later. Thus, we propose to use366

our method as a tool for real-time infection surveil-367

lance.368

To extend forecasts beyond this horizon and pre-369

dict future reproduction numbers, CX and ⟨T ⟩370

themselves need to be projected beyond latest data.371

For several choices of the current day t0, Figure 2(a)372

showcases forecasts (Rpred) where CX and ⟨T ⟩ are373

continued beyond the last days of available data374

(t0 and t0 − ∆t, respectively) using autoregressive375

integrated moving average (ARIMA) models prior376

to applying Eq. (2) (Supp Mat S5). These fore-377

casts outperform a null forecast based on a mere378

ARIMA-type continuation of infection surveillance379

data (Reff), as shown by narrower distributions of380

residuals (Rpred−Rtrue) across all choices of t0 (Fig-381

ure 2(a)). Furthermore, we highlight the broad ap-382

plicability of our method to airborne infectious dis-383

eases by performing an identical forecast analysis384

for Influenza (Figure S2(a)), using coarser infection385

surveillance data [45] and presuming a similar rela-386

tionship between Reff and CX as for SARS-CoV-2387

(Supp Mat S5).388

Most importantly, trend changes in epidemic389

driving forces such as ⟨T ⟩ and CX are indicators of390

new phases in an epidemic. Timely detection of new391

trends in these time series, e.g. using anomaly de-392

tection methods, can provide valuable information393

to estimate the risk of upcoming epidemic waves394

and to predict their nature – whether dynamics is395

fueled by contacts or increased transmission effi-396

ciency. Such trend detection is potentially easier397

to achieve but equally informative than the abil-398

ity to accurately predict infection surveillance. The399

onset of rising trends could shape decision-making400

with regard to the effectiveness of health policies,401

e.g. pharmaceutical and non-pharmaceutical in-402

terventions for rising ⟨T ⟩ and CX, respectively.403

Figures 2(b) and S2(b) highlight rising and falling404

trends in both CX and T for SARS-CoV-2 and In-405

fluenza, respectively, akin to trends in stock prices.406

For SARS-CoV-2, trend changes are timely indica-407

tors of all major escape variant- and contact-driven408

epidemic turning points (Figure 2(b)). Unlike for409

SARS-CoV-2 in its epidemic stage, major upheavals410

in relative transmissibility for Influenza are limited411

to seasonality, with the notable exception of 2020,412

presumably reflecting its endemic dynamics (Fig-413

ure S2(b)).414

4. Conclusion415

We presented a simple, yet insightful quantitative416

method for a data-driven decomposition of overall417
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epidemic dynamics into contact-related and trans-418

mission efficiency-related contributions. It relies on419

both the availability of infection surveillance data420

as well as crowdsourced GPS location data to detect421

and quantify physical proximity between suscepti-422

ble individuals. Its appeal resides in the merely423

bivariate yet highly informative projection of epi-424

demics paving the way towards timely identifica-425

tion of driving forces in an ongoing epidemic – hu-426

man versus viral factors – and possibly effective427

mitigation strategies – pharmaceutical versus non-428

pharmaceutical.429

The approach can be used for epidemic forecast430

in multiple ways. Recent and projected future val-431

ues of CX and ⟨T ⟩ can be used for short-term432

(2− 3 weeks) and long-term prediction of infection433

or reproduction numbers, thus taking our previ-434

ously described short-term forecast further [5]. Yet,435

a timely detection of trend changes could reliably436

forecast upcoming waves and their nature without437

the necessity to accurately predict infection surveil-438

lance data. These tools can lead towards a more439

strategic approach to epidemic mitigation and po-440

tentially save lives by reducing the spread of deadly441

diseases.442

Results from the presumably most systematically443

tracked epidemic to date, SARS-CoV-2, draw the444

picture of co-evolution within the virus-host rela-445

tion: Increasing immunity levels in the host pop-446

ulation alternate with step-wise adaptation of the447

virus through immune-escape variants. Other fre-448

quently discussed factors, including mask policies449

and seasonality, are presumably still below the cur-450

rent statistical resolution of our method, defined by451

the sampling noise in the CX and Reff time series.452

Moreover, a larger impact of seasonal variation is453

expected in the endemic phase of SARS-CoV-2 [46].454

Our method is broadly applicable to airborne455

contagions beyond SARS-CoV-2, but depends on456

the availability of infection surveillance and crowd-457

sourcing strategies that remain persistent over ex-458

tended amounts of time. Changes in testing strat-459

egy can lead to signal and biases unrelated to un-460

derlying epidemic driving forces [35]. More cru-461

cially, systematic infection surveillance is not im-462

plemented beyond the case of SARS-CoV-2. We463

illustrated a framework to correct for the effect464

of varying sampling depth in the contact network.465

Yet, higher-order effects in the signal can occur as466

a result of sampling aspects not captured by our467

mathematical modeling. In order to ensure valid468

prognoses through our method, we advocate for sys-469

tematic and persistent crowdsourcing and infection470

surveillance strategies across a variety of diseases471

with epidemic potential.472

Geographical resolution of our forecast method473

is currently limited by the sampling depth, as the474

estimation especially of higher moments of degree475

distributions P (k) becomes increasingly difficult as476

smaller portions of the network are available. A477

higher spatial resolution of contact and relative478

transmissibility levels, with potential to locate the479

origin of new variants of concern and define locally480

targeted mitigation strategies, can be achieved by481

e.g. increasing the panel of app users.482

Our analysis assumes statics, but actual contact483

networks are dynamic in nature [47, 48]: While484

some contacts are frequently repeated (e.g. be-485

tween household members), other contacts are ran-486

domly redrawn on each occasion (e.g. in pub-487

lic transportation), with implications for epidemic488

spread [49, 50]. Our method can be improved by489

analyzing contact data in light of existing models490

of dynamic networks [51, 48].491
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(a)

(b)

(c)

Figure 1: Real-time observation of driving forces in SARS-CoV-2 epidemics: contact levels and relative trans-
missibility. (a) Evolution of the Contact Index CX = ⟨k2⟩/⟨k⟩ in Germany over the course of > 3 years (2019-2022), carrying
the signature of various collective behaviour changes in response to the epidemic situation (as indicated). The gap in February
2022 is explained by a major app update. (b) The slowly varying relative transmissibility ⟨T ⟩(t) (red) quantifying the intrinsic
efficiency of SARS-CoV-2 transmission, measured from the ratio of reproduction numbers (Reff) and contact levels (CX), see
Eq. (1). The gray-shaded time interval is wild-type dominated and was used to calibrate CX from our crowdsourcing method
and Reff from infection surveillance (Figure S1(a, inset)). The rising frequencies of key SARS-CoV-2 immune escape variants
(colored lines, see legend) and well as of vaccine status in Germany (light gray lines) are shown (right axis). (c) Comparison
of SARS-CoV-2 effective reproduction numbers Reff from infection surveillance (gray) and projected Rtrue using Eq. (2) (red).
All reproduction numbers are assigned to their day of recording.



(a)

(b)

Figure 2: Forecast of reproduction numbers and trends from contact and transmission efficiency levels. (a,
upper panel) Forecast Rpred of current and future SARS-CoV-2 reproduction numbers and their uncertainties (solid lines
and shaded bands, respectively) using Eq. (2) and the CX and ⟨T ⟩ time series. Comparison with actual Rtrue values (dashed
lines). Denoting the current day by t0, Reff and ⟨T ⟩ are available up to t0 − ∆t, while CX is near real-time (available up
to t0); the time series are projected beyond their last time points using ARIMA models. The forecast is shown for different
choices of the current day t0 (see legend). (a, lower panel) The distribution of residuals between forecasted Rpred and actual
Rtrue values over all choices of t0 over the course of 2 years (black box plots). Comparison to residuals from null projections of
Reff that make no use of CX (gray box plots), i.e. simple ARIMA model-based projection of infection surveillance data. The
boxes indicate quartiles, while whiskers cover 90% of the data. (b) Identification of rising trends in both contact levels and
transmission efficiency (upper panel) and their relation to rising trends in Reff (lower panel).


