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Abstract 
Background: Despite immense progress in artificial intelligence (AI) models, there has been limited 

deployment in healthcare environments. The gap between potential and actual AI applications is 

likely due to the lack of translatability between controlled research environments (where these models 

are developed) and clinical environments for which the AI tools are ultimately intended.  

Objective:  We have previously developed the Translational Evaluation of Healthcare AI (TEHAI) 

framework to assess the translational value of AI models and to support successful transition to 

healthcare environments. In this study, we apply the TEHAI to COVID-19 literature in order to assess 

how well translational topics are covered. 

Methods: A systematic literature search for COVID-AI studies published between December 2019-

2020 resulted in 3,830 records. A subset of 102 papers that passed inclusion criteria were sampled for 

full review. Nine reviewers assessed the papers for translational value and collected descriptive data 

(each study was assessed by two reviewers). Evaluation scores and extracted data were compared by a 

third reviewer for resolution of discrepancies. The review process was conducted on the Covidence 

software platform. 

Results: We observed a significant trend for studies to attain high scores for technical capability but 

low scores for the areas essential for clinical translatability. Specific questions regarding external 

model validation, safety, non-maleficence and service adoption received failed scores in most studies.  

Conclusions: Using TEHAI, we identified notable gaps in  how well translational topics of AI models 

are covered in the COVID-19 clinical sphere. These gaps in areas crucial for clinical translatability 

could, and should, be considered already at the model development stage to increase translatability 

into real COVID-19 healthcare environments. 
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Introduction 
The discussion about the value of Artificial Intelligence (AI) to healthcare and how AI can 

address healthcare delivery issues have been in place for some years now [1–3].  However, 

most stakeholders are eager for this discourse to move beyond theoretical or experimental 

confines to adoption and integration in clinical and real-world healthcare environments 

[1,4,5]. Recently, we have started to see some AI applications undergoing clinical trials or 

integration into medical devices or medical information systems [6]. Yet most AI 

applications in healthcare have not demonstrated improvement in clinical or healthcare 

outcomes [5,7]. What prevents these applications from translating their potential to clinical 

outcomes? Firstly, many of these AI applications are developed to demonstrate algorithmic 

performance or superiority rather than improvement in clinical results [8,9]. Secondly, the 

applications are not considered for use beyond the experimental or pilot settings [8]. This 

limitation means their performance does not often generalise beyond test data sets. Thirdly, 

even when these applications are externally validated, they are seldom integrated into 

existing clinical workflows, often as a result of decreased performance on the external 

validation [10] or low acceptance by clinicians [11]. The latter aspect means these 

applications remain experimental novelties rather than useful tools for clinicians. Added to 

these translational issues are problems with data that may lead to inaccurate results or the 

introduction of biases. Several studies have shown how such issues can have adverse 

outcomes for patients and communities [12–14]. Yet, ethical and governance safeguards are 

often missing in AI in healthcare applications or studies [14]. 

 

These translational issues suggest there is a need for a comprehensive framework that can 

support researchers, software vendors and relevant parties in systematically assessing their AI 

applications for their translational potential. To address this gap, we formed an international 

team and ran a systematic process over 18 months to develop an evaluation and guidance 

framework, termed 'Translational Evaluation of Healthcare AI (TEHAI)’ [15]. This 

framework focuses on the aspects that can support the practical implementation and use of AI 

applications. TEHAI has three main domains (capability, utility, and adoption components) 

and 15 subcomponents (Table 1 and Multimedia Appendix 1 Eval and Scoring). As the range 

of clinical challenges and potential AI solutions is very wide, it is infeasible to automate the 

evaluation using current technology. Instead, we rely on TEHAI as an expert-driven but 

formalized framework where the subjectivity of an individual reviewer is mitigated by the 

consensus power of multiple committee members. 

 

The emergence of the COVID-19 pandemic has resulted in several studies and papers 

outlining the utility of AI in tackling various aspects of the disease like diagnosis, treatment, 

and surveillance [16–19] The number of AI papers published either as pre-print or peer-

reviewed has been unprecedented, even leading to the development of AI applications to keep 

up with and summarise the findings for scientists [20]. Some recent reviews have outlined 

how most of these studies or the AI applications presented in these studies have shown 

minimal value for clinical care [7,21]. This finding aligns with the discussion about the 

translational problem of AI in healthcare.  
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The aim of this study is to assess the awareness and consideration for important translational 

factors in scientific literature related to COVID-19 machine learning applications. We chose 

the narrow scope to ensure that our method of evaluation (i.e. TEHAI) would not be 

confounded by the differences that are inherent to any particular area of health care. For the 

reason, we included only studies where AI was clearly aimed at solving a practical problem 

rather than discovering new biology or novel treatments. This cost-effective approach enables 

us to uncover the translational gaps of the AI applications and validate the usefulness of a 

variety of AI models without the added complexity from high diversity of diseases or health 

care challenges. 

 

Methods 

Data extraction 
Eligible studies included those where a statistical algorithm was applied to or trained with a 

COVID-19 dataset and where the intended use of the algorithm was to address a COVID-19 

healthcare problem. Excluded studies included those where participants were younger than 18 

years old and where the full text of the study was not in English. To find papers eligible for 

this study we searched the NIH iSearch COVID-19 portfolio, MEDLINE via Ovid, and 

Embase via Embase.com. These sources were searched on 7 December 2020 using search 

strategies consisting of keywords expected to appear in the title or abstract of eligible studies, 

and index terms specific to each database except in the case of the NIH iSearch COVID-19 

portfolio. The search strategy was developed by a health librarian (B.K.) in consultation with 

the rest of the research team.  

 

For the COVID-19 element of the search, we adapted the Wolters Kluwer expert search for 

COVID-19 on MEDLINE. Specifically, we removed the search lines for excluding non-

COVID-19 coronaviruses (e.g., Middle East respiratory syndrome) and for pharmaceutical 

treatment options (e.g., Remdesivir); at the time our search strategy was created these were 

lines five and nine, respectively, in the Wolters Kluwer OVID COVID-19 expert search. For 

the AI element of the search, we searched MEDLINE for relevant papers, recording 

significant keywords from their titles and abstract. We also searched the Medical Subject 

Headings (MeSH) thesaurus for related MeSH terms. These steps led to the creation of a draft 

search strategy which was then tested and finalised. The search was limited to records with a 

publication date of 1 December 2019 onwards. This limit was to reduce the number of 

irrelevant results, given that the first known case of COVID-19 occurred in December 2019 

(Multimedia appendix 2 Search Strategies). 

 

A foundational Ovid MEDLINE search strategy was then translated for Embase.com to make 

use of appropriate syntax and index terms (Multimedia appendix 2). Similar translation was 

done for the NIH iSearch COVID-19 portfolio except for index terms as this resource did not 

use indexing at the time of search development (Multimedia appendix 2). Finally, search 

strategy validation and refinement took place by testing a set of known relevant papers 

against the search strategy as developed, with all papers subsequently recalled by the search 
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in MEDLINE and Embase. A full reproduction of the search strategies for each database can 

be found in Multimedia appendix 2. Searching these databases using the search strategy 

resulted in 5,276 records. After removal of duplicates, we screened 3,830 records for 

relevance. This resulted in 968 studies identified as relevant and eligible for evaluation. From 

these, a sample of 123 was randomly selected for evaluation and data extraction of which 102 

were included in the final set. Our target number for full evaluation was 100, however, 

additional papers were randomly picked to account for the rejection of 19 papers that passed 

the initial screen, but were deemed ineligible after closer inspection. Early on in the 

evaluation it became apparent that a significant portion of the studies focused on image 

analysis, we then enriched the pool for studies that were not image focused taking the ratio of 

image:non-image focused studies to 1:1. Full text was retrieved for all 123 in the randomised 

sample, however only 102 studies met our inclusion criteria at the evaluation and extraction 

stage (Multimedia appendix 4). Of the studies that did not meet our inclusion criteria, the 

majority were non-imaging studies and the final ratio of imaging:non-imaging focused 

studies was 2:1. 

 

Evaluation and data extraction was conducted using Covidence systematic review software 

[22]. We used this software to facilitate the creation of a quality assessment template based 

on the TEHAI framework [15] in combination with other questions (henceforth referred to as 

data extraction questions) aimed at further understanding the components that may influence 

a studies capacity to translate into clinical practice (Multimedia Appendix 3). As a measure to 

minimize the impact of subjectivity introduced by human evaluation, each paper was initially 

scored by two reviewers who independently evaluated the paper against the elements of the 

TEHAI framework and extracted relevant data. A third reviewer then checked the scores and 

if discrepancies were present, chose one of the two independent reviewers’ scores as the final 

result. This process was built-in to the Covidence platform. To further minimize the impact of 

subjectivity introduced by human evaluation, reviewer roles were also randomly assigned 

across the evaluation team. 

 

For scoring of the included studies, we derived upon previously provided guidance for 

scoring evidence within a TEHAI framework [15]. The TEHAI framework is composed of 

three overarching components: capability, utility and adoption. Each component numerous 

sub-component questions of which there are 15 in total. Scoring of each TEHAI 

subcomponent is based on a range of zero to three depending on the criteria met by the study. 

In this study, we also investigate the sums of these scores at the component level to provide a 

better overview of data. In addition, TEHAI facilitates direct comparisons between specific 

studies by a weighting mechanism that further emphasizes the importance of translatability 

(see the last column in Table 1). However, for the purpose of this study, where we focus on 

the aggregate statistical patterns, the weighting was not used. 

 

Table 1. Overview of the TEHAI framework. The framework comprises 15 separate criteria (sub-

components) that are grouped into three higher-level components. Each criterion yields a score between 0 

and 3 points depending on the quality of the study. To compare two or more AI models against each 
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other, further weighting of the scores can be applied to emphasize translatability. However, in this study, 

the weighting was not used since we focused on the statistics of the sub-components instead. 

Component Sub-component Initial Score Weight 

Capability 

Objective of Study 0-3 10 

Dataset Source and Integrity 0-3 10 

Internal Validity 0-3 10 

External Validity 0-3 10 

Performance Metrics 0-3 10 

Use Case 0-3 5 

    

Utility 

Generalizability and Contextualisation 0-3 10 

Safety and Quality 0-3 10 

Transparency 0-3 10 

Privacy 0-3 10 

Non-Maleficence 0-3 10 

    

Adoption 

Use in a Healthcare Setting 0-3 10 

Technical Integration 0-3 10 

Number of Services 0-3 5 

Alignment with Domain 0-3 5 

 

We also asked reviewers to report on a select number of data extraction questions that would 

enable us to further tease apart which components of a study may influence the score 

obtained. These questions covered 1) the broad type of the AI algorithm, 2) methodological 

or clinical focus, 3) open source or proprietary software, 4) dataset size, 5) country of origin, 

and 6) imaging or non-imaging data. 

 

Data Analysis 
Associations between groupings of papers and the distributions of sub-component scores 

were assessed by the Fisher’s exact test. Correlations between sub-components were 

calculated using Kendall’s formula. Component scores were calculated by adding the relevant 

sub-component scores together; group differences in mean component scores were assessed 

by the t-test. As there are 15 sub-components, we set a multiple testing threshold of P < 

0.0033 to indicate 5% type 1 error probability under the Bonferroni correction for 15 

independent tests. Unless otherwise indicated mean scores were calculated ± standard error. 

 

Results 

TEHAI sub-component scores 
Nine reviewers reviewed a total of 102 manuscripts (mean = 22.67 per reviewer, SD = 7.71, 

min = 11, max = 36), with the same two reviewers scoring the same manuscript an average of 

2.83 times (SD = 2.58, min = 0 max = 13). The Cohen’s kappa statistic for inter-reviewer 

reliability was κ = 0.45 with an asymptomatic standard error of 0.017 over the two 

independent reviewers. Overall, the capability component scored the highest mean score, 

followed by adoption and utility (Figure 1A). At the subcomponent level, the poorest 

performing questions were non-maleficence (93/102 scoring zero points), followed closely by 

safety and quality, external validity and number of services (Figure 1B).  
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Figure 1. Overall consensus scores obtained by all studies reviewed. A) Average consensus 

scores for all studies reviewed (error bars = standard error). B) Stacked bar graph showing the 

distribution of scores for each subcomponent question 

 

We observed moderate positive correlation (R = 0.19-0.43) between most capability 

component questions (data source vs: internal validation, R = 0.43; external validation, R = 

0.20; performance, R = 0.33, and; Use case, R = 0.37. Internal validation vs: performance R = 

0.40; use case, R = 0.31. Performance vs use case, R = 0.32), with the exception of the 

objective of study subcomponent (objective of study vs: data source, R = 0.13; internal 

validation, R = 0.09; external validation, R = 0.08; performance) (Figure 2). This indicates 

that if a study scored well in one subcomponent of the capability component, then it was also 

likely to score well in the other capability subcomponents, with the exception of the objective 

of study subcomponent. Furthermore, there was also correlation between the subcomponents 

belonging to the capability component and that of the generalisability and contextualisation 

(R = 0.19 – 0.31), transparency (R = 0.11 – 0.27) and alignment with domain (R = 0.13 – 

0.40) subcomponents, as well as our data extraction question 9 (method of machine learning 

used) (R = 0.11 – 0.24) (Figure 2). There was also significant, moderate correlation between 

most adoption component questions (R = 0.18 – 0.42), with the exception of the alignment 

with domain subcomponent (R = 0.04 – 0.26) (Figure 2). A significant negative correlation is 

observed between a countries GDP and Imaging studies (R = -0.30), indicating that high 

GDP countries were less likely to do imaging studies than those countries with middle GDP. 

The negative correlation between the audience (clinical or methodological) and number of 

services (R = -0.36) is indicative that methodological studies were less likely to be associated 

with numerous services than clinical studies. Code availability was inversely correlated with 

Transparency (R = -0.36), as expected (open source was one of the assessment conditions). 
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Figure 2. Correlation heatmap showing the strength of correlation between all subcomponents 

and select data extraction questions. Strength of correlation, as determined by Fisher’s test, is 

shown by colour with size of squares representing level of significance.  

 

AI study characteristics 
The associations between the AI algorithms used in the studies and TEHAI scores are shown 

in Figure 3. Deep Learning (including Convolutional Neural Network or CNN for short) was 

the most frequent machine learning model (54/102 studies) followed by Classic methods 

(14/102 studies, comprising primarily Linear and Logistic Regression models) and standard 

Machine Learning (9/102 studies, comprising primarily Random Forest (RF) and Support 

Vector Machine (SVM) algorithms) (Figure 3A). In 20% of studies, multiple types of 

algorithms were used. At the component level, Deep learning and Machine learning scored 

better in capability (mean scores = 1.69 ± 0.04 and 1.54 ± 0.12 respectively) and Deep 

learning was also superior in adoption (mean score = 0.95 ± 0.06) (Figure 3B). This pattern is 

also evident at the subcomponent level, where classic methods scored the poorest for most 

questions (mean scores = 0.07 – 1.78), with deep learning scoring significantly higher in 

numerous subcomponents (mean scores = 0.05 – 1.96) (Figure 3C). These finding reveal that 
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those using deep learning are more likely to include facets into their design that is more likely 

to ensure their work will be integrated into practise.  
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Figure 3. Methods used by the various studies to achieve end-points. A) percentage of studies 

using specific methods. As the field of potential algorithms is diverse, we created broad 

categories to make the pie chart readable and to provide an overview of the most prevalent 

types of algorithms. Classic methods included linear and logistic regression models and the 

machine learning category comprised a heterogeneous mix of established non-linear algorithms 

such as random forest and support vector machine. The deep learning category included mostly 

convoluted neural networks and represented more recent neural network techniques developed 

for big data. B) “component” scores for the four main methods utilised in the studies. C) 

“subcomponent” scores for the four main methods utilised in the studies. Bars show average 

scores, with error bars equal to standard error. Bold P-values indicate P < .05. Bonferroni 

corrected significance P=.0033. 

 

Figure 4 contains the results from comparisons between clinical and methodologically focused 

papers. Methodological studies tended to score higher in the capability component 

(methodological mean score = 1.63 ± 0.04, clinical mean score = 1.52 ± 0.06), and clinically 

focused studies tended to score higher in utility (clinical mean score = 0.81 ± 0.07, 

methodological mean score = 0.75 ± 0.05) and adoption (clinical mean score = 1.03 ± 0.07, 

methodological mean score = 0.87 ± 0.05) (Figure 4A), particularly in the use in a healthcare 

setting (clinically focused mean score = 0.90 ± 0.11, methodologically focused mean score = 

0.58 ± 0.08, P = .037) and number of services (clinically focused mean score = 0.58 ± 0.09, 

methodologically focused mean score = 0.23 ± 0.06, P = 2.39 x 10-05) subcomponents. It is 

important to note that all papers scored poorly in safety (clinically focused mean score = 0.13 

± 0.14, methodologically focused mean score = 0.58 ± 0.05) and non-maleficence (clinically 

focused mean score = 0.12 ± 0.06, methodologically focused mean score = 0.07 ± 0.03) 

subcomponents and despite being more integrated into the health system, clinical papers did 

not score significantly higher scores in these subcomponents (Figure 4A and 4B). 
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Figure 4. Component and subcomponent scores split into subcategories based on data 

extraction questions, including: A and B) “intended audience”, C and D) “type of software”, 

and E and F) “size of dataset”. Bars show average scores, with error bars equal to standard 

error. Bold P-values indicate P < .05. Bonferroni corrected significance P=.0033. 

 

Close to half of the studies used open source software (n=45), with a small portion (n=8) using 

proprietary software (with the remaining studies being unclear as to the software availability). 

There was a tendency for proprietary software to perform better at adoption, particularly in the 

use in a healthcare setting subcomponent (open source software studies mean score = 0.69 ± 

0.09, proprietary software studies mean score = 1.25 ± 0.16, P = .02), while papers with open 

source software tended to score better in utility, including the safety (open source software 

studies mean score = 0.27 ± 0.09, proprietary software studies mean score = 0.13 ± 0.13, P = 

1), privacy (open source software studies mean score = 0.91 ± 0.14, proprietary software 

studies mean score = 0.75 ± 0.31, P = .43) and non-maleficence (open source software studies 

mean score = 0.15 ± 0.05, proprietary software studies mean score = 0.13 ± 0.16, P = 1) (Figure 

4C and 4D). We also observed a tendency for open source software to score better at 

transparency (open source software studies mean score = 1.67 ± 0.15, proprietary software 

studies mean score = 0.5 ± 0.19, P = 0.02), which is compatible with the findings from 

correlation analysis (Figure 2). 

 

Across the studies, the median number of cases was 225 subjects, therefore we allotted studies 

with a number of cases greater than 225 cases to the large dataset category and those with less 

than or equal to 225 cases to the small dataset category (Figure 4E and 4F). There was an 

overall suggestive pattern for the large dataset to score higher than the small dataset, again with 

the exception of safety, privacy and both scored poorly for non-maleficence. 

 

Countries may have differing capacities to integrate new technologies into their health system 

and we hypothesized that it would be detectable via GDP. We split the studies into low-, 

middle- and high-income countries based on classifications as defined by the world bank[23]. 

There were no countries that published studies that were in the low-income category, with half 

of the studies originating in middle-income countries and the other half in high-income 

countries. Interestingly there was no significant difference between components at the multiple 

testing threshold, however there was a trend suggesting a difference in the adoption component 

(high income study mean score = 1.0 ± 0.06, medium income study mean score = 0.83 ± 0.06, 

P = 0.04) (Multimedia appendix 4A and Multimedia appendix 4B) and a slight tendency  

toward middle-income countries to score better at the capability subcomponent questions, 

particularly objective (high income study mean score = 2.1 ± 0.09, medium income study mean 

score = 1.76 ± 0.1, P = 0.03) and internal validation (high income study mean score = 1.58 ± 

0.08, medium income study mean score = 1.88 ± 0.08, P = 0.04) (Multimedia appendix 4B).  

 

We found that there were many studies where the authors used AI to analyse images of lungs 

(e.g. x-rays) of COVID-19 patients and controls to classify them into categories, ultimately 

producing algorithms that could accurately identify COVID-19 patients from images of their 

lungs. Thus we classified studies as being imaging (direct image analysis of X-rays or CT 
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scans) or non-imaging (e.g. studies that analysed blood metabolites) and there was a strong 

trend for non-imaging studies to score higher than imaging studies, this includes the 

subcomponents of objective (imaging study mean score = 1.79 ± 0.08, non-imaging study mean 

score = 2.18 ± 0.13, P = 0.02), safety (imaging study mean score = 0.16 ± 0.05, non-imaging 

study mean score = 0.36 ± 0.14, P = 0.015), non-maleficence (imaging study mean score = 

0.04 ± 0.02, non-imaging study mean score = 0.18 ± 0.07, P = 0.05) and number of services 

(imaging study mean score = 0.25 ± 0.06, non-imaging study mean score = 0.55 ± 0.11, P = 

0.02) (Multimedia appendix 4C and D). 
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Discussion 
Considering the emergence of the COVID-19 pandemic and the flurry of AI models that were 

developed to address various aspects of the pandemic, we conducted a systematic review of 

these AI models regarding their likely success at translation. We observed a significant trend 

for studies to attain high scores for technical capability but low scores for the areas essential 

for clinical translatability. Specific questions regarding external model validation, safety, 

non-maleficence and service adoption received failed scores in most studies. Therefore, we 

identified notable quality gaps in most AI studies of COVID-19 that are likely to have a 

negative impact on clinical translation. 

 

There have been many claims made of such AI models, including similar or higher accuracy, 

sensitivity and/or specificity compared with human experts [24–26] and real-time results that 

have been suggested to lead to improved referral adherence [27] but very few independent 

studies have tested these claims. In fact, it is suggested that while the AI models have 

potential, they are generally unsuitable for clinical use and, if deployed prematurely, could 

lead to undesirable outcomes including stress on both patients, unnecessary intrusive 

procedures, and the health system and even death due to misdiagnosis [5,7]. Of those studies 

that examined the utility of COVID-19 AI applications there has not been a comprehensive 

evaluation of AI in healthcare models encompassing assessment of their intrinsic capabilities, 

external performance, and adoption in healthcare delivery thus far. It is important for the 

scientific community and relevant stakeholders to understand how many of these AI models 

are translational in their value and to what degree. To address this gap, we undertook a 

comprehensive evaluation of COVID-19 AI models that were developed between December 

2019- December 2020. The framework we chose, TEHAI, is a comprehensive evaluation 

framework developed by a multi-disciplinary international team through a vigorous process 

of review and consultation, and systematically assesses AI models for their translational 

value [15]. To select the COVID-19 studies, we conducted a systematic search and after 

screening 3830 studies, we selected 102 studies for the evaluation. As per TEHAI, the studies 

were assessed for their capability, utility and adoption aspects and scored using a weighted 

process. 

 

The scale of the studies we screened (over 3000) and the studies eligible for evaluation (over 

900) indicate the level of activity in this area despite the limited time frame selected for the 

evaluation (2019-2020). The evaluation of the 102 studies while yielding some interesting 

findings also had a few expected results. Notable was most studies while doing well in the 

capability component, did not evaluate highly in the utility and adoption components. The 

latter components assess the ethical, safety and quality and integration with healthcare service 

aspects of the AI model. However, it is not surprising the AI models scored low in these 

components, given the expediency required to develop and release these models in a 

pandemic context. This meant the ethical components were not a priority as you would 

expect in normal times. It was also not surprising to find that convolutional neural network 

was the most popular machine learning model as most of the selected studies related to 

medical imaging analysis (69/102 studies were imaging compared with 33 that were not), 
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where the technique is widely understood and beginning to be applied in some clinical 

settings [6,28].  

 

While there was a consistent trend for studies with a large dataset to score higher than those 

with small datasets, there was no significant difference for any sub-component between 

studies with small versus large datasets was a surprising finding, this indicates that even 

when studies have collected more data, they advance no further in the utility or adoption 

fields, should the total number of studies analysed be increased, we would expect the 

difference between the two datasets to become significant. Regarding imaging vs. non-

imaging, we observed that non-imaging studies scored higher in some adoption and utility 

subcomponents; we suspect this was due to the more clinical nature of the non-imaging 

research teams, thus the papers focused more on issues important to clinical practice. While 

there was a tendency for those studies using proprietary software that we expected to be more 

mature, the authors had not advanced the findings into practice any more than that of open-

source algorithm-based studies, again we would expect this difference to become significant 

if the number of studies scored were to be increased. We also assessed the interpretability of 

the models as part of the Transparency subcomponent and found that image studies, in 

particular, included additional visualization to pinpoint the regions that were driving the 

classification. Further, the scoring studies in each of the TEHAI components evidenced the 

need for planning in advance for external validation, safety, and integration in health services 

to ensure the full translatability of AI models in healthcare. 

 

Most of the reviewed studies lacked sufficient considerations for adoption into health care 

practices (the third TEHAI component), which has implications for the business case for AI 

applications in health care. Cost of deployment and costs from misclassification from both 

monetary and patient safety/discomfort perspective can only be assessed if there is pilot data 

available from actual tests that put new tools into service. Furthermore, critical administrative 

outcomes such as workload requirements should be considered as early as possible. While we 

understand that such tests are hard to organize from academic basis, the TEHAI framework 

can be used as a incentive to move into this direction. 

 

“We note that availability of dedicated datasets and computing resources for training could be 

a bottleneck for some applications. In this study, we observed multiple instances of transfer 

learning, which is one solution, however, we will revise the capability section of the TEHAI 

to make more specific consideration for these issues.” 

 

Fair access to AI technology should also be part of a good design. The TEHAI frameworks 

includes this in the internal validity subcomponent, where we small studies, in particular, 

struggled with representing a sufficient diversity of individuals. From a translational point of 

view, we also observed short comings in the contextualization of AI models. Again, since 

there was limited evidence on service deployment, most studies scored low on fairness 

simply due to lack of data. We also note that deployment in this case may be hindered by 

clinical acceptance of the models [11], and we will include this topic in future amendments to 

the TEHAI framework. 
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Limitations 

While we undertook a comprehensive evaluation of AI studies unlike previous assessments, 

our study still has some limitations. Firstly, the period we used to review and select studies 

was narrow, being just a year. Another limitation is that for practical reasons we randomly 

chose a subset of 102 studies for evaluation out of the 968 eligible studies. Despite these 

limitations, we are confident the evaluation process we undertook was rigorous as evidenced 

by the systematic review of literature, detailed assessment of each of the selected studies and 

the parallel review and consensus steps. 

 

We recommend caution when generalizing the results from this COVID-19 study to other 

areas of AI in health care. Firstly, evaluation frameworks that rely on human experts can be 

sensitive to the selection of the experts (subjectivity). Secondly, scoring variation may arise 

from the nature of the clinical problem rather than the AI solution per se, thus TEHAI results 

from different fields may not be directly comparable. Thirdly, we intentionally excluded 

discovery studies aimed at new biology or novel treatments as those would have been too 

early in the translation pipeline to have a meaningful evaluation. Fourthly, there is also 

capacity for significant heterogeneity of clinical domains may confound the evaluation results 

and may prevent comparisons of studies (here we made effort to pre-select studies that were 

comparable). Lastly, the TEHAI framework was designed to be widely applicable, which 

means that stakeholders with specific subjective requirements may need to adapt their 

interpretations accordingly. 

 

We acknowledge the rapid progress in AI algorithms that may make some of the evaluation 

aspects obsolete over time, however, we also emphasize that two out of the three TEHAI 

components are not related to AI itself, but to the ways AI interacts with the requirements of 

clinical practice and health care processes. Therefore, we expect that the translatability 

observations from this study will have longevity. 

 

Conclusions 
AI in healthcare has a translatability challenge as evidenced by our evaluation study. By 

assessing 102 AI studies for their capability, utility, and adoption aspects we uncovered 

translational gaps in many of these studies. Our study highlights the need to plan for 

translational aspects very early in the AI development cycle. The evaluation framework we 

used and the findings from its application will inform developers, researchers, clinicians, 

authorities, and other stakeholders to develop and deploy more translatable AI models in 

healthcare. 
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Multimedia Appendix 1. PRISMA Flow Diagram. 

 

Multimedia Appendix 2. Search Strategies. 

 

Multimedia Appendix 3. Evaluation and Scoring Questions. 

 

Multimedia Appendix 4. Component and subcomponent scores split into subcategories based 

on data extraction questions, including: A and B) “country GDP”, C and D) “imaging/non-

imaging” based study. Bars show average scores, with error bars equal to standard error. Bold 

P-values indicate P < .05. Bonferroni corrected significance P=.0033. 

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 26, 2023. ; https://doi.org/10.1101/2023.02.23.23286374doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.23.23286374
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

References 
1.  Desai AN. Artificial Intelligence: Promise, Pitfalls, and Perspective. JAMA 2020 Jun 

23;323(24):2448–2449. PMID:32492093 

2.  Reddy S, Fox J, Purohit MP. Artificial intelligence-enabled healthcare delivery. J R Soc 

Med 2019 Jan 1;112(1):22–28. PMID:30507284 

3.  United States Government Accountability Office. Artificial Intelligence in Health Care: 

Benefits and Challenges of Technologies to Augment Patient Care | U.S. GAO. Artif 

Intell Health Care Benefits Chall Technol Augment Patient Care. 2020. Available from: 

https://www.gao.gov/products/gao-21-7sp [accessed Jul 13, 2022] 

4.  Feng J, Phillips RV, Malenica I, Bishara A, Hubbard AE, Celi LA, Pirracchio R. 

Clinical artificial intelligence quality improvement: towards continual monitoring and 

updating of AI algorithms in healthcare. Npj Digit Med 2022 May 31;5(1):66. 

PMID:35641814 

5.  Nsoesie EO. Evaluating Artificial Intelligence Applications in Clinical Settings. JAMA 

Netw Open United States; 2018 Sep 7;1(5):e182658. PMID:30646173 

6.  van Leeuwen KG, Schalekamp S, Rutten MJCM, van Ginneken B, de Rooij M. 

Artificial intelligence in radiology: 100 commercially available products and their 

scientific evidence. Eur Radiol 2021 Jun;31(6):3797–3804. PMID:33856519 

7.  Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S, Aviles-Rivero AI, 

Etmann C, McCague C, Beer L, Weir-McCall JR, Teng Z, Gkrania-Klotsas E, Ruggiero 

A, Korhonen A, Jefferson E, Ako E, Langs G, Gozaliasl G, Yang G, Prosch H, Preller J, 

Stanczuk J, Tang J, Hofmanninger J, Babar J, Sánchez LE, Thillai M, Gonzalez PM, 

Teare P, Zhu X, Patel M, Cafolla C, Azadbakht H, Jacob J, Lowe J, Zhang K, Bradley 

K, Wassin M, Holzer M, Ji K, Ortet MD, Ai T, Walton N, Lio P, Stranks S, Shadbahr T, 

Lin W, Zha Y, Niu Z, Rudd JHF, Sala E, Schönlieb C-B, AIX-COVNET. Common 

pitfalls and recommendations for using machine learning to detect and prognosticate for 

COVID-19 using chest radiographs and CT scans. Nat Mach Intell 2021 Mar 

1;3(3):199–217.  

8.  Seneviratne MG, Shah NH, Chu L. Bridging the implementation gap of machine 

learning in healthcare. BMJ Innov 2020 Apr 1;6(2):45.  

9.  Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design Characteristics of Studies 

Reporting the Performance of Artificial Intelligence Algorithms for Diagnostic Analysis 

of Medical Images: Results from  Recently Published Papers. Korean J Radiol 2019 

Mar;20(3):405–410. PMID:30799571 

10.  Yu AC, Mohajer B, Eng J. External Validation of Deep Learning Algorithms for 

Radiologic Diagnosis: A Systematic Review. Radiol Artif Intell 2022 May 

1;4(3):e210064. PMID:35652114 

11.  Schneider J, Agus M. Reflections on the Clinical Acceptance of Artificial Intelligence. 

In: Househ M, Borycki E, Kushniruk A, editors. Mult Perspect Artif Intell Healthc 

Oppor Chall Cham: Springer International Publishing; 2021. p. 103–114. Available 

from: https://doi.org/10.1007/978-3-030-67303-1_9  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 26, 2023. ; https://doi.org/10.1101/2023.02.23.23286374doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.23.23286374
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

12.  Reddy S, Allan S, Coghlan S, Cooper P. A governance model for the application of AI 

in health care. J Am Med Inform Assoc JAMIA 2020 Mar 1;27(3):491–497. 

PMID:31682262 

13.  Mhasawade V, Zhao Y, Chunara R. Machine learning and algorithmic fairness in public 

and population health. Nat Mach Intell 2021 Aug 1;3(8):659–666.  

14.  AlHasan A. Bias in medical artificial intelligence. Bull R Coll Surg Engl The Royal 

College of Surgeons of England; 2021 Sep 1;103(6):302–305.  

15.  Reddy S, Rogers W, Makinen V-P, Coiera E, Brown P, Wenzel M, Weicken E, Ansari 

S, Mathur P, Casey A, Kelly B. Evaluation framework to guide implementation of AI 

systems into healthcare settings. BMJ Health Care Inform 2021 Oct;28(1). 

PMID:34642177 

16.  Kim W, Jang Y-G, Yang J, Chung J. Spatial Activation of TORC1 Is Regulated by 

Hedgehog and E2F1 Signaling in the Drosophila Eye. Dev Cell 2017 Aug;42(4):363-

375.e4. doi: 10.1016/j.devcel.2017.07.020 

17.  Saygılı A. A new approach for computer-aided detection of coronavirus (COVID-19) 

from CT and X-ray images using machine learning methods. Appl Soft Comput 2021 

Jul;105:107323. PMID:33746657 

18.  Roimi M, Gutman R, Somer J, Ben Arie A, Calman I, Bar-Lavie Y, Gelbshtein U, 

Liverant-Taub S, Ziv A, Eytan D, Gorfine M, Shalit U. Development and validation of a 

machine learning model predicting illness trajectory and hospital utilization of COVID-

19 patients: A nationwide study. J Am Med Inform Assoc JAMIA 2021 Jun 

12;28(6):1188–1196. PMID:33479727 

19.  Jin C, Chen W, Cao Y, Xu Z, Tan Z, Zhang X, Deng L, Zheng C, Zhou J, Shi H, Feng J. 

Development and evaluation of an artificial intelligence system for COVID-19 

diagnosis. Nat Commun 2020 Oct 9;11(1):5088. PMID:33037212 

20.  Reddy S, Bhaskar R, Padmanabhan S, Verspoor K, Mamillapalli C, Lahoti R, Makinen 

V-P, Pradhan S, Kushwah P, Sinha S. Use and validation of text mining and cluster 

algorithms to derive insights from Corona Virus Disease-2019 (COVID-19) medical 

literature. Comput Methods Programs Biomed Update 2021;1:100010. PMID:34337589 

21.  Guo Y, Zhang Y, Lyu T, Prosperi M, Wang F, Xu H, Bian J. The application of 

artificial intelligence and data integration in COVID-19 studies: a scoping review. J Am 

Med Inform Assoc JAMIA 2021 Aug 13;28(9):2050–2067. PMID:34151987 

22.  Veritas Health Innovation. Covidence systematic review software. Melbourne, 

Australia; 2020. Available from: Available at www.covidence.org  

23.  The World Bank. WDI - The World by Income and Region. World Dev Indic World 

Income Reg. 2022. Available from: https://datatopics.worldbank.org/world-

development-indicators/the-world-by-income-and-region.html [accessed Jul 13, 2022] 

24.  Ruamviboonsuk P, Tiwari R, Sayres R, Nganthavee V, Hemarat K, Kongprayoon A, 

Raman R, Levinstein B, Liu Y, Schaekermann M, Lee R, Virmani S, Widner K, 

Chambers J, Hersch F, Peng L, Webster DR. Real-time diabetic retinopathy screening 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 26, 2023. ; https://doi.org/10.1101/2023.02.23.23286374doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.23.23286374
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

by deep learning in a multisite national screening programme: a prospective 

interventional cohort study. Lancet Digit Health 2022 Apr 1;4(4):e235–e244. 

PMID:35272972 

25.  Cen L-P, Ji J, Lin J-W, Ju S-T, Lin H-J, Li T-P, Wang Y, Yang J-F, Liu Y-F, Tan S, 

Tan L, Li D, Wang Y, Zheng D, Xiong Y, Wu H, Jiang J, Wu Z, Huang D, Shi T, Chen 

B, Yang J, Zhang X, Luo L, Huang C, Zhang G, Huang Y, Ng TK, Chen H, Chen W, 

Pang CP, Zhang M. Automatic detection of 39 fundus diseases and conditions in retinal 

photographs using deep neural networks. Nat Commun 2021 Aug 10;12(1):4828. 

PMID:34376678 

26.  Deperlioglu O, Kose U, Gupta D, Khanna A, Sangaiah AK. Diagnosis of heart diseases 

by a secure Internet of Health Things system based on Autoencoder Deep Neural 

Network. Comput Commun 2020 Oct 1;162:31–50. PMID:32843778 

27.  Liu J, Gibson E, Ramchal S, Shankar V, Piggott K, Sychev Y, Li AS, Rao PK, Margolis 

TP, Fondahn E, Bhaskaranand M, Solanki K, Rajagopal R. Diabetic Retinopathy 

Screening with Automated Retinal Image Analysis in a Primary Care Setting Improves 

Adherence to Ophthalmic Care. Ophthalmol Retina 2021 Jan;5(1):71–77. 

PMID:32562885 

28.  Omoumi P, Ducarouge A, Tournier A, Harvey H, Kahn CEJ, Louvet-de Verchère F, 

Pinto Dos Santos D, Kober T, Richiardi J. To buy or not to buy-evaluating commercial 

AI solutions in radiology (the ECLAIR guidelines). Eur Radiol 2021 Jun;31(6):3786–

3796. PMID:33666696 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 26, 2023. ; https://doi.org/10.1101/2023.02.23.23286374doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.23.23286374
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

Abbreviations 
AI: Artificial Intelligence 

COVID-19: Corona Virus Disease 2019 

SE: Standard Error 

TEHAI: 'Translational Evaluation of Healthcare Artificial Intelligence 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 26, 2023. ; https://doi.org/10.1101/2023.02.23.23286374doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.23.23286374
http://creativecommons.org/licenses/by-nc-nd/4.0/

