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Summary 

Background 

The global launch of ChatGPT on November 30, 2022 has sparked widespread public interest in 

large language models (LLMs), and interest in the medical community is growing. Indeed, 

recent preprints on medRxiv have examined ChatGPT and GPT-3 in the context of standardized 

exams, such as the United States Medical Licensing Examination. These studies demonstrate 

modest performance relative to national averages. In this work, we enhance OpenAI's GPT-3 

model through zero-shot learning, anticipating that it outperforms experienced neurosurgeons 

in written question-answer tasks for common clinical and surgical questions on vestibular 

schwannoma. We aimed to address LLM accountability by including in-text citations and 

references to the responses provided by GPT-3. 

 

Methods 

The analysis involved (i) creating a dataset through web scraping, (ii) developing a chat-based 

platform called neuroGPT-X, (iii) enlisting expert neurosurgeons across international centers to 

create and answer questions and evaluate responses, and (iv) analyzing the evaluation results 

on the management of vestibular schwannoma. The survey had a blinded and unblinded phase. 

In the blinded phase, a neurosurgeon with 30+ years of experience curated 15 questions 

regarding common clinical and surgical contexts of vestibular schwannoma. Then, four 

neurosurgeons, ChatGPT (January 30, 2023 model, aka naive GPT), and a context-enriched GPT 

model independently provided their responses. Three experienced neurosurgeons blindly 

evaluated the responses for accuracy, coherence, relevance, thoroughness, speed, and overall 

rating. Then, all seven neurosurgeons were unblinded to all responses and provided their 

thoughts on the potential of expert LLMs in the clinical setting. 

 

Findings 

Both the naive and content-enriched GPT models provided faster responses to the standardized 

question set (p<0.01) than expert neurosurgeon respondents. Moreover, responses from both 

models were consistently non-inferior in accuracy, coherence, relevance, thoroughness, and 

overall performance, and were often rated higher than expert responses. Importantly, context 

enrichment of GPT with relevant scientific literature did not significantly affect speed (p>0.999) 

or performance across the aforementioned domains (p>0.999). Of interest, all expert surgeons 

expressed concerns about the reliability of GPT in accurately addressing the nuances and 

controversies surrounding the management of vestibular schwannoma. Further, we developed 

neuroGPT-X, a chat-based platform designed to provide point-of-care clinical support and 

mitigate limitations of human memory. neuroGPT-X incorporates features such as in-text 

citations and references to enable accurate, relevant, and reliable information in real-time. 
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Interpretation 

A context-enriched GPT model provided non-inferior responses compared to experienced 

neurosurgeons in generating written responses to a complex neurosurgical problem for which 

evidence-based consensus for management is lacking. We show that context enrichment of 

LLMs is well-suited to transform clinical practice by providing subspecialty-level answers to 

clinical questions in an accountable manner. 

 

Research in Context 

Evidence before this study 

We searched PubMed for “(vestibular schwannoma OR acoustic schwannoma) AND (GPT-3 OR 

Generative Pretrained Transformer OR large language model)” with no filters and identified no 

relevant articles. We then searched PubMed using the string “(subspecialty OR neurosurgery 

OR physician) AND (GPT-3 OR Generative Pretrained Transformer OR large language model) 

AND (fine-tuning OR context enrichment)” with no filters and identified three studies. One 

study noted that domain-specific knowledge enhanced pre-trained language models. 

 

Added value of this study 

To our knowledge, this is the first study to show the non-inferiority of a context-enriched LLM 

in a question-answer task on common clinical and surgical questions compared to experienced 

neurosurgeons worldwide, determined by their neurosurgical colleagues. Furthermore, we 

developed the first online platform incorporating an LLM, chat memory, in-text citations, and 

references regarding comprehensive vestibular schwannoma management. To assess the 

model’s performance, a neurosurgeon with 30+ years of experience managing patients with 

vestibular schwannoma curated 15 questions to the model, ChatGPT, and four international 

expert neurosurgeons. A separate, blinded group of three expert neurosurgeons assessed these 

answers for accuracy, coherence, relevance, thoroughness, speed, and overall rating. This study 

demonstrated the capability of context-enriched LLMs as point-of-care informational aids. 

Importantly, all expert surgeons raised questions regarding the nuances and role of human 

experience and intuition that GPT may not capture in generating opinions or recommendations. 

  

Implications of all the available evidence 

The present study, with its subspecialist-level performance and interpretable results, suggests 

that context-enriched LLMs show promise as a point-of-care medical resource. Evaluations from 

experienced neurosurgeons showed that a context-enriched GPT model was rated similarly to 

neurosurgeon responses across evaluation domains in this study. This work serves as a 

springboard for expanding this tool into more medical specialties, incorporating evidence-based 

clinical information, and developing expert-level dialogue surrounding LLMs in healthcare. 
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Introduction 

Over the past several decades, information storage and retrieval have shifted from textbooks 

and journals to digital resources. Web-based knowledge, including mobile applications, has 

provided the medical community rapid access to an ever-increasing body of knowledge.
1
 While 

physicians may access information and guidelines using search engines, results are usually high-

volume, necessitating selective data extraction into clinically relevant information. In addition, 

physicians are continually required to remain up-to-date on their knowledge and skills, relying 

on experience and the latest published standards of care.
2
 With more than one million 

publications a year (two papers/minute) added to online databases in the biomedical field 

alone, the current mode of learning, teaching, and practicing medicine is rapidly becoming 

volume-intensive and memory-prohibitive.
1,3,4

 Such an approach to education is time-

consuming, with information often segregated, variable, or incomplete, requiring further in-

depth review and analysis to achieve optimal results.
4
 In this era of rapid medical advancement, 

it is imperative that physicians have access to the latest and most relevant information to 

ensure the best outcomes for their patients. 

 

Large language models (LLMs), such as Generative Pretrained Transformer (GPT),
5
 show 

promise as clinical reasoning tools. LLMs are trained on massive amounts of text data to 

generate human-like language and perform tasks such as text generation, question answering, 

and language translation.
5
 The release of ChatGPT in November 2022, which features a chat-

like interface and human-like conversation skills, highlights the potential of LLMs in fields that 

require complex decision-making. This is exemplified by recent studies that demonstrate the 

performance of ChatGPT and GPT on standardized exams, such as the United States Medical 

Licensing Examination
6
 and the National Conference of Bar Examiners Bar Exam.

7
 

 

The use of LLMs as a point-of-care medical resource for subspecialty physicians has yet to be 

investigated. Despite its potential, issues such as interpretability and accountability have 

limited the application of LLMs in high-risk environments. However, context enrichment and 

zero-shot learning have shown marked domain-specific performance improvements,
8
 making 

this an area of considerable promise. Combining zero-shot learning and publication references 

with LLM responses may address interpretability and accountability concerns, thereby 

improving the clinical utility of these models. 

 

To establish whether LLMs can assist in educating residents and delivering treatment options at 

an experienced physician level, it would be important to challenge LLMs with a complex and 

controversial disease paradigm. One such example is acoustic/vestibular schwannoma, which 

bears nuances of intricate anatomical landmarks, diverse diagnostic modalities, global 

consensus treatment approaches, and surgeon expertise, whereby treatment and outcomes 
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may vary between centers of excellence.
9
 Staying abreast of literature and guidelines while 

maintaining technical excellence may be challenging, requiring a balance between knowledge 

extraction and reasoning. 

 

In this study, we make three key contributions toward assessing LLMs as a clinical tool. Firstly, 

we develop a framework to enrich GPT with context relevant to vestibular schwannoma. 

Secondly, we compare the performance of ChatGPT, termed naive GPT, and a context-enriched 

GPT model against leading neurosurgical experts worldwide. Finally, we introduce a proof-of-

concept clinical tool, neuroGPT-X, which incorporates working memory and sources with its 

responses in a web-based chat platform, aimed at addressing the challenges of LLMs in a 

clinical setting (e.g., interpretability, reliability, accountability, and safety). Here we hypothesize 

that a well-trained, context-enriched GPT will perform similar to or better than expert surgeons 

in answering questions commonly encountered in day-to-day practice. 

 

Methods 

Dataset Curation: 

Terminologies unique to vestibular schwannoma were used to obtain articles and abstracts via 

web scraping from Wikipedia and PubMed. The Wikipedia Python application programming 

interface (API) was used to scape all webpages from the starting webpage of “Vestibular 

Schwannoma,” and the content from each page was extracted by heading. The findpapers 

Python application
10

 was used to scrape abstracts from journals and conference proceedings 

related to vestibular schwannoma into a structured JSON format from PubMed from January 1, 

2000, until January 1, 2023. The query was ([vestibular schwannoma] OR [acoustic 

neurilemmoma] OR [perineural fibroblastoma] OR [neurinoma of the acoustic nerve] OR 

[neurofibroma of the acoustic nerve] OR [schwannoma of the acoustic nerve]). All journals 

flagged as potentially predatory in the metadata of the findpapers application output were 

removed based on Beall's List of potentially predatory journals and publishers. 

 

A structured dataset was compiled with these column names: Title, Heading, Content, Authors, 

Tokens, and Embeddings. For Wikipedia articles, “Title” was the name of the article, “Heading” 

was the article title, and “Authors” was set as “Wikipedia.” For PubMed abstracts, “Title” was 

“Vestibular Schwannoma,” “Heading” was the publication title, and “Authors” were the 

contributing author(s). The “Content” column included the scraped Wikipedia section or 

PubMed abstract. The “Tokens” column had the number of tokens for each row in the 

“Content” column computed using the GPT2TokenizerFast function provided by OpenAI. These 

tokens were used to calculate the maximum input length to provide to the OpenAI GPT API. The 

“Embeddings” column included embeddings from the “Content” column computed using the 

OpenAI embedding model, text-embedding-ada-002. These embeddings were used for 
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thematic analysis and search purposes to find the most similar documents to a user’s input, 

providing context enrichment for the OpenAI GPT-3 API in a zero-shot learning fashion. We call 

this model context-enriched GPT. 

 

Thematic Analysis: 

Thematic analysis was performed using the dataset embeddings. K-means clustering classified 

clusters of thematic similarity; the clusters were chosen based on the elbow method and 

silhouette score for clusters ranging from 2-25. The t-SNE algorithm was employed for data 

visualization with two components, a perplexity of the square root of the number of rows in the 

structured dataset, PCA as an initializer, and a learning rate of 200. The InstructGPT Davinci 

model,
11

 text-davinci-003, was used to perform thematic analysis on a randomly sampled 

subset of articles from each cluster. Each cluster’s theme was summarized into keywords using 

the same text-davinci-003 model with hyperparameters of temperature = 0, max_tokens = 64, 

top_p = 1, frequency_penalty = 0, and presence_penalty = 0. The prompt for the thematic 

analysis was “What do the following abstracts have in common?” and the prompt for the 

summarization was “Summarize this phrase into keywords.” 

 

Context Enrichment with Prompt Construction: 

User input was enriched with a priming prompt and content for all requests to the OpenAI GPT 

API. Standard prompts were constructed using the following structure: 

 

Prompt = priming prompt + content + user input 

 

The priming prompt was, “Pretend you are a physician writing an exam. Please answer every 

question to the highest degree of medical accuracy. Provide detailed reasoning for your answer. 

Use the context provided to supplement your knowledge base.” The content comprised 

Wikipedia article sections and PubMed abstracts sorted by cosine similarity had a maximum 

token length of 2000. Context-enriched GPT output had a maximum token length of 2000. 

 

Cosine similarity between user input and structured dataset content was used to obtain 

relevant context enrichment for GPT via OpenAI’s embedding model, text-embedding-ada-002. 

More precisely, given user input as an embedding vector U and an embedding within a 

structured dataset E, the cosine similarity between U and E was defined as the dot product 

between U and E divided by the product of the magnitudes of U and E. 

 

Web Application, Memory, and Inclusion of Sources: 

A web application was developed to create a user chat interface for the context-enriched GPT 

model using the Python Flask microweb framework
12

 paired with HTML, CSS, and Javascript. 
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We call this platform neuroGPT-X. User messages are permitted up to 1500 characters (~210-

380 words). Key features of neuroGPT-X include conversation memory of the current session, 

in-text citations and references for its responses, restriction of conversations to relevant 

medical topics, timestamps for all messages, animated loading icons while neuroGPT-X 

computes its response, and prevention of user input spam. 

 

Memory was implemented using Conversation Summary Buffer Memory from LangChain, a 

framework that provides a standard memory interface with LLMs. This type of memory 

summarizes both new and old interactions in memory and keeps a buffer of recent interactions. 

In our implementation, the buffer memory had a maximum token limit of 750. Logistically, we 

save a serialized Conversation Summary Buffer Memory via the Python pickle module after 

neuroGPT-X completes its response, and we load the memory upon new user inputs. This 

memory file is deleted after the user completes or terminates each session. 

 

On the backend of neuroGPT-X, the prompt was constructed with the primer: 

 

“Pretend you are a specialist physician. Answer every question to the highest degree of medical 

accuracy. Provide detailed reasoning for your answer. Use the context provided to supplement 

your knowledge base. Cite the relevant context in IEEE style using the enumerated context 

before punctuation, e.g., [1], [3, 5]. Ignore the context if it is not relevant to the question. Do not 

create fake citations or more citations than were provided. Write 'This is outside the scope of my 

functionality.' if the question does not relate to vestibular schwannoma or neurosurgery.” 

 

The context was provided using an enumerated list of relevant articles sorted by cosine 

similarity to the user input up to a token length of 1500. The neuroGPT-X model was given API 

completion parameters of temperature = 0, model = text-davinci-003, max_tokens = 1500, and 

top_p = 1. 

 

Study Methodology: 

A neurosurgeon with 30+ years of experience with active clinical practice in vestibular 

schwannoma curated 15 general questions involving anatomy, surgical management, imaging, 

clinical contexts, and genetic predispositions (Supplementary Table 1). These questions were 

answered by the (i) January 30, 2023, ChatGPT model, termed naive GPT, (ii) context-enriched 

GPT, and (iii) four experienced neurosurgeons active in the treatment of vestibular 

schwannoma, also called experts here on. The context-enriched GPT model had API completion 

parameters of temperature = 0, model = text-davinci-003, max_tokens = 2000, and top_p = 1. 
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The four expert surgeons were asked to answer the 15 curated questions ad hoc as if speaking 

to residents or patients while timing themselves. The same questions were independently 

posed to naive GPT and context-enriched GPT, and response times were recorded. The experts, 

naive GPT, and context-enriched GPT responses were reviewed and compiled by an 

independent investigator. The evaluation of these answers was then divided into a blinded and 

unblinded phase. 

 

In the blinded phase, three independent neurosurgeons blindly evaluated the responses from 

naive GPT, context-enriched GPT, and the four experts. The evaluation metrics included 

accuracy, coherence, relevance, thoroughness, and overall rating on a 0-4 Likert scale, with 4 

indicating a better answer (Supplementary Table 2). The evaluators were also asked whether 

they thought the response was provided by an expert or naive GPT/context-enriched GPT. 

 

After initial evaluations, the experts and evaluators were unblinded to naive and context-

enriched GPT responses. In this phase, all seven expert surgeons were asked questions 

regarding GPT-generated responses, including overall satisfaction, the likelihood of use in the 

clinic, value, and the likelihood they would recommend the tool to colleagues via a Likert scale 

from 0-4, with 4 indicating a better answer (Supplementary Table 2). The evaluators were also 

asked long-form questions about their thoughts on GPT in clinical practice. 

 

Statistical Analysis: 

Statistical analyses were performed using Python 3.9 and visualized in GraphPad Prism. 

Statistical significance was set at an alpha of 0.05. Krippendorff’s alpha was computed to 

measure interrater agreement between evaluators in the blinded phase. In the blinded phase, 

aggregate scores and timing measures were compiled across all questions for naive GPT, 

context-enriched GPT, and neurosurgeon experts. The normality of the data was evaluated 

using the Shapiro-Wilk test, and the Kruskal-Wallis test, followed by adjustments for multiple 

comparisons if significant, was used to compute statistical differences between the responses. 

Data was visualized corresponding to the dimension of evaluation metrics, i.e., accuracy, 

coherence, relevance, thoroughness, and overall rating. In the affective phase, piecharts were 

used to visualize the expert perception of the clinical utility of GPT-generated responses. 

 

Results 

Dataset Curation, Thematic Analysis, and neuroGPT-X: 

Web scraping using the Wikipedia API returned 157 articles, further divided into 1,659 sections 

separated by headings. The findpapers Python application returned 3,093 publications from 

PubMed, 12 publications from ACM Digital Library, 6 publications from arXiv, 2 publications 

from bioRxiv, and 1 paper from medRxiv. Four publications flagged as published in potentially 
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predatory journals were removed from the PubMed search. Thus, the total number of 

Wikipedia articles and publications was 3,267. Fig. 1 visualizes these results. 

 

In thematic analyses, the elbow method returned an optimal number of clusters of 11 with a 

silhouette coefficient of 859.35. The thematic analysis produced a thematic analysis of each 

cluster, and the keywords associated with clusters 1-11 are in Supplementary Table 3. Fig. 2 

shows the neuroGPT-X user interface and an example of an interaction with the platform. An 

entire conversation, including answers to the 15 curated questions in this study, is included in 

the supplementary data (Supplementary Table 4). The website can be accessed here: 

https://neurogpt-x.azurewebsites.net/. 

 

Evaluation of Naive GPT, Context-Enriched GPT, and Expert Neurosurgeons: 

The average response time aggregated across all questions was 63.33 ± 66.08 s for 

neurosurgeon gamma, 30.00 ± 30.88 s for neurosurgeon delta, 42.00 ± 22.1 s for neurosurgeon 

epsilon, 134.67 ± 187.15 s for neurosurgeon zeta, 49.03 ± 10.67 s for naive GPT, and 16.67 ± 

9.29 s for enriched GPT. The timing normalized by character count was 513.9 ± 140 

ms/character for neurosurgeon gamma, 380.7 ± 820 ms/character for neurosurgeon delta, 

694.9 ± 710 ms/character for neurosurgeon epsilon, 365.0 ± 240 ms/character for 

neurosurgeon zeta, 36.5 ± 10 ms/character for naive GPT, and 19.8 ± 10 ms for neuroGPT-X. 

Pairwise comparisons of normalized response speed demonstrated that both models were 

significantly faster than the expert neurosurgeon responses (p<0.01), with both models having 

very similar response times (p>0.999). These results are visualized in Fig. 3A and tabulated in 

Supplementary Table 5. 

 

Evaluations by three additional neurosurgeons demonstrated that the naive and enriched GPT 

model was non-inferior and often superior to the responses obtained from expert 

neurosurgeons. Kruskal-Wallis one-way ANOVA analysis showed significant differences in 

performance across accuracy, coherence, relevance, thoroughness, and overall performance 

metrics (p<0.0001). To assess pairwise performance differences across responses, Kruskal-

Wallis tests corrected for multiple comparisons demonstrated consistently non-inferior 

performance of the naive and enriched GPT models compared to expert neurosurgeons across 

all metrics. The models outperformed most expert neurosurgeon responses for coherence and 

thoroughness. Finally, the models had weaker scores in relevance, though both remained non-

inferior to expert neurosurgeon responses. A tabular summary of the results can be seen in 

Table 1 and is visualized in Fig. 3B-F. Krippendorff’s alpha was 0.41 ± 0.05 (±standard deviation) 

for accuracy, 0.31 ± 0.03 for coherence, 0.35 ± 0.02 for relevance, 0.35 ± 0.05 for thoroughness, 

and 0.52 ± 0.01 for overall performance (Table 1). A visualization of the unblinded affective 

survey results is shown in Fig. 4. 
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Figure 1. Overview of the study pipeline and dataset characteristics. (a) The data processing 

pipeline and the three comparisons in this study. (b) Data inclusion and exclusion criteria. (c) 

Thematic analysis of the embedding vectors of the vestibular schwannoma dataset. Clusters 

were computed using K-means clustering. The InstructGPT Davinci model was used to classify 

each cluster. Supplementary Table 2 provides detailed thematic analysis results. (d) Peer-

reviewed abstract publication numbers by year and type. 
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Figure 2. The neuroGPT-X chat interface. Features include conversation memory of the current 

session, references for the information it provides, restriction of conversations to relevant 

medical topics, timestamp for each message, animated loading icons while responses are 

computed, and prevention of user input spam. The website can be accessed here: 

https://neurogpt-x.azurewebsites.net/. 
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Figure 3. Blinded evaluation scores from three expert neurosurgeons. Responses to 15 curated 

questions were measured by (a) normalized response speed by response character length, (b) 

coherence, (c) accuracy, (d) relevance, (e) thoroughness, and (f) overall performance score. 

Gamma, Delta, Epsilon, and Zeta are the neurosurgeons. Error bars represent standard 

deviation. 

 

 

 

Figure 4. Unblinded survey metrics of all seven neurosurgeon experts and evaluators regarding 

a context-enriched GPT model measuring (a) overall satisfaction, (b) likelihood of 
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recommendation to colleagues, (c) likelihood of use in the clinic, and (d) perceived value of the 

tool relative to current resources. 

 

 

Table 1. Blinded evaluation scores from three expert neurosurgeons. Krippendorff’s alpha was 

used to quantify interrater reliability. Kruskal-Wallis tests were used to compare pairwise 

differences, with multiple comparison-adjusted p-values shown. Responses to 15 curated 

questions were measured by accuracy, coherence, thoroughness, relevance, and overall score. 

Gamma, Delta, Epsilon, and Zeta are the neurosurgeons. 

 

    Comparison 

Criterion Author Mean (SD) 

Agreement 

(alpha) GPT Naïve 

GPT 

Enriched Delta Epsilon 

Accuracy 

GPT Naïve 3.36 (0.84) 0.35 - - - - 

GPT Enriched 3.09 (1.1) 0.43 >0.9999 - - - 

Delta 2.82 (1.09) 0.40 0.2486 >0.9999 - - 

Epsilon 2.49 (1.01) 0.44 0.0009 0.0474 >0.9999 - 

Gamma 2.5 (1.19) 0.49 0.0035 0.1312 >0.9999 >0.9999 

Zeta 2.82 (1.09) 0.35 0.2534 >0.9999 >0.9999 >0.9999 

Coherence 

GPT Naïve 3.39 (0.69) 0.22 - - - - 

GPT Enriched 3.11 (1.19) 0.28 >0.9999 - - - 

Delta 3.09 (0.85) 0.32 >0.9999 >0.9999 - - 

Epsilon 2.64 (0.93) 0.39 0.0028 0.0518 0.4424 - 

Gamma 2.61 (0.84) 0.38 0.0007 0.0165 0.1755 >0.9999 

Zeta 2.56 (1.1) 0.28 0.0017 0.0352 0.3258 >0.9999 

Relevance 

GPT Naïve 3.09 (1.01) 0.27 - - - - 

GPT Enriched 2.87 (1.29) 0.31 >0.9999 - - - 

Delta 2.76 (1.11) 0.35 >0.9999 >0.9999 - - 

Epsilon 2.51 (1.01) 0.36 0.1058 0.6264 >0.9999 - 

Gamma 2.23 (1.31) 0.43 0.0114 0.099 0.8648 >0.9999 

Zeta 3.04 (1.07) 0.35 >0.9999 >0.9999 >0.9999 0.1692 

Thoroughness 

GPT Naïve 3.25 (0.92) 0.26 - - - - 

GPT Enriched 2.98 (1.19) 0.32 >0.9999 - - - 

Delta 2 (1.22) 0.34 <0.0001 0.0019 - - 

Epsilon 1.78 (0.95) 0.39 <0.0001 <0.0001 >0.9999 - 

Gamma 1.64 (1.1) 0.44 <0.0001 <0.0001 >0.9999 >0.9999 

Zeta 2.56 (1.37) 0.29 0.1503 >0.9999 0.3219 0.014 

Overall GPT Naïve 2.54 (1.4) 0.57 - - - - 



15 

 

Performance GPT Enriched 2.29 (1.53) 0.57 >0.9999 - - - 

Delta 2 (0.99) 0.44 0.7223 >0.9999 - - 

Epsilon 1.43 (0.91) 0.51 0.0005 0.0097 0.4067 - 

Gamma 1.37 (0.94) 0.59 0.0002 0.0048 0.2421 >0.9999 

Zeta 2.1 (1.19) 0.42 >0.9999 >0.9999 >0.9999 0.104 

 

 

Table 2. Expert concerns from the unblinded phase of this study. The authors discussed these 

concerns, and we present a summary of consensus recommendations. 

 

Expert Concerns Discussion, Risk Mitigation Strategies, and Future Directions 

“Garbage in, garbage out” 

pitfall 

 

Contextual data is inaccurate, 

incomplete, biased, or 

unreliable. As a result, 

predictions generated by LLMs 

may be unreliable, leading to 

poor decision-making. 

( Data pre-processing and curation: Engaging domain-specific experts in 

curating training data to develop accurate and reliable LLMs. 

( Addressing biases in the literature: Engaging domain-specific experts in 

assessing whether training data (and available literature broadly) includes 

a representative sample of patients with different ages, sex, disease 

severities, comorbidities, etc. 

( Differential context enrichment weightage: Applying higher weights 

during context enrichment to papers with more citations or those 

published in higher impact factor journals based on the assumption that 

these papers are more influential or of higher quality. 

Context enrichment and token 

length limitations 

 

LLMs may not generate the full 

range of opinions to capture the 

complexity of the underlying 

literature. Moreover, current 

LLMs have input limits that 

restrict their capacity to 

understand longer texts. 

( Memory networks and attention mechanism: Incorporating memory 

modules that store information from previous inputs paired with an 

attention mechanism that selectively focuses on relevant parts of the 

memory when processing new inputs. 

( Previous prompt summary: Summarizing previous inputs to reduce the 

required amount of contextual input. 

( Longer context lengths: Increasing token length for LLMs, enabling them 

to process full articles, rather than abstracts or shorter texts. 

Risk of medical mistakes, 

malpractice, or misuse 

 

LLMs may provide unsafe 

recommendations. Further, 

medical professionals and 

insurance providers may overly 

rely on LLMs without applying 

sufficient clinical judgment. 

( LLM recommendations as a tool: Ensuring LLM-generated 

recommendations are decision-making aids and not a replacement for 

clinical judgment, which takes individual patient contexts into account. 

( Transparent and interpretable LLMs: Providing citations used in the LLM 

responses. 

( Benchmarking and clinical validation: Validating LLM performance with 

real-world patient data across diverse clinical scenarios and comparing 

their performance to existing medical knowledge databases and human 

subspecialists. 

( Appropriate use policies: Incorporating actionable and evolving medico-

legal dialogue and policies regarding LLM use in healthcare; restriction of 

unrelated, non-medical questions; filtering toxic inputs and outputs. 

Standardized ( Awareness of LLM training limitations: Training clinicians on appropriate 
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recommendations vs. tailored 

treatment 

 

Indiscriminately following LLM 

recommendations overlooks a 

patient's context, including 

social and psychological factors 

like race, sex, and 

socioeconomic status, all of 

which impact outcomes. 

LLM use; Training should emphasize that these models, trained on large 

datasets, do not fully capture the complexity of individual patients or 

their specific medical conditions. 

( Integrating multiple modalities of investigations: Integrating non-textual 

data into LLMs (e.g., radiographic evidence); potential solutions include 

conversion into textual data or training multi-modal models. 

( Proliferation in precision health literature: Incorporating the expanding 

evidence base for personalized treatment in LLM training can enable 

tailored responses to individual patients and their unique medical needs. 

( Tailoring responses to diverse audiences: Training or priming LLMs to 

communicate to various audiences, e.g., patients who may benefit from a 

similar tool with accessible language. 

Uncertainty associated with 

LLM responses 

 

Clinicians may find it 

challenging to determine the 

significance of LLM 

recommendations and how to 

incorporate their own judgment 

with LLMs. 

( Probability scoring of responses: Integrating factors such as the 

relevance and reliability of input data, training history, and complexity of 

the prompt to indicate the level of certainty of the recommendation; 

LLMs should provide alternative recommendations with varying levels of 

confidence, enabling clinicians to evaluate a range of potential options. 

( Incorporating clinician’s feedback: Encouraging clinicians to report 

inaccuracies in LLM recommendations to aid in the continuous 

improvement of LLM accuracy. 

 

 

Discussion 

In this study, we demonstrate the non-inferiority of LLM-based model responses to 15 common 

subspecialist-level questions on vestibular schwannoma compared to experienced 

neurosurgeons. Moreover, we enriched GPT-3 with relevant, publicly available information via 

filtered abstracts from scientific publications to supplement the model’s knowledge base and 

provide reference material. To elicit expert-level responses from the model, a distinct priming 

prompt was employed, which varied from the prompt provided to the neurosurgeons. To 

bolster accessibility, functionality, and safety, we developed neuroGPT-X, incorporating a zero-

shot learning framework with the GPT-3 API into a web application enriched with features. 

These features included conversation memory, in-text citations, full references, restriction of 

conversations to relevant medical topics, conversation timestamps, and spam prevention. To 

our knowledge, this is the first study to show subspecialist-level performance of a context-

enriched LLM. 

 

The observation that response coherence and thoroughness were rated significantly higher in 

both GPT models compared to neurosurgeon experts suggests the importance of integrating 

domain-specific knowledge in the GPT models to improve response utility. Similarly, accuracy, 

relevance, and overall performance metrics were roughly equivalent between the GPT models 

and neurosurgeons. Interestingly, the GPT models were rated as having “minimal inaccuracies,” 

while the neurosurgeons were rated to have “some inaccuracies” to “minimal inaccuracies.” 
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Furthermore, the GPT models and neurosurgeons were rated as having “average relevance” to 

being “relatively relevant.” In the unblinded survey, there was a mix of responses across 

affective metrics, though the majority expressed positive opinions on GPT (Fig. 4). The relative 

superiority of GPT may relate to the impromptu nature of expert surgeon responses, i.e., as if 

they were speaking to a trainee and not at a board exam. Nonetheless, these results suggest 

that LLMs bear promise as a clinical aid. 

 

LLMs in the clinic 

Clinical decision-making is a complex process that involves the application of practitioner 

knowledge and the integration of disease, patient, and system-level factors learned over 

time.
13,14

 Traditional methods of clinical decision-making can be hindered by limited access to 

relevant information, the need to integrate large amounts of complex information, and the 

possibility of human error, particularly in a fast-paced clinical environment.
13,14

 This may lead to 

variations in clinical practice amongst institutions, practitioners, sub-specialties (e.g., 

neurosurgery, otolaryngology, radiology, radiation oncology), and patient perceptions.
15–17

 

 

The introduction of neuroGPT-X offers a unique tool for clinicians with rapid access to a wealth 

of information that includes patient-related findings and evidence-based guidelines, all 

integrated, summarized, and presented in a tailored and comprehensive manner.
18

 Such a tool 

can support decision-making by providing standardized processes and assisting practitioners 

with point-of-care informational aids.
16,19,20

 Interestingly and perhaps as expected, neuroGPT-X 

was rated as having more comprehensive responses than the neurosurgeons, whose answers 

reflected problems or nuances associated with the care of an individual patient rather than 

factual information that can be extracted from the literature. Nonetheless, clinicians retain and 

reference relevant textbook or literature information in their daily practice and, in particular, 

have knowledge reinforced by their clinical experiences.
21

 It is well known that human memory 

and recall are limited and can easily be overwhelmed while also being susceptible to biases and 

heuristics, which can influence information recall .
3,17, 22–24, 25

 Through rapid processing of 

current publications, neuroGPT-X provides clinicians with information that would be otherwise 

impossible to read or assimilate. 

 

Furthermore, the neuroGPT-X framework is transferable between LLMs, allowing the potential 

for rapid advancements in the performance of AI-based medical decision-making systems. For 

example, integrating the framework with future iterations of BioGPT
26

 can benefit from 

improved clinical communications, as BioGPT was trained on millions of biomedical research 

articles to perform tasks such as answering questions, data extraction, and text generation. 

Indeed, as a framework with continual selective data input, neuroGPT-X enables the model and, 
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by extension, its users, to adapt to incoming discoveries, guidelines, and evidence-based best 

practices. 

 

LLMs with a caution 

Upon unblinding evaluation results and responses, the expert surgeons shared that the context-

enriched GPT was “quite useful in clinical practice in the present age when physicians have to 

deal with huge amounts of data and knowledge” and that the answers “appear to be well 

backed up by evidence.” However, several salient concerns and questions were raised 

regarding the model’s limitations or interpretations (Table 2). The concerns, in part, may reflect 

a lack of level 1 evidence in managing vestibular schwannoma, with surgeons and sites opting 

for center-specific preferences, e.g., surgery versus radiosurgery versus observation. The GPT 

model relied primarily on available literature with possible biases. Indeed, if neuroGPT-X were 

to be advanced toward a reliable and clinically usable tool, relevant thematic breadth and 

depth of information would need to be incorporated. Moreover, the model must continually 

mature through an automated feed of filtered, selected, and complete (full paper) literature 

sources. Similarly, security and restrictions for online abuse, malware, or spam questioning to 

the model must be duly incorporated. 

 

Although the ability of LLMs to exceed human performance in clinical acumen is promising, it is 

critical to ensure their responses are safe and reliable. LLMs are known to “hallucinate,” which 

refers to the generation of factually incorrect statements.
27,28

 More specifically, LLMs operate 

on the principle of “next best guess,” i.e., maximum likelihood estimation, based on probability 

distributions it learned via training. This raises questions about the nature of decision-making, 

both human and artificial. For example, human surgeons do not need a precise understanding 

of the trajectory of their joints when reaching out to grab a scalpel; they make a series of 

educated guesses based on their training and experience. Similarly, LLMs make estimates based 

on the probability distributions learned from the training data. However, LLMs cannot yet 

understand the implications of their decisions in the same way as humans. Therefore, it is 

essential to ensure that the responses provided by LLMs are accurate, safe, and reliable, a 

factor we attempted to address in neuroGPT-X through the inclusion of references and in-text 

citations. 

 

Human superiority over LLMs 

Human memory is not solely storage and recall. It is also closely tied to experiences, emotions, 

intuition, and beliefs, all of which shape worldviews. This multifaceted nature of human 

memory may be challenging for LLMs to replicate. Moreover, human memory has advantages 

over LLMs in information processing and ideating. For example, humans routinely engage in 

creative thinking and problem-solving, enabling them to generate new ideas and innovative 
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solutions. In contrast, LLMs are limited to answer generation based on their training dataset 

and the context supplied by their creator; their reliance on probability distributions also makes 

them more susceptible to inaccurate “hallucinations” or guessing.
27,28

 In this sense, LLMs 

fundamentally differ from human beings regarding their decision-making processes and 

abilities. These differences in memory, information processing, and recall necessitate the 

coupling of LLM technologies like neuroGPT-X with experienced practitioners to ensure safe 

and reliable practices in the clinical setting. 

 

Future directions 

Many exciting possibilities exist for the ongoing improvement, evolution, and integration of 

LLMs in the clinical environment. A promising area is the development of multi-modal LLMs, 

which can interpret and integrate numerous inputs such as images, text, and other sensory 

data.
29

 Many medical specialties, including neurosurgery, rely heavily on multiple information 

modalities (e.g., imaging, patient demography, genetics, comorbidities, etc.) to arrive at well-

reasoned decisions. Therefore, incorporating this information into decision-making can lead to 

a holistic care plan more attuned to a patient-specific clinical scenario. Continual growth and 

maturity of the model would also ensure up-to-date answers consistent with the latest 

standards of care. In particular, incorporating patient-related factors, such as preferences and 

values, into the model would further refine the reliability and inclusivity of the model. 

 

With healthcare informatics, it is paramount to consider data security and confidentiality in 

applying LLMs to healthcare.
30

 The neuroGPT-X model hosted on a secure cloud platform 

already ensures security and compliance offered by Microsoft. From a systems-level 

perspective, a targeted effort to define the scope and policies surrounding LLMs in the 

healthcare setting must be considered as the platform becomes globally accessible. 

 

In conclusion, our study presents a responsive and clinically relevant AI tool, neuroGPT-X, 

utilizing context enrichment of the OpenAI GPT platform. The framework is readily transferable 

to other LLMs, opening possibilities for expanding its utility across neurosurgical diseases and 

other medical subspecialties. The study further highlights the importance of responsible AI 

development and the potential for machine intelligence to enhance clinical judgment while 

recognizing its limitations to ensure safe implementation into clinical practice. 
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