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Summary  
Using a large individual-level dataset, we found that a positive association between long-term 

outdoor air pollution and COVID-19 mortality in London did not persist after adjusting for 

confounders including population density, ethnicity and deprivation. 

Abstract  
Background: The risk of COVID-19 severity and mortality differs markedly by age, socio-demographic 

characteristics and pre-existing health status. Various studies have suggested that higher air 

pollution exposures also increase the likelihood of dying from COVID-19.  

Objectives: To assess the association between long-term outdoor air pollution (NO2, NOx, PM10 and 

PM2.5) concentrations and the risk of death involving COVID-19, using a large individual-level dataset.  

Methods: We used comprehensive individual-level data from the Office for National Statistics’ Public 

Health Data Asset for September 2020 to January 2022 and London Air Quality Network modelled air 

pollution concentrations available for 2016. Using Cox proportional hazard regression models, we 

adjusted for potential confounders including age, sex, vaccination status, dominant virus variants, 

geographical factors (such as population density), ethnicity, area and household-level deprivation, 

and health comorbidities. 

Results: There were 737,356 confirmed COVID-19 cases including 9,315 COVID-related deaths. When 

only adjusting for age, sex, and vaccination status, there was an increased risk of dying from COVID-

19 with increased exposure to all air pollutants studied (NO2: HR 1.07 [95% confidence interval: 1.04-



1.12] per 10 μg/m3; NOx: 1.05[1.02-1.09] per 20 μg/m3; PM10: 1.32[1.15-1.51] per 10 μg/m3; PM2.5: 

1.29[1.12-1.49] per 5 μg/m3). However, after adjustment including ethnicity and socio-economic 

factors the HRs were close to unity (NO2: 0.98[0.90-1.06]; NOx: 0.99[0.94-1.04]; PM10: 0.95[0.74-

1.22]; PM2.5: 0.90[0.67-1.20]). Additional adjustment for dominant variant or pre-existing health 

comorbidities did not alter the results. 

Conclusions: Observed associations between long-term outdoor air pollution exposure and COVID-

19 mortality in London are strongly confounded by geography, ethnicity and deprivation. 

 

  



Introduction 
Coronavirus disease (COVID-19), caused by the infectious respiratory SARS-CoV-2 virus, affects 

individuals differently, ranging from asymptomatic to hospitalisation, intensive care, and death. 

Prominent risk factors for severe disease and death include older age and male sex [1], respiratory 

and other pre-existing health conditions [2, 3, 1], as well as socio-economic factors such as increased 

levels of deprivation and non-white ethnicity [1, 4]. Air pollution exposure is also a factor of interest, 

as it has been shown to be pro-inflammatory with impacts on the human immune system that may 

potentially affect infectivity and severity of respiratory disease [5]. 

Research into air pollution and COVID-19 outcomes generally found that greater levels of pollution 

were associated with increased risk of severe disease and COVID-19 death. This has been shown in 

both ecological studies (e.g., [6, 7, 8, 9], reviewed by [10, 11], up to June 2021) and individual-level 

studies [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Individual-level studies can adjust well for factors such 

as age, sex and socio-economic status [22, 6]. Most individual-level studies investigated disease 

severity such as hospitalisation [13, 12, 15, 17, 14, 16, 21, 19], generally identifying increased risk 

levels of ≥13%, in particular for PM2.5 (particulate matter with a small aerodynamic diameter 

(≤2.5μm)), although two studies found a lower or no increased risk [21, 19]. To date, few individual-

level studies have analysed the effect of long-term air pollution on mortality following COVID-19 

disease. These studies again found positive associations [14, 18, 20, 21, 23, 24], albeit of a smaller 

magnitude (≤11% increased risk), except one study, where fully adjusting for confounders removed 

the positive association [19]. 

However, some of these studies included low numbers of cases [12, 14, 16, 19], some did not include 

a sample representative of the entire population [15, 19] or suffered from participation bias [17, 16, 

19], some only investigated one pollutant [20], and some did not adjust for all of the known risk 

factors which include age, sex, ethnicity, deprivation and health comorbidities [13, 12, 14, 18, 21]. All 

of these risk factors have been shown to confound the positive relationship between air pollution 

and COVID-19 mortality [25, 6, 26, 27].  

In this study, we examined the association between long-term ambient air pollution (NO2, NOx, 

PM2.5 and PM10) at place of residence and the risk of death involving COVID-19 in 737,356 confirmed 

COVID-19 cases in London between September 2020 and January 2022 using a unique dataset based 

on the 2011 Census data linked to National Health Service medical care records. 

  



Material and methods 

Study data 
We used data from the Office for National Statistics (ONS) Public Health Data Asset (PHDA). The ONS 

PHDA is a linked dataset combining the 2011 Census, mortality records, the General Practice 

Extraction Service (GPES) data for pandemic planning and research, the Hospital Episode Statistics 

(HES), and national testing data from National Health Service (NHS) Test and Trace, for the clinically 

vulnerable and health care workers (termed ‘pillar 1’) and the general population (‘pillar 2’). To 

obtain NHS numbers for the 2011 Census, we linked the 2011 Census to the 2011-2013 NHS Patient 

Registers using deterministic and probabilistic matching, with an overall linkage rate of 94.6% [28]. 

All subsequent linkages were based on NHS number. 

Study population 
The study population was restricted to usual residents living in London (2011 Census area code 

E12000007) at the beginning of the pandemic, alive as of 1 September 2020, registered with a 

general practitioner, enumerated at the 2011 Census, aged up to 100 years old in 2011 and not in a 

care home in 2019 (7,176,832 records, ~80% of the population of London, with higher coverage in 

older age groups. 

Data were linked to population density data (people per square Km) per Lower layer Super Output 

Area (LSOA, 34,753 in total) recorded mid-2018 and to national testing data from the NHS Test and 

Trace programme [4], including all records of confirmed positive SARS-CoV-2 polymerase chain 

reaction (PCR) or lateral flow tests conducted in hospital or the community. For individuals with 

multiple tests, we took the first positive test record.  

There were 1,398,976 confirmed positive COVID-19 cases in London between 1 September 2020 and 

12 December 2021 (the latest date within our Test & Trace data) (https://coronavirus.data.gov.uk/), 

of which 756,363 (54.1%) were linked to the ONS PHDA. After applying our inclusion criteria, the 

final dataset entered into the analysis contained 737,356 individual records, including 9,315 COVID-

related deaths (~68.2% of all London COVID deaths up until 18 January 2022). The index date is the 

date of the first positive COVID test. The follow-up time was the earliest of: end of study date; death 

involving COVID-19; death from other cause.  

Outcome 
The outcome was death involving COVID-19 (either in or out of hospital), defined as confirmed or 

suspected COVID-19 death as identified by ICD-10 codes U07.1 or U07.2 mentioned anywhere on 

the death certificate.  

Exposure 
The 2016 annual average air pollution concentrations for NO2, NOx, PM2.5 and PM10 were obtained 

from the London Data Store (https://data.london.gov.uk/dataset/london-atmospheric-emissions-

inventory--laei--2016, further details in Supplementary material). At the time of analysis this was the 

latest available data at high spatial resolution (20m) that had already been linked to ONS data. The 

spatial variability in air pollutants across London is relatively stable in recent years. Therefore, the 

2016 data were taken as a reasonable proxy for recent long-term exposure. Hazard ratios (HRs) for 

NO2 are expressed per 10 μg/m3 increase, NOx per 20 μg/m3, PM10 per 10 μg/m3, and PM2.5 per 5 

μg/m3 (following increments used by the European Study of Cohorts and Air Pollution Effects 

(ESCAPE) [29, 30]).  



Covariates 
We included covariates known to be risk factors for COVID-19 [3, 2, 1] and likely to confound the 

relationship between air pollution exposure and risk of death [25, 6, 26, 1, 27]: age, sex, COVID-19 

vaccination status, geographical factors, ethnicity, and socio-economic factors. In an additional 

analysis, we adjusted for non-respiratory pre-pandemic health status, and pre-existing respiratory 

morbidity, which potentially lie on the causal pathway between air pollution and risk of death. 

Details, calculation, and data source of all covariates are detailed in Table 1. 

[PLACE TABLE 1 HERE] 

Both household-level deprivation (2011 Census) and area-level deprivation (English Index for 

Multiple Deprivation 2019 (IMD)) were adjusted and rescaled to exclude the health-related 

components which can be mediating variables in the air pollution-COVID-19 mortality association 

(Supplementary material).  

Pre-existing health conditions were derived from the primary care and hospital data, in a similar way 

to those included in the QCovid risk model [31]. For Body-mass index (BMI) we included a category 

for missing data as 362,298 (47.9%) individuals had no valid value. Dominant COVID-19 variants were 

defined following [32]. 

Statistical analyses 
We estimated the association between air pollution measures and the risk of COVID-related death 

using Cox proportional hazard models, adjusted for potential confounding factors such as age, sex, 

COVID-19 vaccination, geographical, socio-economic, and dominant variant (Table 1). To assess the 

role of each group of confounding factors, we iteratively adjusted for each of these factors. Our 

primary model was adjusted for all confounding factors but not pre-existing health conditions (air 

pollution, age, sex, first vaccination, second vaccination, population density, rural-urban, ethnicity, 

household deprivation, area-level deprivation (IMD), stratified by local authority). 

We also presented the results from a model adjusted for pre-existing health conditions. Whilst these 

could mediate the relationship between air pollution and the risk of COVID-19 death, they may also 

be a confounding factor, since chronic conditions may lead to poverty and therefore influence 

exposure to air pollution.  

Because exposures to the four pollutants are highly correlated, we fitted the series of models 

separately for each pollutant. 

For each pollutant, we additionally ran the primary models with an interaction term each, 

separately, for age, ethnicity and deprivation (i.e., primary model covariants + covariant * pollutant). 

For each interaction model, we applied a log-likelihood ratio test (LLRT) to assess whether adding 

the interaction term improved the model. For variables with significant LLRT statistics, we ran 

sensitivity analyses, repeating the primary models for each variable’s subgroups (for age, binarized 

as below vs. from 65 years old). 

Air pollution concentrations were linked to postcode of residence as at 2011 Census. As these may 

reflect outdated locations, we repeated all primary models using postcodes derived from the 2019 

primary care patient register where available (35% differed from Census records).  

The Cox Proportional Hazard models were performed using the Lifelines package for Python [33]).  

 



Results 

Characteristics of the study population  
The analytical sample consisted of 737,356 individuals with a positive COVID test. They were aged 

10-110 years (mean(SD): 39.4(18.7)), 54.2% were female. The sample included 9,315 COVID-related 

deaths (1.3%) (Table 2).  

[PLACE TABLE 2 HERE] 

Whole-cohort 2016 annual average air pollution levels, median(IQR), were 34.3(6.4) µg/m3 for NO2, 

58.7(16.4) µg/m3 for NOx, 21.5(2.0) µg/m3 for PM10 and 13.0(0.9) µg/m3 for PM2.5. Descriptive 

analyses did not suggest differences in air pollution levels comparing those who died with the 

surviving cohort members (Table 3). Correlations between pollutants were high (Table S1). 

Unadjusted mean air pollutant levels were compared via ANOVAs, showing significant differences 

across geographies, deprivation levels and ethnicities (Table S2). 

[PLACE TABLE 3 HERE] 

Modelling results 
When only adjusted for age, sex, and vaccination status, all four pollutants were associated with an 

increased risk of death involving COVID-19 (Figure 1, Table S3) – results were for NO2 (HR[95% CI]: 

1.07[1.03-1.12] per 10 μg/m3 increase), NOx (1.05[1.02-1.09] per 20 μg/m3), PM10 (1.32[1.15-1.51] 

per 10 μg/m3) and PM2.5 (1.29[1.12-1.49] per 5 μg/m3).  

Results lost statistical significance and were slightly reduced in effect size when also adjusting the 

model for geographical factors (NO2 1.06[0.98-1.15]; NOx 1.04[0.99-1.10]; PM10 1.22[0.95-1.55]; 

PM2.5 1.18[0.88-1.57]). After further adjusting for ethnicity and socio-economic factors, the HRs of all 

four pollutants were close to unity. Results remained null after additional adjustments for (i) 

dominant variant at the time of positive test, stratifying over the three variants; (ii) pre-pandemic 

health status of non-respiratory comorbidities; and (iii) respiratory comorbidities (Figure 1, Table 

S3). 

[PLACE FIGURE 1 HERE] 

We found significant interactions of air pollution with age for all pollutants, and ethnicity for all 

pollutants except NOx (Table S4). The only other significant interaction was household deprivation 

for PM10. We therefore conducted stratified analyses for age (below or from 65 years) and ethnicity 

(using main London ethnic groups of White, South Asian, Black, Other). While no HRs in stratified 

analyses were statistically significant, most were close to unity except for South Asian ethnicity 

where all air pollutants had positive associations with COVID-19 mortality, with the association for 

PM2.5 being HR[95%CI]: 1.40 [0.66-2.95] (Table S5). 

Repeating the primary models using post-codes derived from the primary care patient register 

yielded highly similar main results (Figure S1).  

 

  



Discussion 

Main findings 
In this analysis of almost three quarters of a million individuals in London who tested positive for 

COVID-19, we found that a positive association between long-term exposure to four air pollution 

measures (NO2, NOx, PM10 and PM2.5) and the risk of death involving COVID-19 became null after 

adjustment for geographical, ethnicity and socio-economic differences.  

Comparison with other studies 
Most of the published work on this topic to date, based on both ecological [6, 7, 8, 9] and individual-

level studies [13, 12, 15, 17, 16, 18, 14, 20, 21, 19] found that increased air pollution concentrations 

were associated with worse COVID-19 outcomes. However, there were some indications that 

ethnicity and deprivation [15, 19], as well as comorbidities, can greatly alter the air pollution-COVID-

19 disease relationship [12, 17, 16]. 

Most published studies to date assessed outcomes such as severe symptoms or hospitalisation [13, 

12, 15, 17, 16]. Only a small number of studies have investigated long-term air pollution and COVID-

19 mortality: in Mexico city [18], California [20, 23, 24], New York city (NYC) [14], Canada [21], and 

England  [19]. Their results were mixed. 

Two of these studies did not adjust for ethnicity [18, 21]. The study from Mexico [18] found a 7.4% 

increased risk of dying per 1 μg/m3 increase in PM2.5, with the risk increasing with age. The study 

from Canada [21] only found an association between COVID-19 mortality and O3 (18% increased risk 

per interquartile range increase of 5.14 ppb). 

The other studies did adjust for ethnicity. The study from NYC [14] on a small (N=6,542) but 

ethnically diverse hospitalised cohort found a positive COVID-mortality relationship for PM2.5 (11% 

increase per 1μg/m3 in adjusted models), though not for NO2 or black carbon. There was a trend for 

modification by ethnicity, but in stratified analyses, associations were only statistically significant for 

Hispanic, not for White, Black, or Asian ethnicities, despite reasonably similar air pollution 

concentration distributions. A large-sample study (N=3.1m) from California [20] identified a 3.8% 

increased risk per 1 μg/m3 increase in PM2.5 for their fully-adjusted model (including ethnicity and 

comorbidities). The effect was modified by both ethnicity and deprivation: there was a much greater 

risk for the Hispanic population and for those who were most deprived, though both groups lived in 

areas with greatest long-term PM2.5 exposure. Two other studies from Southern California found 

increased COVID-mortality risks for 1-year average non-freeway near-roadway air pollution (NRAP) 

(10% per 1SD) [23] and PM2.5 (14% per 1SD) [24] that did not interact with ethnicity. The study from 

England [19], covering a mainly White sample (average age 68), found that for PM2.5 and NO2 

positive associations with COVID-mortality remained after adjusting for ethnicity, but disappeared 

once corrected for additional covariates such as deprivation. 

There are differences between the design of our study and other mortality studies. Our study 

covered well over a year of the pandemic, starting after the first wave and including post-vaccine 

availability, whereas several previous individual-level studies covered mainly the first wave [18, 14, 

20]. It is possible that the original Wuhan variant, pre-vaccination, induced more severe illness that 

was resulted in higher susceptibility to adverse effects of air pollution.  

We used administrative test data to identify cases. However, universal availability of free testing in 

the UK and encouragement of case contacts to present for testing through the NHS mean that a 

large proportion of mild cases were detected. In our general-population study we had a COVID-19 



fatality rate of 1.3%. This was higher than the voluntary-sample study in England (0.1%) [19], lower 

than the Mexico study (10-11%) [18], but equivalent to the general-population studies in California 

and Canada [20, 21]. In contrast, the New York study, which only considered patients admitted to 

hospital with COVID-19, had a fatality rate of 31% [14].  

There were differences in confounder adjustments across studies. There is considerable evidence 

that the rate of COVID-19 mortality differs by ethnicity, in the UK and elsewhere [4, 1]. Both 

deprived and ethnic minority areas often experience higher air pollution exposures [34]. It is 

therefore imperative to consider both deprivation and ethnicity in COVID-19 analyses. However, the 

relationship between ethnicity and COVID-19 severity is complex and not only due to correlations 

with socio-economic status – there are documented genetic variants suggested to increase risks of 

COVID-19 severity that are more common in ethnic groups from South Asia [35], East Asia and the 

Americas [36]. 

Strengths and limitations 
The strengths of the current study are its large population size, a general population sample of those 

testing positive in London, and our comprehensive linkage of administrative microdata, including 

Census, hospital and primary care data, and accurate household-level deprivation data. 

Furthermore, in analyses we distinguished between confounding and mediating variables, excluding 

the latter from our main model, and assessing their effect separately.  

Results may not generalise to other geographical areas. The current study covered the area of 

Greater London, with people of different ages, ethnicity and socio-economic background generally 

relatively mixed across the city. Disentangling impacts of these factors can be difficult and London 

suffers to a degree from the ‘Manhattan effect’ (some wealthy areas in the city centre have highest 

levels of air pollution). Further, although the United Kingdom has a free National Healthcare system, 

COVID-19 test uptake is partially biased towards those with severe disease, and also likely influenced 

by occupation and socio-demographic factors [37]. However, we adjusted for both individual and 

area-level deprivation, and ethnicity was determined from Census self-report. 

A further limitation is that some people may have relocated during the study period to a region with 

different air pollution levels, as we use data from the Census 2011. Repeating our analysis using 

2011-2013 primary care registration data did not change the results (Fig. S1). However, there is still a 

possibility that a small number of patients may not have updated their registration data, resulting in 

misclassified location measurements. 

We used the 2016 air pollution average as a proxy for long-term outdoor air pollution, which may 

not capture total exposure. At the time of analysis this was the most recently available 

measurement linked to our datasets. Air pollution levels may fluctuate over time, although the 

spatial distribution will remain relatively similar. Furthermore, other variables, such as occupation, 

place of work and type of daily transport likely contribute to total exposure. We also did not have 

data available to examine the contribution of short-term air pollution, which has been associated 

with increased COVID-19 mortality in other studies [38, 10, 11, 24, 23]. 

Conclusion 
Using linked administrative and health data to identify a large population-based pool of people 

testing positive for COVID-19, we found that initial observed associations between long-term 

outdoor air pollution exposure and the risk of dying from COVID-19 did not persist after adjusting for 

confounding factors, particularly deprivation and ethnicity. Impacts of air pollution on COVID-19 

mortality have been observed in studies in other countries using different study designs and 



adjustment factors. Interpretations include that observed associations with air pollution are due to 

uncontrolled confounding; that close inter-relationships between confounders makes impacts of air 

pollution difficult to detect; and/or that air pollution effects are small in comparison with other risk 

factors such as deprivation and ethnicity. Lowering outdoor air pollution concentrations remains 

important with well-documented impacts on health and mortality, but our study suggests that to 

alleviate the mortality burden of COVID-19, the focus needs to be on improving the lives of those 

with lower socio-economic status and the circumstances in deprived areas [39]. 
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Tables  

  



Table 1. Model and covariate calculation, details and data sources. 

Model name Covariates Categories/Details Source 

Age Age In years at time of positive test; 3rd 
order polynomial 

2011 Census 

+ Sex Sex Male, Female 2011 Census 

+ Vaccination Vaccination 1 At least 14 days < positive test date NIMS*  
Vaccination 2 At least 14 days < positive test date NIMS* 

+ Geo-
graphical 

Population 
density 

People per square Km, 2nd order spline 
cutoff at the 0.99 probability quantile 

mid-2018 LSOA data 

 
Rural/Urban Major Conurbation, City and Town, 

Town and Fringe, Village, Hamlets & 
Isolated Dwellings 

Primary care data 

 
Local authority 
(LA) code 

45 areas, one of which combined 11 
LAs with low variance; Entered as 
stratification variable 

Primary care data 

+ Ethnicity Ethnicity White, South Asian, Black, Other; 
Aggregated from 7 categories 

2011 Census 

+ Socio-
economic** 

Adjusted 
household 
deprivation 

Not deprived, Deprived in 1 domain, 
Deprived in 2 domains, Deprived in all 
domains 

2011 Census 

 
Adjusted IMD 
decile 

1 - most deprived to 10 - least deprived English IMD 2019 

+ Variant Dominant 
COVID-19 
variant 

Unknown (<01-12-2020), Alpha (01-12-
2020 to 16-05-2021), Delta (17-05-2021 
to study end); Entered as stratification 
variable, not included in further models 

*** 

+ Non-
respiratory 
health 

Disability (day 
to day 
activities) 

Limited a lot, Limited a little, Not 
limited 

2011 Census 

 
Learning 
disability 

None, Learning disability, Down's 
syndrome 

Primary care and 
hospital data  

Binary health 
conditions 

Diabetes (none or Type 2), Blood 
cancer, Atrial fibrillation, Congestive 
cardiac failure (CCF), Coronary heart 
disease (CHD), Congenital heart 
disease, Peripheral vascular disease 
(PVD), Chronic kidney disease (CKD, 
none or any stage), Stroke, Dementia, 
Rheumatoid arthritis or systemic lupus 
erythematosus, Liver cirrhosis 

Primary care and 
hospital data 

 
Body-mass 
index (BMI) 

Underweight, Ideal, Overweight, 
Obese, Unknown 

Primary care and 
hospital data 

+ All health Binary health 
conditions 

Respiratory cancer, Asthma, Chronic 
obstructive pulmonary disease (COPD), 
Pulmonary hypertension 

Primary care and 
hospital data 

 

*National Immunisation Management Service (NIMS), **This is our primary model, ***E. Bubb, 

“Coronavirus (COVID-19) Infection Survey Technical Article: Impact of vaccination on testing positive 

in the UK: October 2021,” 2021.  



Table 2. Study cohort and model details. 

Model 
 

Variable Measure/Category COVID-related 
deaths 

Remaining 
cohort 

 Total Count[%] 9,315[1.3%] 728,041[98.7%] 
Age Age Mean[SD] 77.8[12.9] 38.9[18.2] 
Sex Sex Male 56.7% 45.6% 
Vaccination Vaccination 1 Vaccinated 13.2% 27.7% 
 Vaccination 2 Vaccinated 8.9% 21.8% 
Geographical Population 

density 
Mean[SD] 9,639.6[6,291.6] 9,689.3[6,503.0] 

 Rural/Urban Urban 99.7% 99.8% 
Ethnicity Ethnicity White 60.5% 55.8% 
  South Asian 17.4% 17.1% 
  Black 13.0% 12.4% 
  Other 9.1% 14.8% 
Socio-
economic 

Adjusted 
household 
deprivation 

Deprived*  79.6% 61.0% 

 Adjusted IMD Most deprived** 63.9% 61.3% 
Respiratory 
health*** 

Asthma  8.6% 6.1% 

 COPD  11.7% 0.8% 
 Pulmonary 

hypertension 
 3.6% 0.1% 

Non-
respiratory 
health*** 

Disability (day to 
day activities) 

Limited a lot 27.6% 3.3% 

  Limited a little 27.0% 5.0% 
  Not limited 45.5% 91.7% 
 Diabetes Type 2 31.6% 5.8% 
 Learning 

disability 
Any**** 2.6% 0.7% 

 Blood cancer  2.0% 0.2% 
 Atrial fibrillation  12.1% 0.7% 
 CCF  8.8% 0.4% 
 CHD  10.4% 1.0% 
 PVD  2.2% 0.1% 
 CKD  9.9% 0.6% 
 Stroke  6.9% 0.5% 
 Dementia  9.5% 0.3% 
 Arthritis or Lupus   2.0% 0.4% 
 Body-mass index Overweight or 

Obese 
53.7% 31.8% 

 

*Deprived in one or more domains; **Most deprived (deciles 1-5); ***Health variables with 

incidence <1% in both groups are not displayed; ****Learning disability or Down’s syndrome. CCF = 

Congestive cardiac failure; CHD = Coronary heart disease; PVD = Peripheral vascular disease; CKD = 

Chronic kidney disease. 

 



Table 3. Annual average air pollution concentrations at place of residence in 2016 (median[IQR] in 

µg/m3) broken down by variables known to vary with air pollution (geography, ethnicity and 

deprivation). 
 

NO2 
 

NOx 
 

Cohort COVID-
related 
deaths 

Remaining 
cohort 

COVID-
related 
deaths 

Remaining 
cohort 

Category 
    

Major Conurbation (Most urban) 34.0[6.3] 34.4[6.4] 57.8[16.2] 58.8[16.4] 

Hamlets & Isolated Dwellings 
(Most rural) 

24.7[1.2] 26.3[4.4] 36.0[4.0] 40.2[9.8] 

White ethnicity 32.8[6.2] 33.6[6.8] 54.8[15.6] 57.0[17.0] 

South Asian ethnicity 34.9[4.9] 34.8[5.2] 60.2[13.6] 59.8[14.0] 

Black ethnicity 36.1[5.5] 35.5[6.0] 63.4[14.2] 61.6[15.6] 

Other ethnicity 35.0[5.9] 34.7[5.9] 60.2[15.6] 59.8[15.4] 

Deprived in all domains 
(household) 

36.2[5.8] 36.2[6.7] 63.8[15.6] 63.4[17.4] 

Not deprived (household) 33.3[5.5] 33.6[6.0] 56.0[13.8] 56.8[15.0] 

Most deprived (IMD decile 1) 36.4[6.3] 36.1[6.4] 63.6[16.8] 63.2[16.8] 

Least deprived (IMD decile 10) 30.5[4.2] 31.0[4.7] 49.2[10.5] 50.4[11.4] 

 
 

PM10 
 

PM2.5 
 

Cohort COVID-
related 
deaths 

Remaining 
cohort 

COVID-
related 
deaths 

Remaining 
cohort 

Category 
    

Major Conurbation (Most urban) 21.3[2.0] 21.5[2.0] 13.0[0.8] 13.0[0.9] 

Hamlets & Isolated Dwellings 
(Most rural) 

18.4[0.5] 19.0[1.6] 11.5[0.2] 11.8[0.8] 

White ethnicity 21.0[2.0] 21.2[2.1] 12.8[0.9] 12.9[1.0] 

South Asian ethnicity 21.7[1.7] 21.6[1.8] 13.0[0.7] 13.0[0.8] 

Black ethnicity 22.1[1.7] 21.9[1.8] 13.3[0.8] 13.2[0.8] 

Other ethnicity 21.6[1.9] 21.6[1.9] 13.1[0.8] 13.0[0.8] 

Deprived in all domains 
(household) 

22.0[1.7] 22.1[2.2] 13.2[0.8] 13.2[1.0] 

Not deprived (household) 21.1[1.8] 21.2[1.8] 12.8[0.8] 12.8[0.8] 

Most deprived (IMD decile 1) 22.1[1.8] 22.1[1.8] 13.2[0.8] 13.2[0.8] 

Least deprived (IMD decile 10) 20.2[1.5] 20.4[1.5] 12.5[0.6] 12.5[0.6] 

 

  



Figure 1. Hazard ratios (HRs) and 95% confidence intervals (CI) of each air pollution measure in the 

iterative models using 2011 residential address. The variables included in the models from top to 

bottom are subsequently additive, e.g., age, age + sex, age + sex + vaccination, etc. The exception is 

the ‘variant’ model. This model is equal to the previous model plus stratification by the dominant 

virus variant. The subsequent models including ‘health’ do not include this stratification. All models 

including geographical variables are stratified by local authority. *p<0.05, **p<0.01, ***p<0.001. 
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