Abstract
In the fourth year of the COVID-19 pandemic, public health authorities worldwide have adopted a strategy of learning to live with SARS-CoV-2. This has involved the removal of measures for limiting viral spread, resulting in a large burden of recurrent SARS-CoV-2 infections. Crucial for managing this burden is the concept of the so-called wall of hybrid immunity, through repeated reinfections and vaccine boosters, to reduce the risk of severe disease and death. Protection against both infection and severe disease is provided by the induction of neutralizing antibodies (nAbs) against SARS-CoV-2. However, pharmacokinetic (PK) waning and rapid viral evolution both degrade nAb binding titers. The recent emergence of variants with strongly immune evasive potential against both the vaccinal and natural immune responses raises the question of whether the wall of population-level immunity can be maintained in the face of large jumps in nAb binding potency. Here we use an agent-based simulation to address this question. Our findings suggest large jumps in viral evolution may cause failure of population immunity resulting in sudden increases in mortality. As a rise in mortality will only become apparent in the weeks following a wave of disease, reactive public health strategies will not be able to provide meaningful risk mitigation. Learning to live with the virus could thus lead to large death tolls with very little warning. Our work points to the importance of proactive management strategies for the ongoing pandemic, and to the need for multifactorial approaches to COVID-19 disease control.
Competing Interest Statement
MS, LY, and AC are employees of Fractal Therapeutics, Inc.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study used ONLY openly available human data that were originally located at https://academic.oup.com/cid/article/73/3/e531/5880016?login=false
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors