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Abstract

Cocaine use disorder (CUD) is described as a compulsive urge to seek and consume cocaine despite the
inimical consequences. MRI studies from different modalities have shown that CUD patients exhibit
structural and/or functional connectivity pathology among several brain regions. Nevertheless, both
connectivities are commonly studied and analyzed separately, which may potentially obscure its
relationship between them, and with the clinical pathology. Here, we compare and contrast structural and
functional brain networks in CUD patients and healthy controls (HC) using multimodal fusion. The
sample consisted of 63 (8 females) CUD patients and 42 (9 females) healthy controls (HC), recruited as
part of the SUDMEX CONN database. For this, we computed a battery of graph-based measures from
multi-shell diffusion-weighted imaging and resting state fc-fMRI to quantify local and global
connectivity. Then we used multimodal canonical component analysis plus joint independent component
analysis (mCCA+jICA) to compare between techniques, and evaluate group differences and its
association with clinical alteration. Unimodal results showed a striatal decrease in the participation
coefficient, but applied supervised data fusion revealed other regions with cocaine-related alterations in
joint functional communication. When performing multimodal fusion analysis, we observed a higher
centrality of the interrelationship and a lower participation coefficient in patients with CUD. In contrast to
the unimodal approach, the multimodal fusion method was able to reveal latent information about brain
regions involved in impairment due to cocaine abuse. The present results could help in understanding the
pathology of CUD in order to develop better pre-treatment/post-treatment intervention designs.

Keywords: Cocaine use disorder; Imaging; Graph theory; sMRI; fMRI; Multimodal fusion; mCCA +
jICA.



Introduction

Cocaine use disorder (CUD) is described as a compulsive urge to seek and consume cocaine despite the
inimical consequences. CUD causes a gradual decline of the patient’s cognitive and behavioral health (1)
along with greater health and socioeconomic issues. MRI studies from different modalities have shown
that CUD patients exhibit structural and/or functional connectivity pathology among a wide variety of
regions such as frontal, parietal, temporal gyri, and subcortical regions, including white matter tracts that
connect these regions (2,3). A recent meta-analysis showed that CUD patients display lower volume in
the orbitofrontal cortex, temporal pole, anterior insula, anterior thalamic radiation, cingulum, inferior
occipitofrontal fascicle, and acoustic radiation (4). Some studies also show brain network alterations using
graph theory in CUD with non-consistent results (5–7). Nevertheless, structural and functional MRI
pathology is commonly studied and analyzed separately, which may potentially obscure the relationship
between them, and clinical pathology.

Multimodal fusion provides a means to reveal complicated hidden relationships between
modalities and weak latent effects in high-dimensional data by taking advantage of the presence of
cross-information in cross-individual variance (8,9). Multimodal fusion has the added benefit of increased
robustness to modality-specific noise (9) and has been used to study different brain pathologies like
schizophrenia, bipolar and obsessive-compulsive disorders (10–12). A recent study by Meade et al. (13)
explored multimodal fusion techniques namely multimodal canonical component analysis (mCCA) in
conjunction with joint independent component analysis (jICA) on CUD patients using whole-brain
voxel-wise maps and their relation with the delay discounting task. This study showed structural and
functional co-alterations in CUD patients, linked to impulsive behavior. The relevance of multimodal
fusion techniques can be leveraged to develop models that can exploit the data and minimize incorrect
conclusions in psychiatric disorders (8,9).

In the present study, we wished to compare and contrast structural and functional brain networks
in CUD patients and healthy controls (HC) using multimodal fusion. Unlike other multimodal fusion
studies which commonly use voxel-based metrics, we use graph theory metrics which enable us to
meaningfully understand and analyze brain connectivity architecture. Compared to voxel-based analysis,
graph-based analysis of the brain offers a better mathematical framework to model the communications
between various brain regions. For this, we computed a battery of graph measures from multi-shell
diffusion-weighted imaging and resting state functional connectivity to quantify local and global
connectivity. Then we used jICA and mCCA+jICA to compare techniques and evaluate group differences
and their association with the clinical alteration.

Methods

1. Participants

The sample consisted of 63 (8 females) cocaine use disorder patients (CUD) and 42 (9 females) healthy
controls (HC), recruited as part of the SUDMEX CONN database (14), paired by age, sex, handedness,
and education. We included participants with T1-weighted, diffusion-weighted imaging (DWI), and
resting-state fMRI (rsfMRI) sequences for this study. Due to analysis failures, three CUD patients and
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one HC subject were eliminated from the analysis. Demographic characteristics are shown in Table 1.
According to the Declaration of Helsinki, the ethics committee of the Instituto Nacional de Psiquiatría
“Ramón de la Fuente Muñiz'' in Mexico City, Mexico gave the ethical approval for this work. The entire
study was carried out at the same Institute. All participants provided verbal and written informed consent.
Recruitment criteria and full sample details are described in Angeles-Valdez (14).

Table 1. Demographic characteristics of participants.

CUD (n=63) HC (n=42) Stats

Age 32 (18 - 50) 30 (18 - 48) t = -0.5, p = 0.6

Education Middle School High School 𝜒2 = 10, p = 0.04

Handedness * (n = 63) (n = 42)

Right 56 35

Left 4 4

Ambidextrous 3 3

Onset age of
consumption

20 (12 - 41) na

Years consuming 10 (1 - 28) na

Average consumption
per intake *

(n = 55) na

< 0.8 gm 0 na

1.6 - 2.4 gm 7 na

3.2 - 5.6 gm 11 na

8 - 9 gm 26 na

9 - 10 gm 6 na

> 10 gm 10 na

Median (min – max) for all except: * = count. CUD = Cocaine Use Disorder, HC = Healthy controls, n
= due to absence of data we show each sample size per variable, na = not applicable, gm = grams, Stats
= statistics, t = t-value, 𝜒2 = chi-squared.

2. Magnetic Resonance Imaging

MRI sequences were acquired using a Philips Ingenia 3T system (Philips Healthcare, Best, The
Netherlands, and Boston, MA, USA) with a 32-channel dS Head coil. Rs-fMRI was acquired using a
GE-EPI sequence with the following parameters: TR = 2000, TE = 30.001ms, flip angle = 75°, matrix =
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80x80, FOV = 240 mm2, voxel size = 3x3x3 mm, number of slices=36, phase encoding direction = AP.
T1-weighted (T1w) was acquired using a three-dimensional FFE SENSE sequence, TR = 7, TE = 3.5 ms,
FOV = 240mm2, matrix = 240×240 mm, number of slices = 180, gap = 0, plane = sagittal, voxel =
1x1x1 mm. Subjects were instructed to keep their eyes open and try not to think about anything in
particular, while a fixation cross was presented. We then acquired a spin-echo High Angular Resolution
Diffusion Imaging (DWI-HARDI) sequence, TR = 8600 TE = 126.78 ms, FOV = 224, matrix =
112x112 mm, number of slices = 50, gap = 0, plane = axial, voxel = 2 x 2 x 2 mm, directions: 8 = b0, 36 =
b-value 1,000 s/mm² and 92 = b-value 3,000 s/mm², total = 136 directions. The MRI order of acquisition
was: 1) rs-MRI, 2) T1w, and 3) DWI-HARDI. The total scanning time lasted around 50 minutes.

3. Clinical measures

Participants were evaluated using a battery of paper-based clinical questionnaires before MRI scanning.
For this study, the CUD group was assessed using the Cocaine Craving Questionnaire (CCQ-General) and
(CCQ-Now) to rate their craving over the previous week and at the time of MRI scanning. This
questionnaire includes questions about the desire to use cocaine, the anticipation of positive outcomes,
and relief from withdrawal (15). For evaluating functional impairments or disabilities in psychiatric
patients, the CUD group was assessed by World Health Organization Disability Assessment Schedule 2.0
(WHODAS 2.0). This instrument has been widely used in different countries for health and disabilities,
finding high consistency rates (16). The CUD group was also assessed by Addiction Severity Index
(ASIP) for consumption status and addiction severity. This instrument is a semi-structured interview that
evaluates several functional domains like medical status, employment, alcohol use, drugs use,
family/social life, and psychiatric status (17). Impulsivity was also assessed using the Barratt
Impulsiveness Scale Version 11 (BIS-11), which is a self-report scale that assesses three categories of
personality/behavioral impulsivity: cognitive (i.e. inability to focus attention), motor (i.e. act without
thinking), and non-planning impulsiveness (i.e. lack of forethought) (18). For information on other
clinical measures that were recorded along with the above-mentioned, see Angeles-Valdez et al (14).

4. Preprocessing

Data preprocessing of rsfMRI and T1w images were performed using fMRIprep pipeline (19). Structural
T1 steps included a volume correction of intensity non-uniformity, skull-stripped, brain tissue
segmentation, and a spatial normalization onto MNI common brain space (MNI152NLin2009cAsym).
Functional preprocessing steps included correction for intensity, slice-timing and head motion, spatial
smoothing with an isotropic Gaussian kernel of 6 mm full width at half maximum (FWHM), framewise
displacement threshold of 0.5, distortion estimation using a field map, skull-stripped, and a spatial
normalization to MNI brain space. Resting-state time series were then processed using XCP Engine v.
1.2.1 (20) with nuisance regression using the pipeline described in Power et al. (21). Shortly, nuisance
strategy included: 1) inhomogeneities correction, 2) dummies removal (4 initial volumes), 3) realignment
of all volumes to reference, 4) demeaning and removal of trends, 5) co-registration, 6) removal of global,
white matter and cerebrospinal confounding signals, 7) motion scrubbing and 8) temporal filtering with a
first-order Butterworth filter using a bandpass between 0.01 and 0.08 Hz. DWI-MRI preprocessing
consisted of the correction of eddy current artifacts and motion noise using eddy_correct from FSL 6.0.11
(https://fsl.fmrib.ox.ac.uk). Gradients were rotated to match the affine transformation applied in eddy
step, subsequently, skull stripping was performed using the brain extraction tool from FSL. Finally, using
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Advanced Normalization Tools (ANTs) registration, MNI brain space was transformed into individual
subject space to map all the ROI into subject space.

5. Connectivity Analyses

a. Structural Connectome

The diffusion connectivity (tc-dmri) matrices were computed using the Harvard-Oxford (HO)
cortical and subcortical atlases (112 regions) and with the Desikan Killiany (DK, 86 regions) atlas through
fiber-counting. For T1w structural, data were processed using Freesurfer, which performed intensity bias
correction, non-brain tissue discard, and tissue segmentation before performing entire brain parcellation
using spherical transformation and surface-based registration with the atlas. Connectivity maps were
constructed by whole-brain streamline fiber tractography on native space using MRtrix v.3 (22). All ROIs
in each atlas in sequence 1 to n-regions and the probabilistic connectome values represent the connectivity
fiber counts between the source and destination ROIs. All fibers that start or end in GM-ROIs were taken
into the fiber count. Normalization of all values was performed by summing the number of voxels from
the source and destination ROIs. The main analysis presented here is based on the Harvard-Oxford atlas.
The analysis using the Desikan Killiany atlas is presented in the Supplementary material with no group
significant differences.

b. Functional Connectome

The functional connectivity (FC) matrices, or fc-fMRI, were computed using the HO cortical and
subcortical atlases and the DK atlas. The mean time series was extracted from each region and the
functional connectivity matrix was estimated by computing pairwise Pearson correlations. Following this,
the FC matrices were thresholded to generate a binary adjacency matrix that represents the presence or
absence of functional connectivity. The thresholding and binarization procedures help reduce weaker
connections and result in undirected, unweighted, binary matrices where the correlations above a certain
threshold are represented by 1 and 0 otherwise. Since the choice of threshold can be arbitrary, we
generated several binarized adjacency matrices by varying the cut-off to include the top 5% to 50% with
increments of 5%. The main analysis presented here is based on the Harvard-Oxford atlas. The analysis
using the DK atlas is presented in the Supplemental Material with no group significant differences.

c. Graph-based measures

Graph theory analyses are performed on the binarized adjacency matrices using Matlab v. 2019b and the
Graph Theoretical Network Analysis (GRETNA) toolbox (23). The computed graph measures were
classified into two categories based on the type of connectivity they signify: global and local graph
measures. These graph measures enable us to understand properties like connectivity or topology, at
whole-brain and region levels respectively. Global measures comprise Assortativity (r), Network
efficiency ( ), Modularity (M), Smallworld index , and Hierarchy (β). Local measures include𝐸

𝑔𝑙𝑜𝑏𝑎𝑙
(σ)

Betweenness Centrality (BC), Degree Centrality (DC), Participation Coefficient (PC), Nodal Local
Efficiency (NLE), and Nodal clustering Coefficient (NCC). These measures are discussed in
supplementary material.
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Assortativity is the correlation between the degree of a node and the average degree of the node's
neighbors. Network efficiency is defined as the average inverse shortest path length in a network.
Modularity (M) is a statistic used to distinguish between the number of intra-module connections of an
existing network and randomly connected edges in a random network and is computed based on a greedy
agglomerative method (24). Small world index is defined as the ratio of the normalized clustering
coefficient and normalized characteristic path length. The Betweenness Centrality of a node (v) is defined
as the ratio of the number of shortest paths passing through the node between any two given nodes σ

𝑎𝑏
(𝑣)

to the total number of shortest paths between the two given nodes . The Degree Centrality of a node(v)σ
𝑎𝑏

is defined as the ratio of the degree of the node ( to the maximum possible degree of the node. The𝑑
𝑣
)

Participation coefficient of a node(v) reflects the within-module and intermodular communication. Nodal
local efficiency is similar to network efficiency, but it is computed in the neighborhood of a node. The
clustering coefficient of a node(v) is defined as the ratio of the number of connections between the
neighbors of the node ( to the total number of possible connections among neighbors of the node.𝑒

𝑣
) (𝐾

𝑣
)

Those graph measures also quantify network segregation (Nodal clustering coefficient, nodal
local efficiency, small world index, and modularity), network integration (Global efficiency, assortativity,
and participation coefficient) and node centrality (Betweenness Centrality and Degree centrality) (25).

6. Unimodal Analysis

This was performed to investigate brain network differences from the perspective of each modality
(fc-fMRI and tc-dMRI). Global and local graph measures were analyzed to understand the functional and
structural connectivity of the different brain regions. The global and local graph measures within each
modality were tested for differences between CUD and HC using the Mann-Whitney-Wilcoxon test for
independent two-samples. Spearman correlation between the graph measures and their corresponding
clinical scores within each modality was performed. To account for multiple comparisons, we used FDR
at 5% via the Benjamini-Hochberg procedure. R programming language version 4.1 was used for the
statistical analysis.
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Figure 1. Workflow of all stages analysis. A) Data from 66 (8 females) cocaine use disorder patients
(CUD) and 43 (9 females) healthy controls (HC), B) Data preprocessing of Resting-state and
T1-weighted MRI images were performed using fMRIprep pipeline follow by XCPengine pipeline, and
FSL DWI preprocessing, C) Connectivity analysis based on Graph-based approach along with
correlation with clinical measures, D) mCCA+jICA multimodal fusion based on local graph-based
measures.

7. Multimodal Fusion

Sui et al, (8) outlined several multimodal fusion methods and divided them into three different categories
based on their objectives: finding flexible connections between modalities, separating sources and
discovering the common mixing profiles, and examining both flexible modality connections and distinct
sources. The several outlined blind source separation methods were evaluated by simulating their
performances on a generated dataset of 100 noisy (random Gaussian noise was added) images with fMRI
and EEG signals as the two modalities. Based on various metrics, it was evident that jICA and mCCA are
good at source separation and modality associations respectively. Whereas, mCCA+jICA had more
reliability in estimating the modality relations (high or low correlations) along with good source
separation and robustness to noise. Hence, our multimodal fusion analysis was performed using
mCCA+jICA. Figure 2 depicts the pipeline of our multimodal fusion analysis. Age was regressed out
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from the local graph-based measures calculated for each modality. The minimum description length
(MDL) method (26) was used to determine the number of independent components (M) to preserve for
each local graph metric (MBC=4, MDC=10, MNCC=13, MNLE=19, MPC=9) in both fc-fMRI and tc-dMRI
modalities. Next, mCCA analysis was performed on fc-fMRI and tc-dMRI to produce canonical variates
(CVfc-fMRI and CVtc-dMRI) and canonical components (CCfc-fMRI and CCtc-dMRI) .CCfc-fMRI and CCtc-dMRI were
concatenated and subjected to joint ICA, yielding mixing profiles , unmixing profiles ,(𝑀𝑀) (𝑢𝑚𝑚)

stability indices (IQ), and independent component loadings (IC). MATLAB v. 2019b was used to
calculate the mCCA and jICA analyses with custom scripts and the ICASSO toolbox (27). Effective
mixing profiles were calculated for group comparisons using the following equations:

.           𝑒𝑚𝑚
𝑓𝑐−𝑓𝑀𝑅𝐼

= [𝑀𝑀] 𝑥 𝐶𝑉
𝑓𝑐−𝑓𝑀𝑅𝐼[ ] − 𝑒𝑞1  𝑒𝑚𝑚

𝑡𝑐−𝑑𝑀𝑅𝐼
= [𝑀𝑀] 𝑥 𝐶𝑉

𝑡𝑐−𝑑𝑀𝑅𝐼[ ] − 𝑒𝑞2 

All ICs values were normalized to Z-scores. In order to investigate regions with the highest contribution
for the mixing profiles we used a threshold of The effective mixing profiles (𝑍 ≥ ± 2. 3.

) of those ICs with an IQ > 0.8 were considered. Based on the previous𝑒𝑚𝑚
𝑓𝑐−𝑓𝑀𝑅𝐼

 𝑎𝑛𝑑 𝑒𝑚𝑚
𝑡𝑐−𝑑𝑀𝑅𝐼

research (28), these mixing profiles were further correlated with each other along with their corresponding
clinical measures using Spearman correlation. Mann–Whitney–Wilcoxon test for independent
two-samples was computed to reveal group differences between CUD and HC for each . All results𝑒𝑚𝑚

𝑛

were corrected for multiple comparisons using FDR (Benjamini-Hochberg) at 5%.

Figure 2. Workflow of the 2-way multimodal fusion analysis using mCCA + jICA fusion strategy of
each Local graph measure.
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Results

The present results were generated from the graph measures computed using Harvard Oxford
Atlas (HOA), which is known to capture structure–function relationship better than other atlases (29).

1. Unimodal Results

No significant differences were observed between CUD and HC groups for the global measures in the
tc-dMRI modality. Only the left Caudate exhibited a significant decrease in PC among CUD compared to
HC in the fc-fMRI modality (U =1880, p=0.0027, pfdr=0.030) (Fig. 3a). For either modality, there were no
significant correlations between either the global or local measures and clinical measures.

2. Multimodal Results

The local graph measures of integration, betweenness centrality (BC), and participation coefficient (PC),
had IQ > 0.8, resulting in one IC in the case of BC ( ) and two for PC ( and ). Only the fc-fMRI𝐼𝐶

2
𝐼𝐶

1
𝐼𝐶

4

modality showed significant group differences, with BC ( ) having greater𝑝
𝑣𝑎𝑙𝑢𝑒

= 0. 028,  𝑝
𝑓𝑑𝑟

= 0. 042 

values in the CUD sample and PC ( ) having lower values in the CUD𝑝
𝑣𝑎𝑙𝑢𝑒

= 0. 026,  𝑝
𝑓𝑑𝑟

= 0. 042

group. In fc-fMRI modality, the significance of the BC (IC2) suggests that the independent component
was expressed more strongly in the CUD group compared to the HC group, thus resulting in a lesser
number of shortest pathways via nodes (Table 2). For PC, the independent component (IC4) that
corresponds to the fc-fMRI modality was stronger in the CUD group than the HC, suggesting a higher
level of node participation in their own communities (Table 2). The joint-IC2 of BC was characterized by
the contributions of the left Temporal pole, left Middle Temporal gyrus and bilateral Anterior Cingulate
gyrus in fc-fMRI modality along with bilateral Thalamus and bilateral Putamen in tc-dMRI modality
(Table 3). In the tc-dMRI modality, the joint-IC4 of PC revealed significant connectivity in the left
Parahippocampal gyrus and the right Occipital Fusiform gyrus, as well as the bilateral Posterior Cingulate
gyrus, left Cuneal cortex, and bilateral Caudate in the fc-fMRI modality (Figure 3B and Table 3). Figure 4
depicts a positive correlation between the effective mixing profiles ( ) of𝑒𝑚𝑚

𝑓𝑐−𝑓𝑀𝑅𝐼
 𝑎𝑛𝑑 𝑒𝑚𝑚

𝑡𝑐−𝑑𝑀𝑅𝐼

joint IC2 and joint IC4 for BC and PC, respectively. This demonstrates a strong association between the
regions that contribute to the joint independent component in both the fc-fMRI and tc-dMRI modalities
for BC and PC. There were no significant correlations with the clinical measures.
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Table 2. Group comparison in loadings (IQ > 0.8), median effective mixing profiles of CUD and HC𝐼𝐶
𝑛

and statistics of each graph metric.

𝐼𝐶 HC (n=42) CUD (n=63) Statistic 𝑝 𝑣𝑎𝑙𝑢𝑒 𝑝
𝑓𝑑𝑟

Betweenness
Centrality

fc-fMRI IC2 -0.0094 0.0088 𝑊 = 987 *0. 028 *0. 042

tc-dMRI IC2 0.0006 -0.0001 𝑊 = 1325 0. 992 0. 992

Participation
Coefficient

fc-fMRI IC1 -0.0111 -0.0112 𝑊 = 1352 0. 852 0. 852

IC4 0.0104 0.0027 𝑊 = 1664 0.026* 0. 042 *

tc-dMRI IC1 -0.0038 0.0018 𝑊 = 1143 0. 24 0. 720

IC4 -0.0015 -0.0011 𝑊 = 1235 0. 567 0. 850

Table 3. Regions in joint at𝐼𝐶
𝑛

𝑍 ≥ ± 2. 3

Anatomical regions Z-score

Betweenness
Centrality

fc-fMRI IC2 Left Temporal Pole 2.885

Right Middle Temporal Gyrus, temporo-occipital -2.92

Right Cingulate Gyrus, anterior division 2.610

Left Cingulate Gyrus, anterior division 3.684

tc-dMRI IC2 Right Thalamus -4.792

Left Thalamus -4.662

Right Putamen -3.957

Left Putamen -3.868

Participation
Coefficient

fc-fMRI IC4 Right Cingulate Gyrus, posterior division -2.340

Left Cingulate Gyrus, posterior division -2.321

Left Cuneal Cortex 2.478

Right Caudate 2.489

Left Caudate 2.315

tc-dMRI IC4 Left Parahippocampal Gyrus, anterior division -2.638

Right Occipital Fusiform Gyrus 2.694



Figure 3. A) Group comparison of Participation Coefficient from unimodal analysis, significant on left
Caudate. B) Multimodal group-discriminating and . Each IC component was𝐵𝐶 − 𝐼𝐶

2
𝑃𝐶 − 𝐼𝐶

4
normalized to z-scores and thresholded to . For Betweenness Centrality in both modalities,𝑍 ≥ ± 2. 3
positive values means that CUD has higher BC in these regions compared to HC, whereas negative
values means the opposite. For the Participation Coefficient in fc-fMRI , positive values mean higher
PC in HC than in CUD, whereas negative values mean the opposite. For the Participation Coefficient in
dMRI, positive values mean lower PC in HC than in CUD, whereas negative values mean the opposite.
TP.L = left Temporal Pole, TO2.L = right middle Temporal gyrus, temporo-occipital, CGa.L = left
Cingulate Gyrus, anterior division, CGa.R = right Cingulate Gyrus, anterior division, Thal.L = left
Thalamus, Thal.R = right Thalamus, Put.L = left Putamen, Put.R = right Putamen, CGp.L = left
Cingulate Gyrus, posterior division, CGp.R = right Cingulate Gyrus, posterior division, CN.L = left
Cuneal Cortex, Caud.L = left Caudate, Caud.R = right Caudate, PHa.L = left Parahippocampal Gyrus,
anterior division, OF.R = right Occipital Fusiform Gyrus.



Figure 4. Association between effective mixing matrices of fMRI and dMRI Independent components. A)
Association of for betweenness centrality (BC IC2) with a significant𝑒𝑚𝑚

𝑓𝑐−𝑓𝑀𝑅𝐼
 𝑎𝑛𝑑 𝑒𝑚𝑚

𝑡𝑐−𝑑𝑀𝑅𝐼
 

correlation (r = 0.196, pfdr = 0.045), B) Association of for participation𝑒𝑚𝑚
𝑓𝑐−𝑓𝑀𝑅𝐼

 𝑎𝑛𝑑 𝑒𝑚𝑚
𝑡𝑐−𝑑𝑀𝑅𝐼

 
coefficient (PC IC4) with a significant correlation (r =0.223, pfdr = 0.044).



Discussion

In this study, we examined the macroscopic network-based differences using graph theory, between
patients with cocaine use disorder (CUD) and matched healthy controls (HC) by combining fc-fMRI and
tc-dMRI imaging modalities. While multimodal fusion has been carried out in other studies, to our
knowledge, this is the first multimodal-fusion study that uses graph theory to explore topological
alterations in CUD patients. First, we evaluated the differences between the two groups in functional and
structural modalities separately. Subsequently, we performed a multimodal fusion of fc-fMRI and
tc-dMRI modalities, which enabled us to understand network patterns conveyed by both modalities,
leveraging a well-defined mathematical framework (i.e. graph theory). While this study was exploratory
in nature, post rigorous multiple comparison corrections, our study identified brain regions that not only
agrees with earlier studies but also revealed interesting observations that may contribute to a better
understanding of CUD patients. We found impairment in inter-module communication (i.e., participation
coefficient) in CUD in individual and joint modalities. However, impairment in internode information
communication was observed in CUD only in joint modalities. These results demonstrate the utility of
multimodal fusion in unearthing latent network patterns which would otherwise be lost if done separately.

Unimodal analysis indicated a reduced contribution of left caudate to inter-modular
communication among the CUD when compared to HC in the fc-fMRI modality. The caudate nucleus, a
part of the striatum, has been described as a core region involved in habit learning, motor behavior, and
compulsive drug-seeking behavior (30). The present findings are in line with previous MRI studies which
have found striatum alteration in CUD patients such as a reduced striatal volume (4,31), morphological
and microstructural changes (32,33), and altered functional connectivity (34–36). A lower inter-modular
communication of the caudate nucleus in CUD may be related to compulsive drug-seeking behavior.
Using graph-theory-based multimodal fusion analysis, we found other subcortical regions appearing in
addition to the caudate nucleus found in the unimodal analysis. The joint components involved subcortical
nodes such as the putamen and thalamus, as well as cerebral cortex such as the anterior/posterior
cingulate, parahippocampus, medial temporal, occipital fusiform gyrus, and cuneal cortex, which are
commonly associated with CUD (2,4,37).

Brain networks of CUD patients revealed a lesser number of shortest pathways via nodes,
reflected by higher betweenness centrality (BC) in fc-fMRI modality (i.e. the contribution rate of nodes in
the information interchange with other nodes). This pattern in BC was observed in the Temporo-occipital
part of the middle temporal gyrus (TO2) in CUD, a region related to multimodal sensory integration (38)
and cognitively implicated in the organization of communicative information (39), emotion recognition,
empathic arousal, and retrieval of relevant schemas (i.e. moral judgments) (40). This region has also been
shown to be impaired in CUD (33,41) and associated with cue reactivity/craving in cocaine and other
SUDs (42–45).

On the other hand, the disruption of the bilateral anterior cingulate gyrus (ACC) in terms of
connectivity has been extensively observed in CUD patients (41,46). In recent years, ACC is considered
one of the main potential biomarkers and targets for brain stimulation treatments, such as repetitive
transcranial magnetic stimulation, due to the strong structural and functional connectivity with the reward
system and executive-salience networks (47,48). As reflected by our results, the disturbances in the
communication of this region could lead to the reorganization of brain networks observed in CUD (48).
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Overall, the higher BC observed in certain regions of CUD patients could be indicative of an alteration in
the organization of the functional networks. While the unimodal analysis did not reveal these functional
changes, the multimodal analysis resulted in identifying these alterations.

Although there have been few studies that have investigated the role of brain regions in
inter-network communication particularly, it is noteworthy that we found a lower participation coefficient
(PC) in the caudate nucleus among the CUD when compared to HC in both unimodal and multimodal
analyses. The reduced participation coefficient displayed by the caudate nucleus along with the posterior
cingulate cortex (PCC) (internally oriented processing), an important region of the default mode network,
suggests a reduced role they both play in inter-module information transfer in CUD when compared to
HC. Previously, Liang et al., (2015) reported a lower PC of both anterior and posterior cingulate cortex in
CUD, and connected with regions associated with executive control network (externally oriented
executive functioning), explaining the cognitive difficulties in these patients (49). Liang et al., also found
a close connection of the caudate nucleus over different brain networks altered in CUD (49,50). Several
studies have highlighted both regions as critical hubs vulnerable to cocaine misuse and other SUDs
(51–53). One of the main reasons may be the high metabolic costs involved in the process of integration
and information exchange within brain networks, both implicated and affected not only in SUD
pathology, but in Alzheimer's-type neurodegeneration, dementia and depression (49).

Limitations

Despite the findings, there are two main limitations in the present study. The first one is the missed
significance in tc-dMRI independent components and the other limitation is related to the lack of
correlation with clinical metrics. The no-group differences in the tc-dMRI modality were observed in
unimodal or multimodal analyses, which could be attributed to metrics based on graph theory, which are
used to detect higher-order relationships in the brain. In both unimodal and multimodal analyses, these
higher-order dependencies were manifested as distinct functional differences. Furthermore, this could also
explain the lack of correlations with clinical measures. In addition, the existence of a subclinical and/or
cognitive profile within the CUD group could also explain the lack of correlations with clinical measures.

Conclusion

In summary, we found unimodal and multimodal cocaine impairment in inter-module communication and
internode exchange communication only in a multimodal manner. Unimodal results show a striatal
decrease in the participation coefficient, but the applied supervised data fusion could reveal other regions
with cocaine-related impairments in joint-functional communication. Further research applying the
combination of modalities is needed to develop better pre-treatment/post-treatment intervention designs
and to provide new insights into the neurobiological mechanisms of CUD.

Data and code availability

The MRI data is available for download at https://openneuro.org/datasets/ds00334679. Please download
the latest available version as there may be updates. Clinical measures are available in Zenodo
https://doi.org/10.5281/zenodo.512333180.

For the code analysis presented here, please check: https://github.com/psilantrolab/
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Supplementary method

Graph measures

Assortativity is the correlation between the degree of a node and the average degree of the node's
neighbors. A positive correlation indicates an assortative network, whereas a negative correlation
indicates a disassortative network. Disassortative networks indicate strong hierarchical configurations.
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ji and ki represent the degrees of the vertices j and k connecting the ith edge, with i = 1,2, ..m; where m is
the total number of edges.

Network efficiency is defined as the average inverse shortest path length in a network. Network
efficiency for a network G is as follows.

𝐸
𝑔𝑙𝑜𝑏𝑎𝑙

(𝐺) =  1
𝑁⋆𝑁−1 ⋆

𝑎≠𝑏∈𝐺
∑ 1

𝐿
𝑎𝑏

is the shortest path between nodes a and b in the network G. N is the total number of nodes in the𝐿
𝑎𝑏 

network.

Modularity (M) is a statistic used to distinguish between the number of intra-module connections
of an existing network and randomly connected edges in a random network; it tells us how good the
clustering is.

Small world index is defined as the ratio of the normalized clustering coefficient and normalized
characteristic path length.
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CC and CPL are the clustering coefficient and characteristic path length of the actual brain network,
whereas CCrand and CPLrand are generated using 100 random networks by the Markov-chain algorithm.
Here Lij is the shortest path between node i and node j.

The hierarchical coefficient (β) quantifies the presence of the hierarchical organization in a
network and Synchronization is defined as the ratio of the second smallest Eigenvalue to the largest
Eigenvalue obtained through the coupling matrix of a network G.

The Betweenness Centrality of a node (v) is defined as the ratio of the number of shortest paths
passing through the node between any two given nodes to the total number of shortest pathsσ

𝑎𝑏
(𝑣)



between the two given nodes . If the betweenness centrality is high, it means the information flowσ
𝑎𝑏

through that node is high.
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The Degree Centrality of a node(v) is defined as the ratio of the degree of the node ( to the𝑑
𝑣
)

maximum possible degree of the node. If the degree centrality of a node is high, it means it is more
central.

𝐷𝑐(𝑣) =
𝑑

𝑣

𝑁−1

Where N is the total number of nodes in the network.

The Participation coefficient of a node(v) reflects the within-module and intermodular
communication.
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is the number of modules, is the degree of a node ‘v’ to the nodes in module ‘s’, , is the total𝑁
𝑠 

𝑑
𝑣𝑠

𝑑
𝑣

degree of node ‘ V ’ is 0 when there are no intermodular connections.

Nodal local efficiency is similar to network efficiency, but it is computed in the neighborhood of
a node.

The clustering coefficient of a node(v) is defined as the ratio of the number of connections
between the neighbors of the node ( to the total number of possible connections among neighbors𝑒

𝑣
) (𝐾

𝑣
)

of the node. If the clustering coefficient of a node is high, it means the neighbors of the node are well
connected. It measures the cohesiveness in a network.
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