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Abstract 

 

     Precise stratification of clinical patients into more homogeneous disease subgroups could 

address the heterogeneity of disease phenotypes and enhance our understanding on possible 

biological mechanisms and pathophysiology of more specified subtypes. This approach could 

promote individualized and effective prevention/intervention strategies. In the extant literature, 

subtyping of patients with depressive disorders (Dep) mainly utilized clinical features only.    

Genomics data could be useful subtyping features but advanced methods are needed for 

subtyping psychiatric entities such as depression. To solve this issue, we proposed a novel 

disease subtyping framework for complex diseases such as Dep. It combines brain structural 

features with genotype-predicted gene expression levels of relevant brain tissues as well as 

polygenic risk scores (PRS) of related disorders. It is able to classify patients into both 

clinically and biologically homogeneous subgroups, based on a multiview biclustering method. 

Moreover, causal inference was employed to identify causally relevant genes in different brain 

tissues to inform feature selection under the proposed framework. We verified the reliability of 

the subtyping model by internal and external validation. The calculated prediction strengths(PS) 
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(average PS:0.896, min PS: 0.854) supported the robustness and generalizability of our 

proposed approach. External validation results demonstrated that our proposed approach could 

stratify Dep patients into subgroups with varied treatment responses and hospitalization risks. 

Besides, some subtype-defining genes in our study overlapped with several well-known 

susceptibility genes for depression and were involved in the pathophysiology for the disease. 

Encouragingly, many enriched drugs based on identified subtype-defining genes have been 

reported in previous studies to be effective in reducing depression-related symptoms. 

 

Introduction 

 

    The burden of depressive disorders (Dep) remains immense despite the extensive progress 

made by large-scale population studies, including genome-wide association studies and 

neuroimaging studies. According to the global burden of disease report, the depressive disorder 

ranked among the top 10 even 5 most disabling conditions across various age groups 1. Besides, 

the life expectancy for patients with depressive disorders is usually much shorter than the 

general population1,2. Precise classification of Dep patients diagnosed into more clinically and 

genetically homogeneous subgroups could facilitate our understanding on possible biological 

mechanisms and could address the issue of phenotype heterogeneity 3,4. Most importantly, it 

could shed light on the discovery of subtype-specific drug targets and promote individualized 

preventive and intervention strategies. In the extant literature, subtyping of patients with Dep 

mainly utilized clinical features only. The resultant Dep subtypes identified using clinical 

subtyping may not be efficient to have distinct and subgroup biological mechanisms. With the 

aid of genomic information, sophistic subtyping method can utilized complex data to stratify 

clinical patients into more biologically homogenous subgroups. Nevertheless, limited research 

have applied genomic data for stratification of Dep patients. 

     Over the past two decades, substantial efforts have been made to dissect the genetic 

architecture of depressive disorder (Dep) 5,6. Despite the substantial disorder-associated loci 

identified from GWAS, it remains very challenging to translate these findings into clinical 

usage, as many of the identified loci reside in non-coding regions, and only have minor effects 

on the studied disorder. Compared with SNP-based analysis, gene-based analysis is usually 

more biologically relevant and interpretable3. However, most gene-based studies mainly 

focused on univariate associations and did not qualify whether the identified trait-associated 

genes could actually contribute to the onset of disease, implicating possible spurious findings.  
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      We proposed a novel framework for patient stratification by incorporating genotype-

predicted gene expression profiles of relevant brain tissues with polygenic risk scores (PRS) 

and brain structural information (more specifically, volume of grey matter in different brain 

regions) by multi-view sparse bi-clustering analysis. PRS is a useful representation of the 

overall genetic predisposition of subjects to a particular disease 7,8. In this study, we proposed 

to use PRS of related diseases/traits as new features of our clustering analysis. Genes were 

selected based on a causal inference framework such that the most functionally relevant genes 

could be included for disease subtyping. Through imputing genetic variants to expression levels, 

the dimensionality will be significantly reduced. Since a causal inference method is employed 

to identify causally relevant genes for the studied disorder, the derived results will be more 

biologically relevant and easier to interpret. We hypothesized that the incorporation of brain 

structural and genetic information could help us identify more genetically coherent and 

clinically meaningful depression subtypes. 

      Our main contribution is presenting a novel framework for complex disease subtyping by 

leveraging genotype-predicted gene expression files of diverse relevant tissues, brain structural 

features as well as PRS of relevant disease. In this study, we incorporated brain structural 

features (the volume of grey matters in different brain regions) into our method. Compared 

with psychopathologies, neuroimaging characteristics are believed to be directly reflecting the 

results of biological mechanisms of the disease. Very few studies have attempted to utilize both 

brain structural features and genetic profiles for complex disease subtyping. Our work differs 

from existing studies by incorporating a  causal algorithm of gene selection into a multi-view 

clustering framework for complex disease; we employ PC-simple algorithm 9 to identify 

causally relevant genes for our studies disease, then we apply a multi-view sparse clustering 

algorithm to stratify patients into different categories by incorporating brain structural features, 

PRS of relevant diseases and causally relevant genes in different tissues.To our knowledge, we 

are the first to incorporate brain structural data, PRS of other diseases, as well as a causal 

algorithm of gene selection into a multi-view clustering framework for complex diseases. Our 

method allows the genes to be selected based on a causal algorithm (i.e., PC-simple algorithm). 

Thus, the identified subtype-defining gene sets tend to be more functionally relevant to the 

underlying disease mechanisms. 

 

Method 

A novel stratification model 
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Fig. 1 The workflow for the proposed invention in identifying disease subtypes 

 

      Our proposed framework could identify psychiatric disorders subtypes by incorporating 

genotype-predicted gene expression profiles of relevant brain tissues, variant-based PRSs of 

relevant disorders as well as brain structural information by a multi-view sparse biclustering 

method. PRS is a weighted sum of the risk allele count, with weights derived from log odds 

ratios or coefficients from regression. They are useful representations of the overall 

predisposition to a disease or trait. In this study, we incorporated PRS of relevant traits as new 

features of our clustering algorithm. More specifically, we employed “PRsice” 12 to calculate 

the variant based PRSs of relevant traits as new features for our clustering algorithm.  By using 
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a multi-view approach to clustering, it can uncover disease heterogeneity across different data 

views of patients (clinical and genetics). 

    In brief, our proposed framework comprised of 4 stages, i.e., data imputation, feature 

selection, disease subtyping and validation (as shown in Fig .1). Next, we shall describe each 

step in greater detail below. 

 

Data imputation 

    Given that clustering analysis could not accommodate missing data, we employed 

imputation. Notably, different methods were used to impute missing clinical and genetic 

features. For clinical data, R package “missForest” 13 was employed to impute the missing data 

by a random forest algorithm. As for the estimation of transcriptomes from GWAS, we 

employed the “PrediXcan” developed by Gamazon et al. 14 to impute expression levels of 

relevant tissues form the genotype data. The algorithm first built elastic-net based prediction 

models with expression levels as the outcome from external reference dataset GTEx, which 

contained both genotype and expression data. Then, the developed prediction model was 

applied to new genotype data to “estimate” the expression levels of different tissues. 

 

Feature selection 

    In this study, we proposed to use a gene-phenotype causal network inference method to 

identify causally relevant genes for the disorder of interest. Fig. 1 shows the feature selection 

process. Confounder adjustments were separately performed for the disorder of interest and 

imputed expression profiles of the corresponding subjects. PC-simple algorithm 9,15 was 

employed to infer the causal relationships between genes and disorder, based on imputed 

expression profiles. In brief, PC-Simple can be regarded as a generalization of correlation 

screening that utilizes ordered independence screening algorithm to estimate the causal 

relationships between genes and studied phenotype. Let 𝑋 = [𝑋1, 𝑋2, … 𝑋𝑝] be a 𝑛 × 𝑝 matrix 

of adjusted gene expression data for p genes, Y be a vector of the corresponding adjusted 

phenotype dataset for n subjects. Suppose Y is defined  by a linear model of X, i.e.,: 

𝑌 =  ∑ 𝛽𝑗𝑋𝑗

𝑝

𝑗=1

+ 𝜀 (1) 

Where 𝜀 ~𝛮(0, ∑)  denotes the noise item , and it is independent of 𝑋𝑗(𝑗 = 1,2, … 𝑝) . For 

equation (1), we believe most or some of the coefficients 𝛽𝑗  are zero, while the remaining are 

nonzero for the studied phenotype. Our goal was to uncover the active gene set 𝐺 = {𝑗 =
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1,2, … , 𝑝; 𝛽𝑗 ≠ 0} with non-zero coefficients. Under the partial faithfulness assumption, we 

have: 

𝜌(𝑌, 𝑋𝑗|𝑋𝑆) ≠ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑆 ⊆ {𝑗}𝐶  𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝛽𝑗 ≠ 0 (2) 

We could derive the active gene set through recursively performing partial correlation 

screening with increased order of conditional set based on (2) for all gene-phenotype pairs 

(𝑌, 𝑋𝑗 ). Specifically, we first set the conditional set to null(𝑆 =  ∅) and obtained the first 

candidate gene set with non-zero correlations with our studied phenotype. Then we sequentially 

increased the order of the conditional set to eliminate irrelevant genes until the candidate gene 

set did not vary anymore. The partial correlations for each gene-phenotype pair can be 

estimated as follows: 

𝜌̂(𝑌, 𝑋𝑗|𝑋𝑆) =  
𝜌̂(𝑌, 𝑋𝑗|𝑋𝑆\{𝑋𝑘}) − 𝜌̂(𝑌, 𝑋𝑘|𝑋𝑆\{𝑋𝑘})𝜌̂(𝑋𝑗 , 𝑋𝑘|𝑋𝑆\{𝑋𝑘})

[{1 − 𝜌̂(𝑌, 𝑋𝑘|𝑋𝑆\{𝑋𝑘})2}{1 − 𝜌̂(𝑋𝑗 , 𝑋𝑘|𝑋𝑆\{𝑋𝑘})2}]1/2
 (3) 

     We tested whether calculated partial correlations by Fisher’s Z-transform, which can be 

expressed as follows: 

𝑍(𝑌, 𝑋𝑗|𝑋𝑆) =  
1

2
{
1 + 𝜌̂(𝑌, 𝑋𝑗|𝑋𝑆)

1 − 𝜌̂(𝑌, 𝑋𝑗|𝑋𝑆)
} (4) 

Buhlmann et al. 9 suggested to reject the null hypothesis (𝜌̂(𝑌, 𝑋𝑗|𝑋𝑆) = 0) if the following 

inequation holds: 

(𝑛 − |𝑆| − 3)
1
2|𝑍(𝑌, 𝑋𝑗|𝑋𝑆)| > 𝜙−1 (1 −

𝛼

2
) (5) 

Where 𝜙 denotes standard normal cumulative distribution function, 𝛼 denotes the significance 

level for the null hypothesis test. In this study, we set 𝛼 = 0.05. To boost the computational 

efficiency, we set the maximum order for partial correlation screening to 3. All genes survived 

the 3-order partial correlation screening were regarded as directly causal genes for the studied 

phenotype. After deriving the tissue-specific gene-phenotype causal graph for the studied 

phenotype, we could distinguish the directly causal genes from other ones. The identified gene-

phenotype causal network could be utilized to inform the feature selection for the subsequent 

disease subtyping process. 

 

Disease subtyping 

    For disease subtype discovery, we employed an extension of the biclustering algorithm in 

ref 16. In brief, we performed biclustering by matrix decomposition. Suppose 𝑋𝑑 is a 𝑛 × 𝑚𝑑 

data matrix from the clinical or genetic view of patients, where n is the sample size, 𝑑 denotes 
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the index of ‘view’ to be modeled and 𝑚𝑑  is the number of features in the dth view. For 

example, if one models clinical and genotype-predicted expressions in one tissue, there will be 

two views. It is possible to extend the approach to more than 2 views, for example based on 

expression in different tissues or using other (preferably gene-based) ‘omics’ profiles. It is 

worth emphasizing that due to heterogeneity of patients, the pathophysiology (e.g. genetic 

pathways) underlying the disease may be different for different subgroups of patients. Using a 

biclustering algorithm, each bicluster can be characterized by different sets of gene features; in 

other words, we allow different genes to be involved in the disease for different subgroups of 

patients. This adds flexibility to our model and is an important advantage compared to ordinary 

cluster approaches. Subgroups of patients can be simultaneously derived by performing a 

sparse rank one approximation on the original matrices 𝑋𝑑  (𝑑 = 1,2, . . 𝐷 , indicating data 

matrices from different views that characterize the same set of patients), i.e.,  

𝑋𝑑 ≈ 𝑑𝑖𝑎𝑔(𝑤)𝑢𝑑𝑣𝑑
𝑇 (6) 

where 𝑤 is a binary vector of size 𝑛, serving as a common factor that forces different views of 

data to agree on the same grouping of patients. 𝑑𝑖𝑎𝑔(𝑤) is a diagonal matrix of size 𝑛 × 𝑛 

with diagonal entries equal to 𝑤.  𝑢𝑑  of size 𝑛  and 𝑣𝑑  of size 𝑚𝑑  are the rank-one 

approximations of 𝑋𝑑  respectively. Rows in 𝑋𝑑  corresponding to the non-zero entries of 

𝑑𝑖𝑎𝑔(𝑤) form the row subgroups, and columns in 𝑣𝑑 form the column subgroups (a.k.a., sub-

feature groups) in different views. Subgroups of patients based on different views of data can 

be derived by solving the following optimization problem:  

𝐦𝐢𝐧
𝒘,𝒖𝒅𝒗𝒅,𝒅=𝟏,𝟐,..𝑫

∑‖𝑿𝒅 − 𝒅𝒊𝒂𝒈(𝒘)𝒖𝒅𝒗𝒅
𝑻‖

𝑭

𝟐
𝑫

𝒅=𝟏

 
 

(7) 

 subject to ‖𝒘‖𝟎 ≤ 𝒔𝒘, ‖𝒗𝒅‖𝟎  ≤ 𝒔𝒗𝒅
, 𝒅 ∈ [𝟏, 𝑫], 𝒘 ∈ 𝓑𝒏 

where 𝑠𝑤 and 𝑠𝑣𝑑
’s are hyper-parameters that need to be predetermined to enforce sparsity of 

𝑤  and 𝑣𝑑 ’s, i.e., the number of patients 𝑛𝑏𝑘
 and number of selected features 𝑛𝑣𝑘

𝑑  in each 

subgroup of the corresponding data view. 𝐷  is the number of data views incorporated for 

clustering and 𝐵𝑛 is the set that contains all possible binary vectors of length 𝑛. To obtain 

subsequent subgroups, we need to first update the data matrices by excluding previously 

identified patients, then solve Eq. (7). Our proposed approach is capable of selecting features 

during the clustering process, however, we need to predetermine the number of selected 

features in each data view. In this invention, we follow the suggestions given by the original 

authors. More specifically, the number of selected features (𝑛𝑣𝑘
𝑑 )  in each data view will be set 
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to the number where the accumulated variance in PCA of 𝑋𝑑 was over 90%. The algorithm 

requires the number and size of subgroups to be specified beforehand. We consider a value 

range of 2 to 6 for the number of subgroups and the minimum number of subjects in each 

subgroup (min (𝑛𝑏𝑘
)) was set to 20. Suppose the number of subgroups is k, the size of each 

subgroup will be firstly set to a value roughly equals to 𝑛/𝑘. Then, all combinations by adding 

or subtracting min (𝑛𝑏𝑘
)  in each subgroup will be tried. A grid search approach will be 

employed to determine the optimal solution. An evaluation metric is required to find the 

optimal solution. One of the most used metrics is mean squared residue (MSR). However, it 

only assesses the homogeneity within each subgroup and does not consider the heterogeneity 

between different subgroups. For well-separated subgroups, patients within the same 

subgroups should be highly homogenous while patients belonging to different subgroups 

should be highly heterogeneous. In view of this, we employed the sum of ratios of between 

biclusters distance and within biclusters distance (BBD/WBD) proposed by Yin et al. 3 as the 

evaluation metric to identify the optimal solution. 

 

Validation 

     We employed external and internal validations (as shown in Fig. 1) to our resultant subtypes. 

Regarding external validation,  this method was used when external data of the disease 

outcomes (as validating rather than clustering variables) was available. Regarding internal 

validation, this method was used only when external validation was not feasible. Specifically, 

internal validation utilized the extended “prediction strength” (PS) method developed by Yin 

et al. 3, which would be applicable for multi-view clustering analysis as validation of identified 

subgroups. First, we split the sample into a “training set” and another “testing set”, and then 

evaluated whether the disease subtyping model derived from the training set could “predicts” 

the actual disease subgroups derived from the training set alone. In essence, it measured how 

well the “predicted” co-memberships (based on the model derived from training set) in the 

testing set could matche with actually performing cluster analysis on it. In this study, we 

calculated both the “min PS” and “ave PS” to evaluate the performance of our proposed method. 

The “min PS” and “ave PS” respectively measured the lowest and average proportion of co-

memberships among all identified subtypes, as follow: 

           min 𝑝𝑠 =  𝑐𝑣𝑎𝑣𝑒 { 𝑚𝑖𝑛1≤𝑗≤𝑘
1

𝑛𝑗(𝑛𝑗−1)
∑ 𝐷[𝐶(𝑋𝑡𝑟 , 𝑘), 𝑋𝑡𝑒]𝑖𝑖′𝑖≠𝑖′∈𝐴𝑗

} (8) 

           ave 𝑝𝑠 =  𝑐𝑣𝑎𝑣𝑒  { 𝑎𝑣𝑒1≤𝑗≤𝑘
1

𝑛𝑗(𝑛𝑗−1)
∑ 𝐷[𝐶(𝑋𝑡𝑟 , 𝑘), 𝑋𝑡𝑒]𝑖𝑖′𝑖≠𝑖′∈𝐴𝑗

} (9) 
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Here 𝐶(𝑋𝑡𝑟 , 𝑘)  indicates the clustering operation on the training set with 𝑘  subgroups. 

𝐷[𝐶(𝑋𝑡𝑟 , 𝑘), 𝑋𝑡𝑒]𝑖𝑖′ denotes the co-membership for subjects 𝑖 and 𝑖′ in subgroup 𝐴𝑗. 𝑛𝑗 is the number 

of subjects in subgroup 𝐴𝑗. 𝑐𝑣𝑎𝑣𝑒 refers to the average of all cross validation folds. Tibshirani et al. 17 

suggested that a PS of 0.8 or above indicates reasonably good predictions strength. 

 

Further analyses 

      To further validate the identified subgroups, we examined whether genes selected by our 

proposed approach were enriched for GWAS hit of depression. Specifically, the GWAS 

summary statistics for depression was first converted to gene-based statistics by FASTBAT 18, 

then we tested whether genes selected by our framework had lower p-value than non-selected 

one.  

     In addition, we extracted genes selected by our method to figure out the genetic 

underpinning of each identified depression subtype. Pathway analyses were also conducted on 

“ConsensumPathDB”  19,20 to further exploring the pathophysiology and biological 

mechanisms underlying each subtype. In other words, we performed over-representation 

analyses on the subtype-defining gene sets identified in each genetic view by the 

hypergeometric test. Furthermore, we conducted drug enrichment analyses on ‘Enrichr’ 21 to 

identify potentially conducive drugs for each subtype.  

 

Application to depression patients 

       We applied our disease subtyping model to depression-affected subjects collected in the 

UK biobank (UKBB). Here, depression is defined by a combination of ICD-10 coded and self-

reported disease. Since high missing rate may affect the imputation accuracy of the applied 

imputation method, we only keep patients with a comparably lower clinical missing rate. Some 

researchers believed that 10% is a reasonable missingness cutoff with satisfactory imputation 

accuracy 13,14. Following this, we only keep patients with a clinical missing rate less than 

10%. More specifically, all depression patients with available brain structural features whose 

missing rates were less than 10% were reserved for further analysis. We imputed the clinical 

data by R package “missForest” 13  with default setting. Besides, we estimated the expression 

levels for cortex, frontal cortex, nucleus accumbens basal ganglia and putamen basal ganglia 

by “PrediXcan” 14 for all subjects with available genotypes. Evidence suggests the intensive 

involvement of these brain tissues in the pathophysiology of depression 22-27 . Thus, we 

incorporated these 4 tissues as the genetic views of our clustering algorithm. Apart from this, 
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we also calculate the PRSs of related neuropsychiatric traits. The traits for constructing PRS 

included autism spectrum disorders (ASD; N=46,350) 28, attention deficit hyperactivity 

disorder (ADHD; N=53,293) 29, schizophrenia (SCZ; N=105,318) 30, bipolar disorder (BP; 

N=41,653) 31, major depressive disorder (MDD; N=500,199) 32 and post-traumatic stress 

disorder (PTSD; N=200,000) 33. GWAS summary statistics were downloaded from Psychiatric 

Genomics Consortium (PGC) (https://www.med.unc.edu/pgc) and The Integrative Psychiatric 

Research project (iPSYCH). Before the standard PRS analysis, LD-clumping was required. In 

this application, we performed LD-clumping at 𝑟2 = 0.1 within a distance of 1000 Kb 34. PRS 

was generated by PRsice with a P-value threshold of 0.1. We incorporated these 6 PRSs as 

clinical features. In total, we included 139 brain structural features (volume of grey matter in 

different brain regions) and 6 PRSs of related neuropsychiatric disorders as input features in 

the clinical view.   

 

Results 

Subtyping results 

      Based on the definition of depression, we extracted 28,335 depression-affected subjects as 

cases and 28,5921 as controls from UKBB as the input for the causal inference-based feature 

selection. To avoid possible biases introduced by population structure, we adjusted the 

predicted tissue-specific expression profiles and phenotype data by the top 10 principal 

components (PCs) of the corresponding genotype dataset first. Then we used the corrected 

input data to identify causally relevant genes for depression in each tissue. We respectively 

identified 108, 101, 94 and 76 genes for cortex, frontal cortex, nucleus accumbens basal ganglia 

and putamen basal ganglia. These genes were persevered as input in the corresponding genetic 

views for the subtyping of 352 depression-affected patients.  

     In this study, we incorporated 5 different views for the subtyping of depression-affected 

patients, one clinical view with 139 brain structural features and PRS of 6 related disorders, 

and 4 genetic views with predicted gene expression profiles for causally relevant genes. As 

mentioned earlier, PCA was employed to determine the number of selected features in each 

data view. Table 1 lists the number of selected features in the corresponding data view. The 

best performance was achieved when the depression-affected subjects were stratified into 2 

different subgroups with 20 and 332 subjects in each subgroup.  For clinical features, 63 out of 

145 features were selected as subtype-defining features (see Table 1), and all of them were 

brain structural features (Table 2).  From the perspective of algorithm, features selected by the 

algorithm usually are more relevant and informative than the non-selected ones. Table 2 
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summarizes the comparison results of subtype-defining clinical features. We observed 

significant differences on selected features between two identified subgroups (Fig. 2). Notably, 

among the selected subtype-defining brain structural features, most were shared in two 

subtypes. To be more specific, 51 out of 63 clinical features were overlapped between to 

identified subtypes, while the remaining 12 were subtype specific.  

Table 1 The number of selected features in each data view 

Data view No. of selected features 

Clinical 63 

Cortex 80 

Frontal cortex 76 

Nucleus accumbens basal ganglia 71 

Putamen basal ganglia 59 

 

Table 2 Comparison results for subtype-defining clinical features 

Subtype 1 Subtype 2 

Features P-value Features P-value 

Volume of grey matter in Frontal Pole (left) 5.89E-08 Volume of grey matter in Frontal Pole (left) 5.89E-08 

Volume of grey matter in Frontal Pole (right) 1.30E-05 Volume of grey matter in Frontal Pole (right) 1.30E-05 

Volume of grey matter in Insular Cortex (left) 1.11E-04 Volume of grey matter in Insular Cortex (left) 1.11E-04 

Volume of grey matter in Insular Cortex (right) 5.02E-04 Volume of grey matter in Insular Cortex (right) 5.02E-04 

Volume of grey matter in Superior Frontal Gyrus (left) 3.11E-04 Volume of grey matter in Superior Frontal Gyrus (left) 3.11E-04 

Volume of grey matter in Superior Frontal Gyrus (right) 4.66E-03 Volume of grey matter in Superior Frontal Gyrus (right) 4.66E-03 

Volume of grey matter in Middle Frontal Gyrus (left) 2.35E-04 Volume of grey matter in Middle Frontal Gyrus (left) 2.35E-04 

Volume of grey matter in Middle Frontal Gyrus (right) 3.56E-08 Volume of grey matter in Middle Frontal Gyrus (right) 3.56E-08 

Volume of grey matter in Precentral Gyrus (left) 2.85E-03 Volume of grey matter in Inferior Frontal Gyrus, pars opercularis (right) 1.25E-04 

Volume of grey matter in Precentral Gyrus (right) 1.40E-04 Volume of grey matter in Precentral Gyrus (left) 2.85E-03 

Volume of grey matter in Temporal Pole (left) 2.39E-04 Volume of grey matter in Precentral Gyrus (right) 1.40E-04 

Volume of grey matter in Temporal Pole (right) 1.61E-04 Volume of grey matter in Temporal Pole (left) 2.39E-04 

Volume of grey matter in Superior Temporal Gyrus, anterior division 
(right) 

2.77E-03 Volume of grey matter in Temporal Pole (right) 1.61E-04 

Volume of grey matter in Superior Temporal Gyrus, posterior division 
(right) 

2.26E-05 
Volume of grey matter in Superior Temporal Gyrus, posterior division 
(right) 

2.26E-05 

Volume of grey matter in Middle Temporal Gyrus, anterior division 
(left) 

2.62E-04 Volume of grey matter in Middle Temporal Gyrus, anterior division (left) 2.62E-04 

Volume of grey matter in Middle Temporal Gyrus, anterior division 
(right) 

7.79E-03 
Volume of grey matter in Middle Temporal Gyrus, posterior division 
(left) 

1.24E-04 

Volume of grey matter in Middle Temporal Gyrus, posterior division 
(left) 

1.24E-04 
Volume of grey matter in Middle Temporal Gyrus, posterior division 
(right) 

2.27E-04 

Volume of grey matter in Middle Temporal Gyrus, posterior division 
(right) 

2.27E-04 Volume of grey matter in Postcentral Gyrus (left) 2.91E-03 

Volume of grey matter in Postcentral Gyrus (left) 2.91E-03 Volume of grey matter in Postcentral Gyrus (right) 4.03E-05 

Volume of grey matter in Postcentral Gyrus (right) 4.03E-05 Volume of grey matter in Lateral Occipital Cortex, superior division (left) 5.54E-05 

Volume of grey matter in Supramarginal Gyrus, posterior division 
(right) 

1.37E-04 
Volume of grey matter in Lateral Occipital Cortex, superior division 
(right) 

1.23E-03 

Volume of grey matter in Lateral Occipital Cortex, superior division 
(left) 

5.54E-05 Volume of grey matter in Lateral Occipital Cortex, inferior division (left) 2.95E-06 

Volume of grey matter in Lateral Occipital Cortex, inferior division 
(right) 

2.70E-05 
Volume of grey matter in Lateral Occipital Cortex, inferior division 
(right) 

2.70E-05 

Volume of grey matter in Frontal Medial Cortex (left) 9.62E-04 Volume of grey matter in Subcallosal Cortex (left) 7.64E-04 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 3, 2023. ; https://doi.org/10.1101/2023.03.01.23286610doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.01.23286610
http://creativecommons.org/licenses/by-nc-nd/4.0/


Volume of grey matter in Frontal Medial Cortex (right) 2.61E-03 Volume of grey matter in Subcallosal Cortex (right) 1.63E-03 

Volume of grey matter in Subcallosal Cortex (left) 7.64E-04 Volume of grey matter in Paracingulate Gyrus (left) 2.68E-05 

Volume of grey matter in Subcallosal Cortex (right) 1.63E-03 Volume of grey matter in Paracingulate Gyrus (right) 3.51E-04 

Volume of grey matter in Paracingulate Gyrus (left) 2.68E-05 Volume of grey matter in Cingulate Gyrus, posterior division (left) 3.41E-05 

Volume of grey matter in Paracingulate Gyrus (right) 3.51E-04 Volume of grey matter in Cingulate Gyrus, posterior division (right) 6.63E-05 

Volume of grey matter in Cingulate Gyrus, anterior division (right) 1.98E-03 Volume of grey matter in Precuneous Cortex (left) 2.29E-05 

Volume of grey matter in Cingulate Gyrus, posterior division (left) 3.41E-05 Volume of grey matter in Precuneous Cortex (right) 3.65E-05 

Volume of grey matter in Cingulate Gyrus, posterior division (right) 6.63E-05 Volume of grey matter in Cuneal Cortex (right) 7.68E-04 

Volume of grey matter in Precuneous Cortex (left) 2.29E-05 Volume of grey matter in Frontal Orbital Cortex (left) 1.81E-07 

Volume of grey matter in Precuneous Cortex (right) 3.65E-05 Volume of grey matter in Frontal Orbital Cortex (right) 1.30E-05 

Volume of grey matter in Cuneal Cortex (left) 8.96E-03 Volume of grey matter in Parahippocampal Gyrus, anterior division (left) 1.94E-03 

Volume of grey matter in Cuneal Cortex (right) 7.68E-04 
Volume of grey matter in Parahippocampal Gyrus, anterior division 

(right) 
9.30E-03 

Volume of grey matter in Frontal Orbital Cortex (left) 1.81E-07 Volume of grey matter in Lingual Gyrus (left) 3.75E-04 

Volume of grey matter in Frontal Orbital Cortex (right) 1.30E-05 Volume of grey matter in Lingual Gyrus (right) 1.98E-04 

Volume of grey matter in Lingual Gyrus (left) 3.75E-04 
Volume of grey matter in Temporal Fusiform Cortex, anterior division 

(left) 
1.78E-03 

Volume of grey matter in Lingual Gyrus (right) 1.98E-04 
Volume of grey matter in Temporal Fusiform Cortex, anterior division 

(right) 
7.86E-04 

Volume of grey matter in Temporal Fusiform Cortex, posterior 

division (left) 
6.63E-03 

Volume of grey matter in Temporal Fusiform Cortex, posterior division 

(left) 
6.63E-03 

Volume of grey matter in Temporal Fusiform Cortex, posterior 

division (right) 
1.29E-02 

Volume of grey matter in Temporal Fusiform Cortex, posterior division 

(right) 
1.29E-02 

Volume of grey matter in Occipital Fusiform Gyrus (right) 3.42E-03 Volume of grey matter in Occipital Fusiform Gyrus (right) 3.42E-03 

Volume of grey matter in Central Opercular Cortex (left) 1.14E-05 Volume of grey matter in Frontal Operculum Cortex (left) 1.17E-03 

Volume of grey matter in Central Opercular Cortex (right) 4.64E-05 Volume of grey matter in Frontal Operculum Cortex (right) 7.39E-04 

Volume of grey matter in Parietal Operculum Cortex (right) 5.08E-05 Volume of grey matter in Central Opercular Cortex (left) 1.14E-05 

Volume of grey matter in Planum Polare (right) 1.05E-04 Volume of grey matter in Central Opercular Cortex (right) 4.64E-05 

Volume of grey matter in Heschl's Gyrus (includes H1 and H2) (left) 1.63E-03 Volume of grey matter in Parietal Operculum Cortex (left) 6.00E-04 

Volume of grey matter in Heschl's Gyrus (includes H1 and H2) (right) 6.25E-04 Volume of grey matter in Parietal Operculum Cortex (right) 5.08E-05 

Volume of grey matter in Planum Temporale (left) 1.29E-02 Volume of grey matter in Planum Polare (left) 5.24E-05 

Volume of grey matter in Planum Temporale (right) 5.08E-05 Volume of grey matter in Planum Polare (right) 1.05E-04 

Volume of grey matter in Supracalcarine Cortex (left) 1.54E-03 Volume of grey matter in Heschl's Gyrus (includes H1 and H2) (left) 1.63E-03 

Volume of grey matter in Supracalcarine Cortex (right) 5.60E-06 Volume of grey matter in Heschl's Gyrus (includes H1 and H2) (right) 6.25E-04 

Volume of grey matter in Occipital Pole (left) 3.96E-05 Volume of grey matter in Planum Temporale (left) 1.29E-02 

Volume of grey matter in Occipital Pole (right) 3.53E-04 Volume of grey matter in Planum Temporale (right) 5.08E-05 

Volume of grey matter in Thalamus (left) 5.66E-02 Volume of grey matter in Supracalcarine Cortex (left) 1.54E-03 

Volume of grey matter in Thalamus (right) 3.27E-02 Volume of grey matter in Supracalcarine Cortex (right) 5.60E-06 

Volume of grey matter in Hippocampus (left) 5.17E-04 Volume of grey matter in Occipital Pole (left) 3.96E-05 

Volume of grey matter in Hippocampus (right) 5.08E-03 Volume of grey matter in Occipital Pole (right) 3.53E-04 

Volume of grey matter in Amygdala (right) 6.36E-06 Volume of grey matter in Hippocampus (left) 5.17E-04 

Volume of grey matter in V Cerebellum (left) 3.67E-02 Volume of grey matter in Hippocampus (right) 5.08E-03 

Volume of grey matter in V Cerebellum (right) 3.03E-02 Volume of grey matter in Amygdala (left) 1.79E-04 

Volume of grey matter in VI Cerebellum (right) 3.19E-02 Volume of grey matter in Amygdala (right) 6.36E-06 

 

 

      Fig. 2 Comparison subtype-defining clinical features for depression-affected patients 
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      Using the UKBB, we gathered prognoses-related variables for these depression-affected 

subjects. More specifically, we extracted the treatment resistance status and admission 

frequency of corresponding patients from the general practitioner (GP) records to evaluate our 

identified depression subtypes. In this study, treatment resistance depression (TRD) was 

defined as depression-affected patients who tried at least two different antidepressant drugs. 

Fabbrri et al. 35 suggested that the time interval between two drugs should be no longer than 14 

weeks and each drug should be prescribed for at least 6 weeks.   

       Since the medication records are not available for all subjects in the UKBB, we only 

gathered the treatment resistance status for 292 patients. When comparing the differences in 

TRD between the two derived subgroups, patients with missing values were excluded. Fisher 

exact test was performed to examine whether there exist significant differences between the 

two derived subgroups regarding the missing rate. Notably, the results did not find any 

significant differences between the two derived subgroups in accessibility of patient records 

for the TRD status(p-value=0.356). We compared the differences by a regression model and 

significant differences in TRD were observed between the two derived subgroups with a p-

value of 0.049 (Fig. 3).  

       Moreover, we compared the differences in depression-caused admission frequencies 

across the two derived subgroups by the Wilcoxon signed rank test. In line with TRD, subjects 

with missing values were excluded. The admission frequency records for 307 patients were 

available for further analysis. Fisher exact test did not find any no significant difference was 

observed in the availability of patients' records for depression-related admission frequencies(p-

value=0.730). Again, a significant difference between the two subgroups was observed with a 

p-value of 0.033.     

        Furthermore, we computed the extended prediction strength (PS) of our identified solution 

and obtained a minimum PS of 0.854 and an average PS of 0.896 (Table 3). A PS of >=0.8 

suggested the stability of the tested model and generalizability to new datasets. Therefore, we 

could conclude that our proposed method is reliable and stable in revealing depression subtypes. 

Moreover, we compared our method with the conventional only clinical variable-based disease 

subtyping (Table). Table 3 shows that our proposed method could achieve higher “min PS” 

and “ave PS” than the clinical variable-only subtyping method despite its high complexity.     

Table 3 Comparison of extended PS derived from different solutions 

Solutions Min PS Ave PS 
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Clinical only 0.786 0.825 

Multi-view 0.854 0.896 

 

 
 

Fig. 3 Comparison of TRD status by subgroups for depression-affected patients 

 

Results of further analyses 

      We downloaded the GWAS summary statistic for depression from PGC to examine 

whether our selected genes were enriched for the corresponding GWAS hit. Table 4 shows the 

enrichment analysis results. As expected, the genes picked up by our proposed framework were 

indeed enriched for known genes for depression. More specifically, subtype-defining genes for 

nucleus accumbens basal ganglia and putamen basal ganglia were significantly enriched for 

GWAS hit of depression.  

Table 4 Enrichment analysis results for GWAS hits of depression 

Subgroups P(Cortex) P(Frontal cortex) P(Nucleus accumbens basal ganglia) P(Putamen basal ganglia) 

One 0.3726 0.5027 0.0343 0.0547 

Two 0.1436 0.5644 0.038 0.0112 

 

      Table S1 demonstrates the subtype-defining gene sets identified by our proposed 

framework. While many subtype-defining genes appeared in both depression subtypes, others 

were subtype-specific. Most importantly, many were well-known susceptibility genes for 

depression or involved in the related pathophysiological process. For example, ROGDI, 

NALCN, ITIH4 were selected by our algorithm as subtype-defining genes in both subtypes. A 

recent study by Gonda et al.36 suggested the influence of ROGD1 on anxious temperaments 

through its regulation of leucine zipper protein encoding in the brain.  Studies demonstrate the 
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connections between NALCN and various psychiatric disorders, including depression, bipolar, 

and so on.  Cochet-Bissuel et al. 37 revealed its critical role in regulating neuronal excitability, 

and the alternation of NACLN channelosome may lead to the onset of depression-related 

symptoms. SNX19 was identified as a subtype-defining gene for subtype 2 only. According to 

Ma et al. 38,  it is intimately involved in the initiation of the molecular mechanism of risk for 

schizophrenia, a highly comorbid disorder for depression. For more details, please refer to 

Table S1.  

      Table S2 lists the top enriched pathways that characterize each disease subtype. Numerous 

enriched pathways were involved in depression or related pathophysiology. Again, some 

enriched pathways were shared among two identified subtypes while others were subtype-

specific. Here we highlighted a few pathways that may be of interest. Regulation of PTEN 

stability and activity, tyrosine metabolism were found to be significantly enriched for 

depression patients belonging to subtype 1. Wang et al. conducted an experiment on mice and 

found that regulation of PTEN stability and activity could lead to an increase in depression-

related behaviors 39. Tyrosine metabolism was confirmed to be intimately related to anhedonia, 

a core symptom of depression, by Bekhbat et al 40. They also suggested that this pathway 

defined a subtype of depression. As for subtype 2, some of the significantly enriched pathways 

included PIP3 activates AKT signaling, prostaglandin (PG) synthesis and regulation and 

Vitamin D Receptor Pathway. A previous study by Matsuda et al. 41 suggested that PIP3 

activates AKT signaling pathway plays a critical role in the survival of various neuron cells, 

which may evoke depression-related behaviors. Chu et al. 42 reported that PG synthesis and 

regulation could lead to the onset of depression through downregulating PG D2 levels in the 

plasma. For more details about other enriched pathways, please refer to Table S2. 

     Table S3 summarizes the enriched drugs for each identified depression subtype. Many were 

proven to be effective in reversing depression-related symptoms or behaviors. For example, 

apigenin, kaempferol and ouabain etc. A previous study by Weng at al. 43 found that apigenin 

could reverse depression-like behaviors in mice.  Silva dos Santos et al. 44 implicated that 

kaempferol has a multipotential neuroprotective effect on depression. For more details on the 

corresponding enriched drugs, please refer to Table S3. 

 

Discussion 

       In this proof-of-concept study, we proposed a novel framework to identify depression 

subtypes by incorporating both clinical and genetic information using a multi-view biclustering 

method.  We demonstrated the validity of our proposed framework by applying it to depression-
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affected subjects extracted from the UKBB. Two different depression subtypes with significant 

differences in the treatment resistance status and hospitalization frequencies could be identified. 

Internal validation result (PS) also revealed the stability of our proposed method in revealing 

depression subtypes and the generalizability to new datasets. Furthermore, the subtype-

defining genes were significantly enriched for GWAS hits for depression. More encouragingly, 

many enriched drugs based on identified subtype-defining genes were proven to be effective 

in reversing depression-related symptoms or behaviors. We believe this proof-of-concept study 

shall be generalizable to a larger sample size.  

        This study has several advantages. A key advantage is that it’s the first study attempting 

to classify depression patients into homogeneous subgroups by incorporating both clinical and 

genetic information using a multi-view biclustering method. It combined brain structural 

features with PRSs of related disorders as well as genotype-imputed expression profiles of 

related brain tissues for the subtyping of depression. We note that some previous studies used 

PRS for the prediction of psychiatric disorder risk. However, none of them combined this with 

other clinical and genetic information for the subtyping of psychiatric disorders, especially 

depression. Secondly, causal inference was employed to identify causally relevant genes in 

different brain tissues to inform the feature selection process. Thus, subgroup-selected genes 

from this study are more likely to be clinically relevant and interpretable for the involved 

disease mechanisms for depression patients. To our knowledge, no previous works have 

employed a causal inference approach to select genes for clustering a complex disease/trait. 

Thirdly, our proposed framework allowed transcriptomes from different tissues to be modelled, 

which dramatically improved the flexibility of our method. Besides, it’s less invasive and more 

cost-effective than access to raw gene expression data. Since the gene expression levels were 

predicted from the genotypes, they were unlikely to be confounded by other factors, such as 

medication usage. Even though the proposed approach is applied to stratify depression patients 

into different subtypes, it is generalizable and could be used to subtype other psychiatric and 

neurological disorders.   

      Here we highlight a few related research. One related approach is to construct the polygenic 

risk score (PRS) for each subject first, then use the PRS to stratify subjects. There is a 

fundamental difference between our proposed method and the PRS. PRS aims to estimate the 

overall genetic liability to a particular disease10. However, it is not designed to uncover 

subtype-defining gene set. It’s more efficient in distinguishing cases from controls instead of 

stratifying confirmed cased into different subgroups. It’s very challenging to stratify patients 
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solely by PRS as depression is a highly heterogeneous disorder. Patients with similar overall 

genetic liability may have distinct genetic basis11. 

       Previously, Yin et al.3,4 proposed to incorporate clinical and genetic data to subtype 

schizophrenia patients by a multi-view biclustering method. Our method is different from this 

work in several ways. First, brain structural features were employed as part of the features for 

the subtyping of depression patients while the previous work used well-defined clinical features 

for disease subtyping. The brain structural features used here carry useful information related 

to the underlying disease mechanisms that probably not reflected in well-defined clinical 

features. Compared with clinical symptoms, brain structural features can be more objectively 

assessed and are more directly linked to the underlying disease biology. In addition, because 

these structural features can be directly extracted from magnetic resonance imaging (MRI), and 

clinicians are not necessarily involved in this feature extraction process, which can save the 

cost/time of assessment by psychiatrists. Different from the previous work, the selection of 

subgroup-relevant clinical features was totally data-driven in this study covering hundreds of 

features instead of restricting to a small set of predefined clinical features (around 10) in the 

prior papers. This may lead to the discovery of new disease biomarkers. Besides, PRS, which 

reflects the overall genetic predisposition of patients to related disorders, were also 

incorporated for the subtyping of depression patients in this invention. To our knowledge, this 

is the first study that combine PRSs of related disorders and brain structural features as well as 

genotype-predicted expression profiles for the subtyping of depression patients, and for any 

complex diseases. In the above mentioned two publications, PRSs of related disorders were not 

included for the subtyping of patients. Moreover, causal inference was employed to identify 

causally-relevant genes to inform gene selection under the proposed framework. In the prior 

work, selection of genes was not based on any causal discovery methods. Even though genes 

selected from their frameworks may be  associated with the identified subgroups, they may be 

confounded by other genes (i.e. the association may be spurious). Our proposed approach 

could differentiate causal genes from non-causal ones. Thus, subgroup-specific genes selected 

from our invention are more likely to be clinically relevant and interpretable to explain the 

contributing disease mechanisms of the studied disorder.  

      Several limitations of this study should be borne in mind. First, the sample size of the 

depression-affected patients dataset was modest. Even though it’s hard to collect data with both 

available brain structural features and genotypes, larger sample size will add diversity and be 

better in demonstrating whether our proposed method adapts well to a highly variable dataset. 

We believe this proof-of-concept study shall be generalizable to a larger sample size. Second, 
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we failed to replicate our proposed clustering model in the independent datasets, because such 

additional datasets with brain structural features and genotype information were not available. 

Instead, we demonstrated the validity and feasibility of our proposed approach by extended 

prediction strength and external validation. Third, we had a very limited access to different 

outcome-related variables for validating our subgroups. Future research may have better access 

to outcome-related variables, because more patient-related data would be released in the UKBB.  

      To conclude, we have proposed a novel disease subtyping model, which was capable of 

identifying depression subtypes by utilizing genotype-predicted expression levels of relevant 

brain tissues and brain structural information (more specifically, the volume of grey matter in 

different brain regions) as well as PRS of other diseases. Genes were selected based on a causal 

inference framework such that the most functionally relevant genes could be included for 

disease subtyping. Our proposed approach has opened a new avenue for exploring GWAS, 

brain structural features and PRS for the subtyping of psychiatric/neurological disorders. We 

believe this is a valuable endeavor to exploit the usage of causal inference for translational 

medicine.  
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