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 In autoimmune diseases such as rheumatoid arthritis (RA), the immune system 

attacks host tissues1-3. Developing a precise understanding of the fine-grained cell states 

that mediate the genetics of autoimmunity is critical to uncover causal disease 

mechanisms and develop potentially curative therapies. We leveraged multimodal single-

nucleus (sn) RNA-seq and ATAC-seq data across 28,674 cells from the inflamed synovium 

of 12 donors with arthritis to identify accessible regions of chromatin associated with gene 

expression patterns that reflect cell states. For 12 autoimmune diseases, we discovered 

that cell-state-dependent (“dynamic”) peaks in immune cell types disproportionately 

captured heritability, compared to cell-state-invariant (“cs-invariant”) peaks. These 

dynamic peaks marked regulatory elements associated with T peripheral helper, regulatory 

T, dendritic, and STAT1+CXCL10+ myeloid cell states. We argue that dynamic regulatory 

elements can help identify precise cell states enriched for disease-critical genetic 

variation. 

 Recent single-cell sequencing studies that probe inflamed tissues from patients 

with autoimmune diseases have identified expanded functional cell states. Expanded T 

cell states include CD4+ T peripheral helper (Tph) cells in RA4-6, ulcerative colitis (UC)7, 

and Celiac disease (celiac)8; clonally distinct T follicular helper (Tfh) cells in systemic 

lupus erythematosus (SLE)9; GZMK+CD8+ T cells in RA10; and CD39+CCR6+ and 

CD39+CD4+ Type 17 helper cells in Crohn’s disease (CD)11. Interferon (IFN)-imprinted 

naive and IFN-stimulated B cells are expanded in UC7 and lupus nephritis12, respectively. 

Single-cell studies have also identified myeloid-derived cell states associated with 

autoimmunity, including CD14+ dendritic cells (DCs) in psoriasis13; CD16+ classical and 

IL1B+ monocytes in IBD14-15; and a shared CXCL10+CCL2+ inflammatory macrophage 

population in RA, CD, and UC16. Finally, CD90+ sublining fibroblasts are expanded in 
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inflammatory arthritis17-18. To better understand the causal mechanisms of these 

disorders, it is crucial to distinguish cell states that genetically regulate autoimmunity from 

those that represent secondary effects of inflammation.   

Autoimmune diseases are highly heritable19-24. Consequently, genome-wide 

association studies (GWAS) have identified thousands of risk loci for autoimmunity25-30. 

However, most of the heritability (outside of the major histocompatibility complex) 

implicates weak polygenic effects that have not yet been attributed to specific loci31. In 

autoimmunity, heritability is enriched in regulatory regions and around gene bodies of T-

cell-specific genes32-37. Therefore, it is likely that many loci not reaching genome-wide 

significance have subtle effects on pathogenic immune cell states38. Although methods 

to partition heritability have pointed to disease-critical cell types33,39, they are unable to 

systematically point to fine-grained cell states and often require making peak-to-gene 

linking assumptions. A key challenge is that the heritability of autoimmunity has been best 

captured through open chromatin regions37,40, which reflect regulatory activity, whereas 

recently discovered cell states in tissue inflammation have been defined with 

transcriptional and surface protein marker data41-42. 

 One as-yet unexplored strategy to capture heritability is to map “dynamic” peaks: 

chromatin regions whose accessibility changes across transcriptionally defined cell states 

within a cell type. Disease heritability that can be mapped to these dynamic peaks may 

identify cell-state-specific gene regulation in disease, and, by doing so, implicate specific 

cell states. In this work, we used multimodal snRNA-seq and snATAC-seq data to identify 

dynamic peaks that are associated with transcriptional variation reflecting cell state. We 

investigated the extent to which dynamic peaks and their associated cell states account 
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for the heritability of 12 autoimmune and allergic diseases, using their genome-wide 

association study (GWAS) summary statistics (Fig. 1).  

 
Fig. 1 | Overview of approach: identification of dynamic regulatory elements from single-nucleus 
multimodal data marks genomic loci enriched for disease heritability. We collected multimodal single-
nucleus RNA-seq and ATAC-seq data from the inflamed synovial tissue of 12 donors (11 with RA, 1 with 
osteoarthritis) across five cell types (B cells, T cells, endothelial cells, myeloid cells, and fibroblasts), 
spanning 28,674 cells. Within each of the five cell types, we defined the top snRNA-based axes of variation, 
e.g., principal components. Then, separately for each cell type, we used a multivariate Poisson generalized 
linear model to identify the regions of open chromatin whose accessibility were significantly associated with 
transcriptional variation. We defined associated, cell-state-dependent peaks as “dynamic” (purple) and non-
associated peaks as cell-state-invariant, or “cs-invariant” (grey). The purple gradient indicates the 
accessibility profile for a peak that is associated with both PC1 and PC2. Then, we created SNP-based 
genomic annotations indicating membership in each peak set (dynamic or cs-invariant). Finally, we 
partitioned the heritability of 19 polygenic traits (including 12 autoimmune and allergic diseases) and 
identified peak sets and cell states that were enriched for disease-associated genetic variation. 

 The hallmark of RA is inflammation in the synovium, a thin membrane surrounding 

the joint space that expands with immune cell infiltration4. We examined cell state data 

from inflamed synovial tissue as a model for autoimmune diseases at large. We have 

previously demonstrated that inflammatory cell states in the synovium are seen in tissues 

of other autoimmune diseases16-17. We applied multimodal snRNA and snATAC 

sequencing to synovial biopsies from 12 donors (11 with RA, 1 with osteoarthritis)43. We 

obtained data on 22,537 genes and 132,466 peaks for 28,674 cells (after quality control), 

including 7942 T, 1543 B, 7320 myeloid, 9902 fibroblast, and 1967 endothelial cells (Fig. 

2a, Supplementary Fig. 1, Methods).  
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We used these data to identify cell-state-dependent snATAC-seq peaks. For each 

cell type, we first defined axes of RNA variation by calculating the top ten principal 

components (PCs) in transcriptional space, removing batch effects with Harmony 

(Supplementary Fig. 2, Methods)44. Corrected RNA PCs are commonly used to define 

functional states in single-cell analysis. Then, individually for each cell type, we identified 

cell-state-dependent snATAC-seq peaks as those whose signal can be explained by 

these ten RNA PC values. We used a multivariable Poisson model, accounting for donor 

effects and total peak counts (Fig. 2a, Methods), to obtain (i) robust likelihood-ratio-test 

p-values (pcellType) to quantify the model’s global significance and (ii) Wald p-values (pPC) 

to quantify the significance of each PC (Methods). We tested peaks that were accessible 

in ≥50 cells in that cell type. Permutation analysis demonstrated that pcellType was not 

inflated under the null (Supplementary Fig. 3a, Methods). We denoted peaks with a 

global FDRcellType<0.05 within each cell type as “dynamic” and all other accessible peaks 

as cell-state-invariant, or “cs-invariant” (Fig. 2a, Supplementary Tables 1-5). 

 We observed that 90% (119,716/132,466) of all peaks were dynamic in at least 

one cell type, and 12% percent of those dynamic peaks (14,365/119,716) were dynamic 

in all three immune cell types (Fig. 2b, Supplementary Fig. 3b, Supplementary Tables 

1-5). Both dynamic and cs-invariant peaks lay predominantly in enhancers 

(111,973/119,716=93.5% and 9,386/10,234=91.7% of peaks, respectively), and dynamic 

peaks were slightly more common in promoters (defined as 1 kb ± the gene transcriptional 

start site, TSS, Methods) than cs-invariant peaks (odds ratio=1.1, p=0.007). Two 

dynamic peaks in T cells, chr6:167119769-969 (overlapping T cell migration gene CCR6’s 

promoter) and chr12:9761393-593 (overlapping T cell activation gene CD69’s promoter), 
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were significantly associated with a cytotoxicity expression program reflected in PC1 

(pPC1<1e-38) and memory expression program reflected in PC2 (pPC2<1e-15), 

respectively (Fig. 2c). In contrast, a cs-invariant peak (chr17:76737400-600) was near 

splicing-related gene SRSF2’s promoter (Fig. 2c). We note that cs-invariant and dynamic 

peaks had similar read counts (cs-invariant µ=0.096, dynamic µ=0.108 reads) 

(Supplementary Fig. 3c), suggesting our method did not simply classify peaks with 

sparse signal as cs-invariant. 

 Next, we investigated whether dynamic peaks could be grouped into functional 

categories. Since the regression coefficients reflect the strength of association of a peak 

with a transcriptional component, two peaks with similar coefficients should be active in 

the same transcriptionally defined cell states. For each peak dynamic in at least one cell 

type, we obtained its ten RNA PC coefficients for each of the five cell types (n = 50 

features) (Methods). We visualized variation across these 119,716 peaks with UMAP 

(Fig. 2d) and applied Leiden clustering to define 12 distinct peak sets. Many peak sets 

included promoters (TSS±1kb) of genes specifically important in one cell type (Fig. 2e, 

Supplementary Fig. 4, Methods). Gene Ontology (GO) analysis revealed that cs-

invariant peaks were predominantly enriched for nonspecific processes such as 

transcription and protein localization (Supplementary Tables 6, Methods), whereas 

most dynamic peak sets were enriched for cell-type-specific processes (Fig. 2e, 

Supplementary Tables 7-18, Methods). Additionally, most dynamic peak sets had 

increased accessibility in primarily one cell type, further supporting the cell-type-specific 

nature of dynamic peaks (Fig. 2f, Supplementary Fig. 4). 
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Fig. 2 | Dynamic peaks implicate cell-type-specific genes and regulatory processes. a, (left) snRNA-
seq UMAP of all five cell types assayed in this study (n = 28,674 cells), colored by reference-mapped broad 
cell types (Methods). (right) For each cell type, we use a Poisson GLM to identify dynamic peaks whose 
accessibility is correlated with the top 10 snRNA-seq donor-harmonized principal components (PCs) after 
accounting for covariates. b, Frequency of membership of dynamic peaks to each cell type. c, (left) Example 
of two dynamic peaks respectively associated with the first two RNA PCs in T cells and one cell-state-
invariant (“cs-invariant”) peak, as well as (right) the z-scores for PC1 and PC2 of all accessible T cell peaks. 
Peak windows are 200 base pairs, as noted on the UMAP for each peak. d, UMAP of detected dynamic 
peaks for each cell type, based on a matrix of peaks by z-scores for each of 10 PCs for each of 5 cell types. 
e, (left) UMAP of all dynamic peaks within each cell type colored by Leiden cluster membership, defined by 
z-scores for each of 10 PCs for each of 5 cell types. (right) For four of these clusters (i.e., peak sets), we 
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show the snRNA-seq UMAPs of all five cell types shown in panel a, shaded by the mean accessibility of all 
peaks in the cluster. Color of dot in lower right indicates representative cell type for peak set. Top GO 
biological processes that are enriched for genes whose promoters (TSS +/- 1 kb) overlap peaks in the four 
selected clusters (FDR 5%). Supplementary Tables 7-18 include all significant processes for all 12 peak 
sets. TLR: toll-like receptor; IL-6: interleukin-6. f, Heatmap showing the average accessibility of peaks in 
each peak set scaled by cell type, for each of the 12 peak sets and the five cell types studied. 

 We next hypothesized that dynamic peaks would identify genomic regions 

capturing more disease heritability than cs-invariant peaks. We examined 12 autoimmune 

and allergic diseases (average GWAS N = 187,158); as controls, we examined five blood 

cell traits and two non-immune traits (Supplementary Table 19, Methods). We 

annotated SNPs genome-wide by whether they resided in dynamic and cs-invariant 

peaks for each cell type (Fig. 3a, Supplementary Fig. 5a). We used stratified LD-score 

regression (S-LDSC)45 to partition trait heritability (Methods). We used heritability 

enrichment and standardized annotation effect size (𝜏*) to evaluate how well our 

annotations captured causal variation. Enrichment is defined as the proportion of 

heritability explained by the annotation divided by the number of SNPs in the annotation. 

The 𝜏 parameter is proportional to the trait heritability attributed to SNPs in the annotation; 

𝜏* corrects for trait heritability and annotation size. As a preliminary check in immune cells, 

we found that peaks accessible in T cells (both dynamic and cs-invariant) had high 𝜏* 

across the 12 diseases (p<0.0042=0.05/12, meta-𝜏*±standard error = 2.5±0.1, individual 

𝜏* range=1.9 to 4.6), and those accessible in myeloid and B cells had high 𝜏* values for 

a subset (Supplementary Fig. 5b, Supplementary Table 20, Methods), consistent with 

previous results32-34,36-37,39. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 1, 2023. ; https://doi.org/10.1101/2023.02.24.23286364doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.24.23286364


Gupta et al 

9 

 

Fig. 3 | Dynamic peaks are more strongly enriched for disease heritability than cs-invariant peaks. 
a, An example cell-state-dynamic (“dynamic”) and cell-state-invariant (“cs-invariant”) peak for each cell 
type. Dynamic and cs-invariant peaks plotted are as follows: B (chr8:71843830-71844030 and 
chr17:40139451-40139651), T (chr2:86786271-86786471 and chr8:11199555-11199755), M 
(chr11:915102-915302 and chr3:56988979-56989179), F (chr2:217846347-217846547 and 
chr3:71985293-71985493), and E (chr6:170011289-170011489 and chr1:86793165-86793365). b, 
Heritability enrichment for dynamic (black) and cs-invariant (grey) peaks within each cell type, across 19 
complex traits and polygenic diseases. Dot size is proportional to -log10(p-value); color intensity is 
proportional to enrichment. c, Estimate of the conditional annotation effect size (𝜏*) for each peak set; 
dynamic (black) and cs-invariant (grey) peak annotations are jointly modeled. For panels b and c, data are 
plotted only for significant results using a Bonferroni correction threshold of 0.05/19. d, Comparison of 𝜏* 
annotation effect sizes between dynamic (purple) versus cs-invariant (grey) peak-based annotations in T 
cells. Error bars represent 95% confidence intervals. e, Same as in d, but for myeloid cell peak sets. For 
panels d and e, asterisks indicate 𝜏* p<0.05/19. Trait acronyms: adult-onset asthma: AO Asthma, child-
onset asthma: CO Asthma, Crohn’s disease: CD, hypothyroidism: HT, inflammatory bowel disease: IBD, 
primary biliary cirrhosis: PBC, respiratory ear-nose-throat disease: Resp, rheumatoid arthritis: RA, systemic 
lupus erythematosus: SLE, ulcerative colitis: UC. 
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First, we asked whether dynamic peaks had different enrichments than cs-invariant 

peaks. Meta-analyzing across the 12 immune-mediated diseases, we found that 

heritability was enriched in dynamic peaks in the three immune cell types (B cell, T cell, 

and myeloid dynamic meta-enrichment ± SE = 27.7±2.1, 22.0±1.0, and 13.5±0.7, 

respectively; Methods) (Fig. 3b, Supplementary Table 21). Autoimmune heritability was 

also enriched in cs-invariant peaks in B cells (meta-enrichment = 14.9±1.2) and 

fibroblasts (meta-enrichment = 18.7±1.2) (Fig. 3b, Supplementary Table 21). Broadly, 

dynamic peaks in immune cells tended to capture more heritability and be more enriched 

for autoimmune disease heritability than cs-invariant peaks. In T and myeloid cells, these 

results were supported by dynamic peaks capturing between 35-93% and 28-68% of 

heritability across these 12 diseases, compared to 6-15% and 8-24% of heritability 

captured by cs-invariant peaks, respectively (Supplementary Table 21). 

Next, we tested our hypothesis that dynamic peaks capture more autoimmune 

heritability than cs-invariant peaks. We ran a conditional 𝜏* analysis across the immune-

mediated diseases that included both dynamic and cs-invariant peak sets for each cell 

type (Methods). For all three immune cell types, dynamic peaks harbored more 

heritability than their cs-invariant counterparts (dynamic versus cs-invariant meta-

𝜏*=1.4±0.1 vs 1.3±0.2 for B cells, 2.8±0.2 vs 0.2±0.1 for T cells, and 1.4±0.1 vs 0.5±0.1 

for myeloid cells; Fig. 3c, Supplementary Table 21, Methods). For T cells, including 

dynamic peaks in the model obviated any signal in cs-invariant peaks; we observed the 

largest differences in celiac (dynamic 𝜏*=5.4±0.9 versus cs-invariant 𝜏* -0.2±0.8), HT 

(4.5±0.7 versus -0.2±0.4), and RA (3.9±0.7 versus -0.4±0.6) (Fig. 3d, Supplementary 

Fig. 5c, Supplementary Table 21). Myeloid and B cells exhibited similar but fewer 
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statistically significant differences between cs-invariant and dynamic peak sets (Fig. 3e, 

Supplementary Fig. 5c, Supplementary Table 21). Since the cs-invariant peak 

heritability enrichment signal largely disappeared when conditioning on dynamic peaks 

(Fig. 3c-e), we concluded that autoimmune disease heritability in cs-invariant peaks was 

likely explained by nearby dynamic peaks. That is, dynamic peaks tagged causal variants 

better than cs-invariant peaks. Additionally, within dynamic peaks in immune cells, we 

saw high enrichment and 𝜏* values for five blood cell traits (positive controls) and low 

values for two non-immune traits (negative controls); we note that cs-invariant peaks in 

fibroblasts retained a significant 𝜏* for height (Fig. 3c, Supplementary Table 21). 

 Our findings suggest that, within T and myeloid cells, specific cell states might drive 

autoimmunity. Examining the subsets of dynamic peaks that are most active in 

subpopulations of these broad cell types may distinguish cell states integral to genetic 

causality from those that are consequences of inflammation. To identify fine-grained, 

discrete biological cell states within T and myeloid cells, we used Symphony46 to map the 

multimodal snRNA-seq profiles onto established AMP-RA/SLE atlases of 94,048 T and 

76,181 myeloid cells, respectively, obtained from RA synovial tissues49 (Methods). Next, 

to define the subset of peaks most active within each discrete cell state, we identified the 

top 25% of dynamic peaks whose regression z-scores most closely resembled the 

average cell state (centroid) loadings for the top ten within-cell-type RNA PCs 

(Supplementary Fig. 6a, Methods), recognizing that multiple cell states may be linked 

to the same peak (Supplementary Fig. 6b, 7). We then used these peaks to define a 

cell-state-specific annotation. 
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Fig. 4 | Dynamic peaks help distinguish disease-critical T cell states for immune-mediated disease. 
a, snRNA-seq UMAP of T cells, colored by reference-mapped T cell states (Methods). Larger circled dots 
indicate cell state centroids. b, Annotation effect size (𝜏*) for each discrete T cell state, for rheumatoid 
arthritis (RA). Error bars indicate +/- 95% CIs, and asterisks indicate p < 0.05/12. c, 𝜏* for each T cell state 
across 12 autoimmune and allergic diseases. Dot size is proportional to -log10(p-value), color intensity is 
proportional to 𝜏*, and only 𝜏* values significant at a Bonferroni correction threshold (p < 0.05/12) are shown. 
All annotations were defined by the top 25% of dynamic peaks that had the highest cosine similarity to the 
cell state’s average PC loadings (Methods). d, Meta-analyzed 𝜏* for each T cell state across all 12 
autoimmune and allergic diseases. Error bars indicate +/- 95% CIs. All p-values are <1e-15. e, RA 𝜏* for all 
T cell states as defined in a but conditional on either (top) T-7 or (bottom) T-8, the two strongest effect cell 
states. Error bars indicate +/- 95% CIs, and asterisks indicate p < 0.05/12. Trait acronyms: adult-onset 
asthma: AO Asthma, child-onset asthma: CO Asthma, Crohn’s disease: CD, hypothyroidism: HT, 
inflammatory bowel disease: IBD, primary biliary cirrhosis: PBC, respiratory ear-nose-throat disease: Resp, 
rheumatoid arthritis: RA, systemic lupus erythematosus: SLE, ulcerative colitis: UC. 
 
 For each of the 23 discrete T cell states in our dataset, we applied S-LDSC to 

estimate the enrichment of disease heritability in dynamic peaks (Fig. 4a, Methods). We 

found that six cell states disproportionately captured RA heritability: CD4+ Tfh/Tph (T-3) 

𝜏*=3.9±0.9, CD4+ Tph (T-7) 𝜏*=3.7±0.9, CD4+CD25hi regulatory T (Treg, T-8) 𝜏*=3.0±1.2, 

CD4+CD25lo Treg (T-9) 𝜏*=3.4±1.0, CD4+OX40+NR3C1+ (T-10) 𝜏*=4.4±1.0, and 

CD4+CD145+ memory (T-11) 𝜏*=3.8±1.0 (Fig. 4b, Supplementary Table 22). We 

observed a similar pattern across the remaining 11 immune-mediated diseases, with T-7 

and T-8 standing out as significant (p<0.05/12) across 10/12 and 11/12 diseases, 
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respectively (Fig. 4c, Supplementary Tables 22-23). Meta-analyzing these diseases 

jointly (Methods) resulted in meta-𝜏* values for T-3=2.0±0.2, T-7=2.0±0.1, T-8=1.9±0.2, 

T-9=2.0±0.2, T-10=1.9±0.2, and T-11=2.1±0.2 (Fig. 4d, Supplementary Table 23). 

Interestingly, while both Tph (T-3 and T-7) and CD8+GZMK+ memory T cells (T-13 and T-

14) have been shown to be expanded in inflammatory tissues4,10, only the former 

harbored global heritability signal, suggesting that, outside of gut-related diseases, the 

expansion of the CD8+GZMK+ population might be a secondary effect of inflammation. 

We then wanted to see what signal might be shared versus unique across the 

highest-scoring states, since peaks between certain cell states overlapped 

(Supplementary Fig. 6b, 7). Conditioning on the most significant cell state overall, T-7 

(meta-𝜏* p<1e-39), removed signal in T-3, T-10, and T-11 but retained signal in the two 

Treg populations in RA (Fig. 4e, Supplementary Fig. 8a, Supplementary Tables 23-

24) and reduced signal for T-3 and T-8 through T-11 in the meta-analysis 

(Supplementary Fig. 8b). Conditioning on the most significant Treg, T-8 (meta-𝜏* p<1e-

33), removed signal in T-3, T-7, and T-9 through T-11 in RA (Fig. 4e, Supplementary 

Fig. 8c, Supplementary Tables 23-24); this signal remained low when meta-analyzing 

all 12 diseases and significant at p<0.05/12 only for a subset (Supplementary Fig. 8c-

d). We note that, using a more stringent set of associated peaks (10% versus 25%), the 

Tfh/Tph and Tph signals were retained when conditioning on either Treg population, and 

vice versa (Supplementary Fig. 9a-b). Overall, these results complement previous 

studies demonstrating the role of these populations in autoimmunity4-9,16,47-48 that highlight 

Tph and Treg cells as key cell states harboring heritability across many autoimmune 

conditions. 
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Fig. 5 | Dynamic peaks help distinguish disease-critical myeloid cell states for immune-mediated 
disease. a, snRNA-seq UMAP of myeloid cells, colored by reference-mapped myeloid cell states 
(Methods). Larger circled dots indicate cell state centroids. b, Annotation effect size (𝜏*) for each discrete 
myeloid cell state, for inflammatory bowel disease (IBD). Error bars indicate +/- 95% CIs, and asterisks 
indicate p < 0.05/12. c, 𝜏* for each discrete myeloid cell state across 12 autoimmune and allergic diseases. 
Dot size is proportional to -log10(p-value), color intensity is proportional to 𝜏*, and only 𝜏* values significant 
at a Bonferroni correction threshold (p < 0.05/12) are included. All annotations were defined by the top 25% 
of dynamic peaks that had the highest cosine similarity to the cell state’s average PC loadings (Methods). 
d, Meta-analyzed 𝜏* for each myeloid cell state across 12 autoimmune diseases. Error bars indicate +/- 
95% Cis. All p-values for M-6 through M-14 are <1e-5. e, 𝜏* for IBD, as in panel a, but conditional on M-6 
cells. Asterisks indicate p<0.05/12. f, Two examples of (Left) high-scoring cell states and (Right) an example 
associated peak’s accessibility profile for each cell state. Of note, SNPs in both peaks have been linked to 
autoimmune diseases through previous IBD and CD GWAS studies (SNP rsID listed on the right). 
 

We similarly examined myeloid cells, identifying 14 discrete myeloid biological 

states in our data and applying S-LDSC to peak-based annotations (Fig. 5a, Methods). 

We found that in IBD, six myeloid cell states explained a disproportionate amount of 

heritability: STAT1+CXCL10+ (M-6) 𝜏*=2.5±0.5, DC3 (M-9) = 2.0±0.5, DC2 (M-10) = 

2.5±0.5, DC1 (M-12) = 2.4±0.5, DC4 (M-11) = 2.2±0.5, and LAMP3+ (M-14) = 2.9±0.5 

(Fig. 5b, Supplementary Table 25). For these states, we observed similar patterns of 
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enrichment across the 11 remaining diseases (M-6 meta-𝜏*=1.9±0.2, M-12=1.7±0.2, M-

10=1.8±0.1, M-9=1.3±0.1, M-11=1.3±0.1, and M-14=2.1±0.2), with M-6 and M-14 having 

p<0.05/12 for 8/12 and 10/12 diseases, respectively, and 3/4 DC populations having 

p<0.05/12 for the gut-related diseases (Celiac, CD, IBD, and UC) (Fig. 5c-d, 

Supplementary Tables 25-26). 

Notably, M-6, previously shown to be expanded in inflammation16, was one of the 

most significant states across all 12 diseases (meta-𝜏* p<1e-38). Conditioning on M-6 

obviated signal for most other populations in IBD, retaining signal only in M-9, M-12, and 

M-14, the latter of which shares 71% (13,724/19,232) of its peaks with M-6 (Fig. 5e, 

Supplementary Fig. 6c,10). In the meta-analysis, conditioning on M-6 removed signal 

from all other states across diseases, although a few individual traits such as CD and HT 

retained p<0.05/12 for M-9 and M-12 (Supplementary Fig 8e-f, Supplementary Tables 

24,26). Using the top 10% of peaks only retained signal in M-9 and M-12 (Supplementary 

Fig. 9c-d), indicating some potentially distinct heritability captured by these DC 

populations. 

Finally, for a few traits and myeloid cell states with high 𝜏* values, we assessed 

whether SNPs previously associated with autoimmune conditions were also associated 

with these states. One example is the SNP rs11235667 (chr11:73152652), which has 

been associated in a GWAS for CD50. This risk locus also falls within a peak that is in the 

top 10% of similar peaks for both M-9 and M-12 (chr11:73152483-73153683), the two DC 

populations that retained signal after conditioning on M-6 (Fig. 5f). Additionally, two 

genome-wide risk loci for IBD—rs2155219 (chr11:76588150)51 and rs11236797 

(chr11:76588605)52—fall within peak chr11:76588012-76589212, which is in the top 10% 
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of similar peaks for M-6 (Fig. 5f). Our results suggest that the highlighted cell states may 

mediate genetic risk for autoimmunity via their associated peaks. 

 Here, we present a novel paradigm in which we identified and leveraged dynamic 

regulatory elements within cell types to capture disease heritability in single-cell data. Our 

work provides a principled approach to linking cell states observed in a tissue context with 

heritability signals. This reflects an advance over previous heritability enrichment 

analyses–which have largely implicated cell types but have lacked the resolution to 

implicate cell states. While we used cells sampled from the inflamed RA synovium, 

analyzing multimodal data from multiple inflammatory diseases could be even more 

informative, since they may capture an even broader spectrum of tissue-resident immune 

cell states. This approach has the potential to be applied to other traits where multimodal 

snRNA-seq and snATAC-seq data can be derived from critical tissues. Identification of 

causal cell states using heritability enrichment could be valuable broadly across complex 

traits for developing therapies that target specific, causal cell populations. Our framework 

will become increasingly powerful as both tissue-based, single-cell multimodal and 

GWAS studies increase in scale and scope. 

 

Methods 

Sample collection, multimodal sequencing, and counts matrices preparation. The 

RA tissue 10x Genomics Single Cell Multiome ATAC + Gene Expression datasets used 

in this study are described in detail in Weinand et al.43. Briefly, we collected synovial 

tissues from 11 Rheumatoid Arthritis patients and 1 Osteoarthritis patient (n = 12 donors). 
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These samples were cryopreserved, thawed, and disaggregated into single-cell 

suspensions whose nuclei were subsequently isolated as previously described53-54. 

 Joint scRNA-seq and scATAC-seq libraries were prepared using the 10x 

Genomics Single Cell Multiome ATAC + Gene Expression kit according to manufacturer’s 

instructions. Each sample was processed individually. Libraries were sequenced on an 

Illumina Novaseq to a target depth of 20,000 read pairs per nuclei for mRNA libraries and 

25,000 read pairs per nucleus for the ATAC libraries. Initial processing was done in Cell 

Ranger ARC pipeline (version 2.0.0) from 10x Genomics. To deduplicate ATAC reads 

from PCR amplification bias within a cell while keeping reads originating from the same 

positions but from different cells, we used in-house scripts43. 

 We applied stringent quality control (QC) measures to both the nuclear RNA and 

ATAC data43. Briefly, RNA cells had to pass Cell Ranger ARC cell calling, >500 genes, 

and <20% mitochondrial reads. For ATAC features, we used an in-house well-curated 

consensus RA tissue peak set from a larger study of RA synovial tissue scATAC-seq 

data43. ATAC cells had to have at least 10,000 post read-QC reads, with >50% of reads 

falling in peak neighborhoods, >10% in promoters (TSS-2kb), <10% in mitochondrial 

chromosome, and <10% in ENCODE blacklist55. Doublets were removed within 

modalities43. We thus obtained count matrices of gene expression and ATAC peaks with 

corresponding cell barcodes.  

Cell type labeling and data preprocessing. To assign broad cell type labels, we used 

canonical correlation analysis (CCA) between the cells by genes and cells by peaks 

matrices; each matrix was normalized (log(CP10K) and log(TFxIDF), respectively), had 
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most variable features selected, and scaled before running. The resulting cells by peak 

canonical variate matrix was batch corrected by sample using Harmony44 and Louvain 

clustered. Cell types were determined using marker peaks falling within the promoters of 

the following cell type marker genes: CD3D in T cells, MS4A1 in B cells, C1QA in myeloid 

cells, PDPN in fibroblasts, and VWF in endothelial cells. If multiple peaks overlapped a 

gene’s promoter, the peak whose accessibility best tracked with the genes’ expression 

was used. Within each broad cell type, we removed any cells in which the corresponding 

donor had less than 5 cells. 

For each broad cell type, we used Symphony46 to map the multiome snRNA-seq 

cells into the harmonized reference space generated from the AMP-RA synovial tissue 

CITE-seq cells49. We chose the most common cell state for each multiome cell's 5 nearest 

neighbors among the AMP-RA CITE-seq cells. We excluded any multiome T cells that 

mapped to the cell state that was defined as having a high number of mitochondrial reads 

(“MT-high”). We also excluded the 4 cells that mapped to the myeloid cell state 

plasmacytoid dendritic cells (M-13). These steps yielded the following numbers of cells 

per cell type: T (7,942), B (1,543), myeloid (7,320), fibroblast (9,902), endothelial (1,967). 

For the snATAC-seq data used for regressions, we excluded peaks that were 

accessible in <50 cells in each cell type and otherwise left the counts as-is. All remaining 

peaks were included in our “OPEN” peak set annotation for each cell type. For snATAC-

seq data used to track normalized peak accessibility (as in Figure 2e-f), we binarized the 

peaks x cells matrix, ran log(TFxIDF) normalization, selected the most variable peaks, 

and centered and scaled features to mean 0 and variance 1 across cells. 
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 For the snRNA-seq data, which we used to determine the RNA PCs (i.e., cell-state 

axes of variation), we excluded genes expressed in <50 cells of a given cell type and 

ribosomal and mitochondrial genes from our analyses. To account for differences in 

library size and read depth, we then normalized counts such that the total number of 

transcripts per cell was scaled to counts per 10,000 (CP10K). We took the log1p of these 

scaled counts and, keeping only the top 5,000 most variable genes in each cell type, 

variance scaled genes such that they were zero centered and had unit variance. We 

calculated the top 20 PCs in the RNA space, upon which we ran Harmony44 to correct for 

donor-specific effects. We used the donor-harmonized RNA PCs for all downstream 

analyses, including all regressions and UMAP visualizations. 

Identifying dynamic, cs-invariant, and PC-associated peaks. After computing the 

principal components from snRNA-seq, we used a multivariable Poisson regression 

model to predict each snATAC-seq peak’s accessibility as a function of the top ten 

snRNA-seq principal components and technical covariates while accounting for the 

sparsity and asymmetry of the snATAC-seq peak counts: 

𝐴! 	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!)	

Null model: 𝑙𝑛(𝜆!) = 	 𝑙𝑜𝑔	(𝑛𝐶𝑜𝑢𝑛𝑡𝑠!) + 𝛽"#$#%	𝑑𝑜𝑛𝑜𝑟! 

Full model: 𝑙𝑛(𝜆!) = 	 𝑙𝑜𝑔	(𝑛𝐶𝑜𝑢𝑛𝑡𝑠!) + 𝛽"#$#%	𝑑𝑜𝑛𝑜𝑟! + ∑ 	'(
)*' 𝛽+,-	./!𝑅𝑁𝐴	𝑃𝐶!,)  

where A is the peak’s accessibility (read counts) in cell i, nCounts is the total counts in 

cell i, and donor is the donor ID of cell i, one-hot encoded into 12 variables. We model 

the total counts as an offset and donor membership as a fixed effect. RNA PCi,j is the PC 

value for cell i with respect to RNA PCj, where j ranges from 1 to 10. We ran this 
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regression for every accessible peak in each of the five cell types studied. We identified 

ATAC peaks whose accessibility is associated with these expression PCs, determining 

significance based on the difference between the full and null models at a 10-degree-of-

freedom likelihood ratio test (LRT) at 5% FDR within each cell type. We called peaks with 

FDR < 0.05 “dynamic”; those peaks that were accessible but had FDR ≥ 0.05 were 

classified as “cs-invariant”. Additionally, we identified peaks that were significantly 

associated with individual PCs as those that were 1) dynamic based on the overall joint 

regression and 2) had a nominal Wald p<0.05 for the individual PC in question. 

 To test for inflated statistics that may have arisen from technical structure, we ran 

permutation-based checks. Specifically, we shuffled the cell-PC values across all cells 

within each donor and re-ran the Poisson GLM for every peak to derive permutation-

based p-values. We compared the p-value distributions from the permuted versus real 

models in Q-Q plots (for each of the top 10 PCs in each of the five cell types) against the 

null (expected, uniform) p-value distribution and calculated inflation using the function at 

slowkow.com/notes/ggplot2-qqplot. 

Characterizing dynamic peaks. We defined dynamic peaks for each cell type as those 

with LRT FDR < 0.05 from the joint Poisson GLM (as described above). For each dynamic 

peak, we recorded the PC-specific coefficient z-score (normalized β) and p-value (pPC). 

To identify potential biological functions, we also took a set of canonical marker genes 

known to have functional roles in T cells41 and identified peaks that overlapped these 

genes’ promoter regions (transcriptional start site +/- 1 kb), which enabled us to connect 

specific dynamic peaks with putative biological roles. 
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 To further characterize the cell-type-specificity and potential biological processes 

represented by peak sets, we defined 50-feature vectors for each peak. Specifically, we 

combined the ten regression z-scores (one per RNA PC) for each of the five cell types for 

each peak. For cell types where the peak was not accessible, we assigned z-scores of 

zero. We calculated UMAP coordinates (where each dot is a peak) using these 50 values 

for each peak, which allowed visualizing cell-type-significance on a per-peak level. 

 We then ran Leiden clustering (resolution=1, most broad) on this 50-feature vector 

X ~130,000 peaks matrix. For each of the Leiden clusters (which we call a “peak set”), 

we calculated the mean peak accessibility in each cell and plotted this on the all-cell-type 

UMAP to assess any cell type differences in overall peak set accessibility. We also 

identified the set of genes whose promoters overlapped the peaks in each peak set and 

ran these gene sets through Gene Ontology (geneontology.org) to look for biological 

processes that were significantly enriched (FDR<0.05) in these peak sets. Finally, we 

calculated the mean peak accessibility within each peak set in each cell type, scaling 

across cell types to get values that ranged from 0 to 1. 

Partitioning heritability for each within-cell-type annotation with S-LDSC. We 

analyzed 19 traits total (average N=280,785) from a subset of 188 traits with publicly 

accessible summary statistics: 12 autoimmune diseases, six blood-related traits, and two 

non-immune traits (Supplementary Table 19). We chose these specifically given our 

focus on immune-mediated diseases; blood traits serve as a positive control given our 

use of many immune cells, and non-immune traits serve as a negative control, given we 

don’t expect them to involve most of the cell types in our study. Additionally, we removed 

traits with Z<4.5 (as computed by S-LDSC with baseline LD v2.2), to ensure robustness 
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of our results, and for traits with multiple studies present, we selected the study with the 

higher N (number of affected individuals) and M (number of individuals overall), which 

tended to be more recent. The full set of characteristics describing the studies for the 

traits we analyzed, including references to where they were originally published, are 

included in Supplementary Table 19. 

 We apply S-LDSC (stratified linkage disequilibrium score regression) (version 

1.0.0), a method developed to partition polygenic trait heritability by one or more 

functional annotations, to quantify the contribution of our defined regulatory annotations 

to the 19 complex traits mentioned above. We annotate common SNPs (MAF ≥ 0.05) 

based on peak sets of interest (i.e., dynamic peaks in T cells). Specifically, we binarize 

the set of peaks with FDR<0.05 (for dynamic peaks) and expand the 200bp peak window 

by 500 bp on either side to result in a 1.2kb genomic window for each peak. Then, we 

apply S-LDSC once to the annotated SNPs (converting from hg38 to hg19, to match the 

summary statistics genome version) to compute population-specific LD scores and again 

to quantify the complex trait heritability captured by our peak-based annotations. 

 Here, the two statistics we use to evaluate how well our annotations capture causal 

variation are enrichment and standardized effect size (𝜏*), as previously defined32,45. 

Briefly, we calculate enrichment as follows: 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡	 = 1"#(3)/1"#

6!7$())/8
  

where h2g(c) is the heritability explained by SNPs in annotation c, h2g is the overall 

heritability of a trait, ac is the value of annotation c, j is SNP j, and M is the number of 

common (MAF≥0.05) SNPs (5,961,159 in Europeans and 5,469,053 in East Asians). 
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Whereas enrichment does not quantify effects that are unique to a given annotation, 𝜏* 

does (i.e. if conditioning two correlated annotations in a joint S-LDSC model, they will 

have similar enrichments, but the 𝜏* for the annotation with greater true causal variant 

membership will be larger and more significantly positive). We calculate 𝜏* as follows: 

𝜏∗ =
𝑠𝑑(𝑐)/𝜏3
ℎ:;/𝑀

 

where sd(c) is the standard deviation of the annotation c, 𝜏c is the per-SNP contribution 

of one unit of the annotation c to heritability, and h2g and M are the same as before. Since 

𝜏 is not comparable across annotations or traits, we use 𝜏*, which is comparable and is 

defined as the per-annotation standardized effect size, or the proportionate change in 

per-SNP h2 associated with a one standard deviation increase in the value of the 

annotation. 

 Each S-LDSC analysis conditions our peak set annotations on 69 baseline 

annotations, a subset of the 75 annotations referred to as the baseline-LD model as done 

previously32; we removed six annotations including T cell enhancers. The 69 annotations 

consist of 53 cell-type-nonspecific annotations, 7 which include histone marks and open 

chromatin, 10 MAF bins, and six LD-related annotations to assess whether functional 

enrichment is cell-type-specific and to control for the effect of MAF and LD architecture. 

Consistent inclusion of MAF and LD-associated annotations in the baseline model is the 

standard recommended practice of using S-LDSC. 

 For dynamic versus cs-invariant peak sets comparisons, we ran a conditional 𝜏* 

enrichment, including both dynamic and cs-invariant annotations in a joint run of S-LDSC. 
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We report error bars that reflect 95% confidence intervals around the estimated 𝜏* values 

and show in heatmaps only those values that remain significant upon Bonferroni 

correction for multiple hypothesis testing across the 19 traits analyzed. 

 For the meta-enrichment and meta-𝜏* calculations across multiple traits for a given 

annotation, we used an inverse variance weighted analysis, aggregating either individual 

enrichment values or 𝜏* values, respectively. We ran the R package rmeta (version 3.0, 

https://github.com/cran/rmeta/blob/master/R/meta.R) and reported the meta summaries 

estimate and standard error values. Given a sequence of independent observations yi 

with variances σi2, the (i) inverse-variance weighted average and (ii) its variance are given 

by: 

(i) 𝑦B = ∑ 		& =&/>&
#

∑ 		& '/>&
#   

(ii) 𝑉𝑎𝑟(𝑦B) = 	 '
∑ 		& '/>&

# 

Building cell state annotations in T and myeloid cells. We defined an annotation for 

each cell state based on the set of peaks most similar in their accessibility profiles as the 

cell state. Each peak has an effect size βj for each RNA PC j. Given an individual cell’s 

RNA-seq profile, we scored each peak for its relevance by calculating the cosine similarity 

between that peak’s PC z-scores (normalized βs) and the cell’s values across the 10 PCs: 

𝐴𝐵
|𝐴||𝐵| 

Where A = [z-scoreRNA PC1 … z-scoreRNA PC10] for a given peak and B = [PC valueRNA PC1 

… PC valueRNA PC10] for a given cell. This approach can be applied to an individual cell or 
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the average of a collection of cells that form a cluster representing a specific cell state; 

we chose the latter for computational efficiency. Once scored, we built a cell-state-specific 

annotation, by identifying the top 25% of peaks with the highest score for each cell state. 

This allowed for equally sized annotations across cell states within a cell type. 

Identifying previously implicated autoimmune GWAS SNPs. We used the GWAS 

catalog (https://www.ebi.ac.uk/gwas/) to identify SNPs that had known genetic 

associations to autoimmune diseases (genome-wide p<5e-8). We then checked for 

overlap between these SNPs and cell-state-defining peaks and report a few examples as 

case studies. 

Data Availability 
This manuscript uses multimodal single-nucleus data that will be released upon 
publication of the following manuscript: Weinand et al. (in preparation). 
 
Code Availability 
This work uses the S-LDSC software (https://github.com/bulik/ldsc) to process GWAS 
summary statistics. All code related to processing of the multimodal single-nucleus data, 
post-hoc heritability analyses, and generation of the tables and figures in this manuscript 
are available on Github (https://github.com/gupta-anika/dynamic-heritability). 
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