






Figure 4: (a) Volcano plot of associations of plasma proteins with Alzheimer’s disease using MR-SPI.
The horizontal axis represents the estimated effect size (on the log odds ratio scale), and the vertical
axis represents the − log10(p-value). Positive and negative associations are represented by green and
red points, respectively. The size of a point is proportional to the − log10(p-value). The blue dashed line
represents the significance threshold using Bonferroni correction (p-value< 5.48×10−5). (b) 3D Structural
alterations of CD33 predicted by AlphaFold2 due to missense genetic variation of SNP rs2455069. The
ribbon representation of 3D structures of CD33 with Arginine and Glycine at position 69 are colored in
blue and red, respectively. The amino acids at position 69 are displayed in stick representation, with
Arginine and Glycine colored in green and yellow, respectively. The predicted local-distance difference
test (pLDDT) yields a value of 77.1% for both structures, which suggests that AlphaFold2 generally
provides good backbone predictions for these two structures. (c) Forest plot of significant associations
of proteins with Alzheimer’s disease identified by MR-SPI. Point estimates and 95% confidence intervals
for the associations using the other competing MR methods are presented in different colors. Confidence
intervals are clipped to vertical axis limits. (d) Bubble plot of GO analysis results using the 7 significant
proteins detected by MR-SPI. The horizontal axis represents the z-score of the enriched GO term, and
the vertical axis represents the − log10(p-value) after Bonferroni correction. Each point represents one
enriched GO term. The blue dashed line represents the significance threshold (adjusted p-value < 0.05
after Bonferroni correction).
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Figure 5: The proposed procedure for constructing the robust confidence interval by MR-SPI that allows
for finite-sample IV selection error. When Llocally invalid IVs may be exist in finite samples, MR-SPI
might incorrectly selected invalid IVs as valid ones (marked by the red cross) in finite-sample settings,
and thus the standard CI might fail to cover the true causal effect. First, we construct an initial interval
using SNPs in and discretize it to a grid set. SecondTo deal with this issue, we repeatedly sample the
estimators of γ and Γ for M times (by default, we set M = 1,000) from the sampling distribution. When
M is sufficiently large, there exists m∗th sampling such that the re-sampled genetic associations (marked
by orange triangle) are close enough to the true values γ and Γ. In each sampling, we calculate the
ratio estimates using the re-sampled genetic associations, and then construct a pseudo CI for the causal
effect by line searching. Specifically, for any value b in the pseudo CI, more than half of the IVs selected
by MR-SPI (in this illustration, at least three IVs) should vote for b to be the true causal effect. We
then aggregate all the pseudo CIs of M samplings by taking the minimum of the lower bounds and the
maximum of the upper bounds to construct the robust CI (marked by yellow segment).
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Online Methods

Two-sample GWAS summary statistics

Suppose that we obtain p independent SNPs Z = (Z1, · · · , Zp)
⊺ by using LD clumping that retains

one representative SNP per LD region67. We also assume that the SNPs are standardized68 such

that EZj = 0 and Var(Zj) = 1 for 1 ≤ j ≤ p. Let D denote the exposure and Y denote the

outcome. We assume thatD and Y follow the exposure modelD = Z⊺γ+δ and the outcome model

Y = Dβ+Z⊺π+ e, respectively, where β represents the causal effect of interest, γ = (γ1, · · · , γp)⊺

represents the IV strength, and π = (π1, · · · , πp)
⊺ encodes the violation of assumptions (A2) and

(A3)24,69. If assumptions (A2) and (A3) hold for SNP j, then πj = 0 and otherwise πj ̸= 0

(see Supplementary Section S1 for details). The error terms δ and e with respective variances σ2
δ

and σ2
e are possibly correlated due to unmeasured confounding factors. By plugging the exposure

model into the outcome model, we obtain the reduced-form outcome model Y = Z⊺(βγ + π) + ϵ,

where ϵ = βδ + e. Let Γ = (Γ1, · · · ,Γp)
⊺ denote the SNP-outcome associations, then we have

Γ = βγ + π. If γj ̸= 0, then SNP j is called a relevant IV. If both γj ̸= 0 and πj = 0, then

SNP j is called a valid IV. Let S = {j : γj ̸= 0, 1 ≤ j ≤ p} denote the set of all relevant IVs,

and V = {j : γj ̸= 0 and πj = 0, 1 ≤ j ≤ p} denote the set of all valid IVs. The majority rule

condition can be expressed as |V| > 1
2
|S|69, and the plurality rule condition can be expressed as

|V| > maxc ̸=0 |{j ∈ S : πj/γj = c}|24. If the plurality rule condition holds, then valid IVs with the

same ratio of SNP-outcome effect to SNP-exposure effect will form a plurality. Based on this key

observation, our proposed MR-SPI selects the largest group of SNPs as valid IVs with similar ratio

estimates of the causal effect using a voting procedure described in detail in the next subsection.

Let γ̂j and Γ̂j be the estimated marginal effects of SNP j on the exposure and the outcome, and

σ̂γj and σ̂Γj
be the corresponding estimated standard errors respectively. Let γ̂ = (γ̂1, · · · , γ̂p)⊺ and

Γ̂ = (Γ̂1, · · · , Γ̂p)
⊺ denote the vector of estimated SNP-exposure and SNP-outcome associations,

respectively. In the two-sample setting, the summary statistics {γ̂j, σ̂γj}1≤j≤p and {Γ̂j, σ̂Γj
}1≤j≤p

are calculated from two non-overlapping samples with sample sizes n1 and n2 respectively. When
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all the SNPs are independent of each other, the joint asymptotic distribution of γ̂ and Γ̂ isγ̂ − γ

Γ̂− Γ

 d→ N

0,
 1

n1
Vγ 0

0 1
n2
VΓ

 ,

where the diagonal entries of Vγ and VΓ are Vγ,jj = Var(Z2
ij)γ

2
j +

∑
l ̸=j γ

2
l + σ2

δ and VΓ,jj =

Var(Z2
ij)Γ

2
j +

∑
l ̸=j Γ

2
l + σ2

ϵ , respectively, and the off-diagonal entries of Vγ and VΓ are Vγ,j1j2 =

γj1γj2 and VΓ,j1j2 = Γj1Γj2 (j1 ̸= j2), respectively. The derivation of the limit distribution can be

found in Supplementary Section S2. Therefore, with the summary statistics of the exposure and

the outcome, we estimate the covariance matrices 1
n1
Vγ and 1

n2
VΓ as:

1

n1

V̂γ,j1j2 =

 σ̂2
γj1

if j1 = j2,

1
n1
γ̂j1 γ̂j2 if j1 ̸= j2.

and
1

n2

V̂Γ,j1j2 =

 σ̂2
Γj1

if j1 = j2,

1
n2
Γ̂j1Γ̂j2 if j1 ̸= j2.

(1)

After obtaining {γ̂, V̂γ, Γ̂, V̂Γ}, we then perform the proposed IV selection procedure as illustrated

in Figure 1 in the main text.

Selecting valid instruments by voting

The first step of MR-SPI is to select relevant SNPs with large IV strength using GWAS summary

statistics for the exposure. Specifically, we estimate the set of relevant IVs S by:

Ŝ =

{
1 ≤ j ≤ p :

|γ̂j|
σ̂γj

> Φ−1

(
1− α∗

2

)}
, (2)

where σ̂γj is the standard error of γ̂j in the summary statistics, Φ−1(·) is the quantile function of

the standard normal distribution, and α∗ is the user-specified threshold with the default value of

1×10−6. This step is equivalent to filtering the SNPs in the exposure data with p-value < α∗, and

is adopted by most of the current two-sample MR methods to select (relevant) genetic instruments

for downstream MR analysis. Note that the selected genetic instruments may not satisfy the

IV independence and exclusion restriction assumptions and thus maybe invalid. In contrast, our

proposed MR-SPI further incorporates the outcome data to automatically select a set of valid

genetic instruments from Ŝ for a specific exposure-outcome pair.

Under the plurality rule condition, valid genetic instruments with the same ratio of SNP-
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outcome effect to SNP-exposure effect (i.e., Γj/γj) will form a plurality and yield “similar” ratio

estimates of the causal effect. Based on this key observation, MR-SPI selects a plurality of relevant

IVs whose ratio estimates are “similar” to each other as valid IVs. Specifically, we propose the

following two criteria to measure the similarity between the ratio estimates of two SNPs j and k:

C1: We say the kth SNP “votes for” the jth SNP to be a valid IV if, by assuming the jth SNP

is valid, the kth SNP’s degree of violation of assumptions (A2) and (A3) is smaller than a

threshold as in equation (4);

C2: We say the ratio estimates of two SNPs j and k are “similar” if they mutually vote for each

other to be valid IVs.

The ratio estimate of the jth SNP is defined as β̂[j] = Γ̂j/γ̂j. By assuming the jth SNP is valid,

the plug-in estimate of the kth SNP’s degree of violation of (A2) and (A3) can be obtained by

π̂
[j]
k = Γ̂k − β̂[j]γ̂k = (β̂[k] − β̂[j])γ̂k, (3)

as we have Γk = βγk + πk for the true causal effect β, and Γ̂k = β̂[k]γ̂k for the ratio estimate

β̂[k] of the kth SNP. From equation (3), π̂
[j]
k has two noteworthy implications. First, π̂

[j]
k measures

the difference between the ratio estimates of SNPs j and k (multiplied by the kth SNP-exposure

effect estimate γ̂k), and a small π̂
[j]
k implies that the difference scaled by γ̂k is small. Second, π̂

[j]
k

represents the kth IV’s degree of violation of assumptions (A2) and (A3) by regarding the jth

SNP’s ratio estimate β̂[j] as the true causal effect, thus a small π̂
[j]
k implies a strong evidence that

the kth IV supports the jth IV to be valid. Therefore, we say the kth IV votes for the jth IV to

be valid if:
|π̂[j]

k |
ŜE(π̂

[j]
k )
≤
√

logmin(n1, n2), (4)

where ŜE(π̂
[j]
k ) is the standard error of π̂

[j]
k , which is given by:

ŜE(π̂
[j]
k ) =

√√√√ 1

n2

(
V̂Γ,kk +

(
γ̂k
γ̂j

)2

V̂Γ,jj − 2
γ̂k
γ̂j

V̂Γ,jk

)
+

1

n1

(β̂[j])2

(
V̂γ,kk +

(
γ̂k
γ̂j

)2

V̂γ,jj − 2
γ̂k
γ̂j

V̂γ,jk

)
,

(5)

and the term
√

logmin(n1, n2) in equation (4) ensures that the violation of (A2) and (A3) can be

correctly detected with probability one as the sample sizes go to infinity, as shown in Supplementary
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Section S3.

For each relevant IV in Ŝ, we collect all relevant IVs’ votes on whether it is a valid IV according

to equation (4). Then we construct a voting matrix Π̂ ∈ R|Ŝ|×|Ŝ| to summarize the voting results

and evaluate the similarity of two SNPs’ ratio estimates according to criterion C2. Specifically,

we define the (k, j) entry of Π̂ as:

Π̂k,j = I

(
max

{
|π̂[j]

k |
ŜE(π̂

[j]
k )

,
|π̂[k]

j |
ŜE(π̂

[k]
j )

}
≤
√

logmin(n1, n2)

)
, (6)

where I(·) is the indicator function such that I(A) = 1 if event A happens and I(A) = 0 otherwise.

From equation (6), we can see that the voting matrix Π̂ is symmetric, and the entries of Π̂ are

binary: Π̂k,j = 1 represents SNPs j and k vote for each other to be a valid IV, i.e., the ratio

estimates of these two SNPs are close to each other; Π̂k,j = 0 represents that they do not. For

example, in Figure 1, Π̂1,2 = 1 since the ratio estimates of SNPs 1 and 2 are similar, while Π̂1,4 = 0

because the ratio estimates of SNPs 1 and 4 differ substantially, as SNPs 1 and 4 mutually “vote

against” each other to be valid according to equation (4).

After constructing the voting matrix Π̂, we select the valid IVs by applying majority/plurality

voting or finding the maximum clique of the voting matrix34. Let VMk =
∑

j∈Ŝ Π̂k,j be the total

number of SNPs whose ratio estimates are similar to SNP k. For example, VM1 = 3 in Figure

1, since three SNPs (including SNP 1 itself) yield similar ratio estimates to SNP 1 according to

criterion C2. A large VMk implies a strong evidence that SNP k is a valid IV, since we assume

that valid IVs form a plurality of the relevant IVs. Let V̂M =
{
k ∈ Ŝ : VMk > |Ŝ|/2

}
denote the

set of IVs with majority voting, and V̂P =
{
k ∈ Ŝ : VMk = maxl∈Ŝ VMl

}
denote the set of IVs

with plurality voting, then the union V̂ = V̂M ∪ V̂P can be a robust estimate of V in practice.

Alternatively, we can also find the maximum clique in the voting matrix as an estimate of V . A

clique in the voting matrix is a group of IVs who mutually vote for each other to be valid, and the

maximum clique is the clique with the largest possible number of IVs34.
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Estimation and inference of the causal effect

After selecting the set of valid genetic instruments V̂ , the causal effect β is estimated by

β̂SPI =
Γ̂⊺

V̂
γ̂V̂

γ̂⊺

V̂
γ̂V̂

, (7)

where γ̂V̂ and Γ̂V̂ are the estimates of SNP-exposure associations and SNP-outcome associations

of the selected valid IVs in V̂ , respectively. The MR-SPI estimator in equation (7) is the regression

coefficient obtained by fitting a zero-intercept ordinary least squares regression of Γ̂V̂ on γ̂V̂ . Since

the SNPs are standardized, the genetic associations γ̂j and Γ̂j are scaled by
√

2fj(1− fj) (compared

to the genetic associations calculated using the unstandardized SNPs, denoted by γ̌j and Γ̌j), where

fj is the minor allele frequency of SNP j. As fj(1−fj) is approximately proportional to the inverse

variance of Γ̌j when each SNP IV explains only a small proportion of variance in the outcome70, the

MR-SPI estimator of the causal effect in equation (7) is approximately equal to the inverse-variance

weighted estimator19 calculated with {γ̌j, Γ̌j}j∈V̂ .

Let α ∈ (0, 1) be the significance level and z1−α/2 be the (1 − α/2)-quantile of the standard

normal distribution, then the (1− α) confidence interval for β is given by:

CI =

(
β̂SPI − z1−α

2

√
V̂ar(β̂SPI), β̂SPI + z1−α

2

√
V̂ar(β̂SPI)

)
, (8)

where V̂ar(β̂SPI) is the estimated variance of β̂SPI, which can be found in Supplementary Section S4.

As min{n1, n2} → ∞, we have P
{
β ∈

(
β̂SPI − z1−α

2

√
V̂ar(β̂SPI), β̂SPI + z1−α

2

√
V̂ar(β̂SPI)

)}
→

1− α under the plurality rule condition, as shown in Supplementary Section S5. Hence, MR-SPI

provides a theoretical guarantee for the asymptotic coverage probability of the confidence interval

under the plurality rule condition.

We summarize the proposed procedure of selecting valid IVs and constructing the corresponding

confidence interval by MR-SPI in Algorithm 1.
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Algorithm 1: Selecting Valid Instruments and Performing Inference of the Causal Effect

by MR-SPI

input : GWAS summary statistics of independent SNPs {γ̂j , σ̂γj , Γ̂j , σ̂Γj}1≤j≤p; Sample sizes n1

for the exposure and n2 for the outcome; Threshold α∗ for selecting relevant IVs;

Significance level α ∈ (0, 1).

output: An estimate of the set of valid IVs V̂, the causal effect estimate β̂SPI and the

corresponding confidence interval CI.

1 Estimate the variance-covariance matrices V̂γ and V̂Γ as in equation (1);

2 Select the set of relevant IVs Ŝ as in equation (2);

3 for j ∈ Ŝ do

4 Calculate β̂[j] = Γ̂j/γ̂j and π̂
[j]
k = Γ̂k − β̂[j]γ̂k for k ∈ Ŝ;

5 Each relevant IV k ∈ Ŝ votes for the jth IV to be valid if |π̂[j]
k |/ŜE(π̂

[j]
k ) ≤

√
logmin(n1, n2);

6 end

7 Construct the symmetric voting matrix Π̂ ∈ R|Ŝ|×|Ŝ| as in equation (6);

8 Select the set of valid IVs V̂ by majority voting, plurality voting or finding the maximum clique

in the voting matrix;

9 Estimate the causal effect as in equation (7), and construct the corresponding confidence interval

as in equation (8) using the selected valid IVs in V̂.

A robust confidence interval via searching and sampling

In finite-sample settings, the selected set of relevant IVs Ŝ might include some invalid IVs whose

degrees of violation of (A2) and (A3) are small but nonzero, and we refer to them as “locally invalid

IVs”36. When locally invalid IVs exist and are incorrectly selected into V̂ , the confidence interval in

equation (8) becomes unreliable, since its validity (i.e., the coverage probability attains the nominal

level) requires that the invalid IVs are correctly filtered out. In practice, we can multiply the

threshold
√

logmin(n1, n2) in the right-hand side of equation (4) by a scaling factor η to examine

whether the confidence interval calculated by equation (8) is sensitive to the choice of the threshold.

If the confidence interval varies substantially to the choice of the scaling factor η, then there might

exist finite-sample IV selection error especially with locally invalid IVs. We demonstrate this

issue with two numerical examples presented in Supplementary Figure S13. Supplementary Figure

S13(a) shows an example in which MR-SPI provides robust inference across different values of the

scaling factor, while Supplementary Figure S13(b) shows an example that MR-SPI might suffer

from finite-sample IV selection error, as the causal effect estimate and the corresponding confidence

interval are sensitive to the choice of the scaling factor η. This issue motivates us to develop a
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more robust confidence interval.

To construct a confidence interval that is robust to finite-sample IV selection error, we borrow

the idea of searching and sampling36, with main steps described in Figure 5. The key idea is to

sample the estimators of γ and Γ repeatedly from the following distribution:γ̂(m)

Γ̂(m)

 ∼ N

γ̂

Γ̂

 ,

 1
n1
V̂γ 0

0 1
n2
V̂Γ

 , m = 1, · · · ,M, (9)

where M is the number of sampling times (by default, we set M = 1, 000). Since γ̂ and Γ̂ follow

distributions centered at γ and Γ, there exists m∗ such that γ̂(m∗) and Γ̂(m∗) are close enough

to the true values γ and Γ when the number of sampling times M is sufficiently large, and thus

the confidence interval obtained by using γ̂(m∗) and Γ̂(m∗) instead of γ̂ and Γ̂ might have a larger

probability of covering β.

For each sampling, we construct the confidence interval by searching over a grid of β values

such that more than half of the selected IVs in V̂ are detected as valid. As for the choice of grid,

we start with the smallest interval [L,U ] that contains all the following intervals:

(
β̂[j] −

√
logmin(n1, n2)V̂ar(β̂[j]), β̂[j] +

√
logmin(n1, n2)V̂ar(β̂[j])

)
for j ∈ V̂ , (10)

where β̂[j] is the ratio estimate of the jth SNP, V̂ar(β̂[j]) =
(
V̂Γ,jj/n2 + (β̂[j])2V̂γ,jj/n1

)
/γ̂2

j is

the variance of β̂[j], and
√

logmin(n1, n2) serves the same purpose as in equation (4). Then

we discretize [L,U ] into B = {b1, b2, · · · , bK} as the grid set such that b1 = L, bK = U and

|bk+1− bk| = n−0.6
min for 1 ≤ k ≤ K − 2, where nmin = min(n1, n2). We set the grid size n−0.6

min so that

the error caused by discretization is smaller than the parametric rate n
−1/2
min .

For each grid value b ∈ B and sampling index 1 ≤ m ≤ M , we propose an estimate of

πj by π̂
(m)
j (b) =

(
Γ̂
(m)
j − bγ̂

(m)
j

)
· 1
(
|Γ̂(m)

j − bγ̂
(m)
j | ≥ λρ̂j(b, α)

)
for j ∈ V̂ , where ρ̂j(b, α) =

Φ−1
(
1− α

2|V̂|

)√(
V̂Γ,jj/n2 + b2V̂γ,jj/n1

)
is a data-dependent threshold, Φ−1(·) is the inverse of

the cumulative distribution function of the standard normal distribution, α ∈ (0, 1) is the sig-

nificance level, and λ = (logmin(n1, n2)/M)
1

2|V̂| (λ < 1 when M is sufficiently large) is a scaling

factor to make the thresholding more stringent so that the confidence interval in each sampling

is shorter, as we will show shortly. Here, π̂
(m)
j (b) = 0 indicates that the jth SNP is detected as
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a valid IV in the mth sampling if we take {γ̂(m), Γ̂(m)} as the estimates of genetic associations

and b as the true causal effect. Let π̂
(m)

V̂
(b) = (π̂

(m)
j (b))j∈V̂ , then we construct the mth sampling’s

pseudo confidence interval pCI(m) by searching for the smallest and largest b ∈ B such that more

than half of SNPs in V̂ are detected to be valid. Define β
(m)
min = min{b ∈ B : ∥π̂(m)

V̂
(b)∥0 < |V̂|/2}

and β
(m)
max = max{b ∈ B : ∥π̂(m)

V̂
(b)∥0 < |V̂|/2}, then the mth sampling’s pseudo confidence interval

is constructed as pCI(m) =
(
β
(m)
min , β

(m)
max

)
.

From the definitions of π̂
(m)
j (b) and pCI(m), we can see that, when λ is smaller, there will be

fewer SNPs in V̂ being detected as valid for a given b ∈ B, which leads to fewer b ∈ B satisfying

∥π̂(m)

V̂
(b)∥0 < |V̂|/2, thus the pseudo confidence interval in each sampling will be shorter. If there

does not exist b ∈ B such that the majority of IVs in V̂ are detected as valid, we set pCI(m) = ∅.

Let M = {1 ≤ m ≤ M : pCI(m) ̸= ∅} denote the set of all sampling indexes corresponding to

non-empty searching confidence intervals, then the proposed robust confidence interval is given by:

CIrobust =

(
min
m∈M

β
(m)
min ,max

m∈M
β(m)
max

)
. (11)

We summarize the procedure of constructing the proposed robust confidence interval in Algo-

rithm 2.

Algorithm 2: Constructing A Robust Confidence Interval via Searching and Sampling

input : GWAS summary statistics of independent SNPs {γ̂j , σ̂γj , Γ̂j , σ̂Γj}1≤j≤p; Sample sizes n1

for the exposure and n2 for the outcome; Threshold α∗ for selecting relevant IVs;

Significance level α ∈ (0, 1); Sampling number M .

output: The robust confidence interval CIrobust.

1 Estimate the set of valid IVs V̂ as in Algorithm 1;

2 Construct the initial interval [L,U ] as in equation (10) and obtain the corresponding grid set B;
3 for m← 1 to M do

4 Sample γ̂(m) and Γ̂(m) from the distribution in equation (9);

5 Calculate {π̂(m)

V̂
(b)}b∈B by π̂

(m)
j (b) =

(
Γ̂
(m)
j − bγ̂

(m)
j

)
· 1
(
|Γ̂(m)

j − bγ̂
(m)
j | ≥ λρ̂j(b, α)

)
, j ∈ V̂;

6 Construct pCI(m) by grid search over B;
7 end

8 Construct the robust confidence interval CIrobust as in equation (11);
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Simulation settings

We set the number of candidate IVs p = 10, as the average number of candidate SNP IVs for

the plasma proteins in the UK Biobank proteomics data is around 7.4. We set the sample sizes

n1 = n2 ∈ {5,000, 10,000, 20,000, 40,000, 80,000}. We generate the jth genetic instruments Zj and

Xj independently from a binomial distribution Bin(2, fj), where fj ∼ U(0.05, 0.50) is the minor

allele frequency of SNP j. Then we generate the exposure D = (D1, · · · , Dn1)
⊺ and the outcome

Y = (Y1, · · · , Yn2)
⊺ according to the exposure model and the outcome model, respectively. Finally,

we calculate the genetic associations and their corresponding standard errors for the exposure and

the outcome, respectively. As for the parameters, we fix the causal effect β = 1, and we consider

4 settings for γ ∈ Rp and π ∈ Rp:

(S1): set γ = 0.2 · (15,−15)
⊺ and π = 0.2 · (06,14)

⊺.

(S2): set γ = 0.2 · (15,−15)
⊺ and π = 0.2 · (04,13,−13)

⊺.

(S3): set γ = 0.2 · (15,−15)
⊺ and π = 0.2 · (06,12, 0.25, 0.25)

⊺.

(S4): set γ = 0.2 · (15,−15)
⊺ and π = 0.2 · (04,12, 0.25,12,−0.25)⊺.

Settings (S1) and (S3) satisfy the majority rule condition, while (S2) and (S4) only satisfy the

plurality rule condition. In addition, (S3) and (S4) simulate the cases where locally invalid IVs

exist, as we shrink some of the SNPs’ violation degrees of assumptions (A2) and (A3) down to

0.25 times in these two settings. In total, we run 1,000 replications in each setting.

Implementation of existing MR methods

We compare the performance of MR-SPI with eight other MR methods in simulation studies and

real data analyses. These methods are implemented as follows:

• Random-effects IVW, MR-Egger, the weighted median method, the mode-based estimation

and the contamination mixture method are implemented in the R package “MendelianRan-

domization” (https://github.com/cran/MendelianRandomization). The mode-based es-

timation is run with “iteration=1000”. All other methods are run with the default parame-

ters.

• MR-PRESSO is implemented in the R package “MR-PRESSO” (https://github.com/

rondolab/MR-PRESSO) with outlier test and distortion test.
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• MR-RAPS is performed using the R package “mr.raps” (https://github.com/qingyuanzhao/

mr.raps) with the default options.

• MRMix is run with the R package “MRMix” (https://github.com/gqi/MRMix) using the

default options.
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