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Abstract 
Gestational diabetes mellitus (GDM) affects more than 16 million pregnancies annually worldwide and 

is related to an increased lifetime risk of Type 2 diabetes (T2D). The diseases are hypothesized to 

share a genetic predisposition, but there are few GWAS studies of GDM and none of them is 

sufficiently powered to assess whether any variants or biological pathways are specific to GDM. We 

conducted the largest genome-wide association study of GDM to date in 12,332 cases and 131,109 

parous female controls in the FinnGen Study and identified 13 GDM-associated loci including 8 novel 

loci. Genetic features distinct from T2D were identified both at the locus and genomic scale. Our results 

suggest that the genetics of GDM risk falls into two distinct categories – one part conventional T2D 

polygenic risk and one part predominantly influencing mechanisms disrupted in pregnancy. Loci with 

GDM-predominant effects map to genes related to islet cells, central glucose homeostasis, 

steroidogenesis, and placental expression. These results pave the way for an improved biological 

understanding of GDM pathophysiology and its role in the development and course of T2D.  

 

Main text 
Gestational diabetes mellitus (GDM) is a common heritable metabolic disorder characterized by new-

onset glucose intolerance occurring during pregnancy and affecting 7-9% of women in the United 

States1 and 14% of pregnancies globally2. This, combined with adverse maternal and fetal outcomes in 

gestation, and subsequent high risk of maternal metabolic and cardiovascular disease with its 

associated mortality and morbidity, make GDM a major public health concern globally. 

  

Clinically, GDM is related to an increased lifetime risk of Type 2 diabetes (T2D)3-5 – with over a third of 

women developing T2D within 15 years of their GDM diagnosis. GDM also aggregates in families and 

is associated with a family history of T2D6-8. Thus, it has been proposed that both diseases share a 

common etiology and a common genetic predisposition and that GDM would then merely represent a 

perturbation revealing an existing predisposition to T2D9. Yet, few studies have sought to uncover the 

genetic underpinnings of GDM and most of these studies have aimed at evaluating the impact of T2D 

loci10-12. 

  

To date, only three Genome-Wide Association Studies (GWASes) have focused on the genetics of 

GDM13-15. The largest of them with 5,485 cases and 347,856 female controls revealed 5 genome-wide 

significant loci, of which 4 have also been previously associated with T2D15. While the results seem to 

support the hypothesis of shared etiology, none of the studies were sufficiently powered to directly 
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assess the degree to which genetic risk is shared in GDM vs. T2D and whether any variants and 

biological pathways are specific to, or have differential effects in, GDM. 

 

Thus, to elucidate the genetic underpinnings of GDM we conducted a genome-wide association study16 

of GDM in 12,332 cases and 131,109 parous female controls. Participants were of Finnish ancestry 

from the FinnGen study. The association analysis was performed as described in Kurki et al17. Cases 

were identified using Finnish health and population registry sources including registry data from 

inpatient hospitalizations, outpatient specialty clinics, and birth registry. Cases were confirmed to have 

a diagnosis within a pregnancy window and those with diagnoses of diabetes prior to the index 

pregnancy were excluded (Online Methods, Supplementary Note).  

 

Our GWAS nearly tripled the previously known loci for GDM, identifying 13 distinct associated 

chromosomal regions (Figure 1, Supplementary Figures 1-13). Fine mapping18 pinpointed 14 

independent signals (the region near CDKN2A/B containing two independent signals) of which 9 

regions had a 95% credible set containing 5 or fewer SNPs (Table 1, Supplementary Table 1, Online 

Methods). Nine regions represented novel GDM associations not reported in previous GDM GWAS. We 

further characterize the GDM GWAS results through annotation and colocalization of credible sets with 

>3,800 GWAS (Supplementary Tables 2-3), QTLs for gene expression, biomarkers and metabolites 

(Supplementary Tables 4-9), and chromatin interactions (Supplementary Table 10), along with tests of 

enrichment by functional consequence, gene expression, or canonical gene sets (Supplementary 

Tables 11-14; Supplementary Figures 14-17, Online Methods).  
 

We next performed analyses to evaluate the shared genetic etiology with T2D. Assessment of genome-

wide significant signals using our algorithm Significant Cross-trait OUtliers and Trends in JOint York 

regression (SCOUTJOY; Online Methods) indicated that the 13 GDM-associated loci showed 

significant heterogeneity in their relationship to T2D (p< 0.001, Supplementary Table 21). Five of the 13 

GDM-associated loci were not significantly associated (p<5e-8) with T2D in either a previously 

published large T2D meta-analysis19 or in FinnGen, while the remaining loci are established T2D hits 

(Table 1, Supplementary Figure 18). At the genomic level GDM and T2D were genetically correlated 

(rg=0.71, se= 0.06, p=6.8e-37), which is significantly greater than zero (p=6.8e-37) but less than 1 

(p=1.2e-7; Online Methods). Significant genetic correlations were also seen with 12 diseases or traits 

and 8 blood laboratory values in cases where the disorder or value was phenotypically related to GDM 

(Figure 1; Supplementary Figures 19-20, Supplementary Tables 15-19). In both the genomic correlation 

and top hits comparison, GDM was significantly associated with fasting glucose, HbA1C, and 2 hour 
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glucose result on oral glucose tolerance testing but was not associated with fasting insulin level. None 

of these glycemic traits or related disorders, however, appeared to stratify the 13 GDM-associated loci 

into distinct groups similar to T2D (Supplementary Figure 21, Supplementary Table 20).  

 

To explore the relationship between GDM and T2D effects in more detail, we applied a Bayesian 

classification algorithm to the top associations for GDM and top associations for T2D (13 loci for GDM 

and 15 for T2D; Online Methods). The included T2D loci were the strongest signals obtained in a 

GWAS of male FinnGen participants (cases 27,607; controls 118,687) selected to have comparable 

statistical evidence for association (Supplementary Note). We utilized the male T2D scan to avoid 

confounding by sample overlap, though similar T2D results are seen in men and parous and nonparous 

women (Supplementary Note, Supplementary Tables 21 and 23-24, Supplementary Figure 22-24), 

suggesting the comparison is not confounded by overlap or sex-specific effects on T2D.  

 

The shared variants analysis suggested that the genetics of GDM risk falls into two categories, one 

shared with T2D risk and the other uniquely gestational (Figure 2, Supplementary Table 22). 

Specifically, comparison of effect sizes between GDM and T2D does not support the existence of a 

single, consistent relationship between GDM and T2D across loci, but instead proposes two distinct 

classes of significant variants in this scan (Figure 2) – Class G, with GDM-predominant effects, and 

Class T, with T2D-predominant effects with the two-class model of relationship between GDM and T2D 

better fits the observed distribution of ORs by log10(likelihood-ratio) of approximately 30. Class G 

contains 8 of the 13 GDM-associated loci that have GDM-predominant SNP effects with an effect size 

roughly 3 times greater in GDM than T2D (Figure 2, Table 1). In comparison, the GDM-associated 

SNPs contained in Class T had effects in the two disorders that were consistent with T2D-signals 

significantly associated with diabetes only in the T2D GWAS – namely a reduced effect size in GDM 

versus T2D – a pattern of effects that was observed for all SNPs in Class T. The existence of the GDM-

predominant class of effects, Class G, distinct from those traditionally seen in T2D, raises the possibility 

of physiologic mechanisms of glycemic control specifically important during pregnancy (Supplementary 

Note, Supplementary Table 25, Supplementary Figure 25).  

 

As presented in Table 1, the eight class G loci have a peak SNP that is either intronic to a protein-

coding gene, a missense mutation or, a 5’ UTR variant. Although the effects of a locus don't always 

operate through the nearest gene, several of the loci implicate genes involved in plausible cellular 

processes e.g., signal transduction and hormone processing. (Table 1). For example, the missense 

mutation protective against GDM resides in MAP3K15 on the X-chromosome (G838S, 
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chrX_19380197_C_T_b38), which encodes a protein kinase (MAP3K15) that regulates apoptotic-

mediated cell death and stress response. The gene has high expression in the adrenal glands and has 

previously been linked to steroidogenesis20 and polycystic ovarian syndrome21 The GDM-associated 

missense mutation is rare outside of Finland but other rare coding mutations in MAP3K15 have 

previously been associated with T2D in UK Biobank22, i.e. female carriers of such rare nonsynonymous 

variants had a 30% reduced risk of T2D and reduced blood glucose and HbA1C levels, and 

hemizygous male carriers of rare protein-truncating variants had a 40% reduced risk of T2D. Further 

characterization of the GDM-associated mutation by PheWas analyses in FinnGen indicated that the 

mutation is associated with increased risk for hypertension (β = 0.11, p = 2.0e-8), but in contrast, there 

is no association with T2D (β = -0.09, p = 1.8e-3).  

 

Other hormone-related class G signals include a variant mapping to the 5’UTR of the estrogen receptor 

gene, ESR1, and a variant nearby PCSK1, a gene encoding for prohormone convertase 1/3, which 

critically regulates endocrine and neuronal prohormone processing. Previous data show that 

homozygous loss of function of PCSK1 results in a generalized and pleiotropic prohormone conversion 

defect characterized by severe obesity, impaired adrenal and thyroid function, reactive hypoglycemia, 

elevated levels of proinsulin, and low levels of insulin23, whereas common gene variants have been 

associated with BMI24, fasting proinsulin, fasting glucose, and T2D. Interestingly the GDM-associated 

allele identified in our study is associated with lower BMI (β = -0.02, p = 5.3e-11), lower weight (β = -

0.02, p = 5.3e-11), and lower height (β = -0.01, p = 3.9e-6).  

 

Finally, to gain further insight into potential functional differences between GDM and T2D we examined 

the cell type specific expression patterns associated with the GWAS summary statistics25 (Figure 3, 

Online Methods, Supplementary Tables 26-29, Supplementary Figures 26-28). We evaluate cell-type 

specific enrichment despite the lack of significant tissue-level enrichment because pregnancy induces 

major adaptive changes to specific cell populations within maternal tissues that might not be reflected in 

bulk tissue expression. Analyses integrating multiple large single cell RNA expression datasets 

indicated that pancreatic β cells are significantly associated both with GDM and T2D. However, only 

GDM had significant associations with the hypothalamus, i.e., hypothalamic GABAergic neurons 

(GABA2), hypothalamic glutaminergic neurons (GLU7), and neurons in the VMH arcuate nucleus 

(NR5a1_Adcyap1; Figure 3; Supplementary Table 28). 

 

Taken together, in this paper we present data from the largest GDM GWAS to date, identifying 14 

independent signals in 13 associated chromosomal regions. GDM is a common disorder of pregnancy 
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that has significantly increased in prevalence in all racial and ethnic groups in the last 15 years26. 

Despite conferring substantial morbidity to both mother and child, relatively little is known about the 

genetics of GDM outside of a proposed shared genetic etiology with T2D. Our key finding is that GDM 

in fact has a partially distinct genetic etiology, i.e., while GDM and T2D in part share a polygenic 

predisposition, there is a second category of GDM genetic risk factors that are predominantly 

gestational contributors to disease. This contextualizes the substantial effect of the MTNR1B, which 

had been reported previously as an outlier11, but our data now show that MTNR1B is representative of 

a whole group of GDM-predominant loci, characterized by a 3 times larger effect on GDM than on T2D. 

 

Further studies will be required to characterize the precise GDM-specific molecular effects, but our 

current results suggest plausible mechanisms related to maternal adaptive physiological responses to 

pregnancy. Broadly, pregnancy increases circulating gestational hormones (e.g., human placental 

lactogen progesterone, and estrogen) causing alternations in normal homeostatic glycemic pathways in 

the brain and pancreas as well as impaired insulin sensitivity in maternal peripheral tissues. The brain 

and pancreas both show clear enrichment of signal in our cell-type specificity analysis of GDM, with our 

results in brain showing specific associations with hypothalamic and arcuate (ARC) neurons in GDM 

that are not seen in T2D (Figure 3, Supplementary Tables 26-28). Hypothalamic and ARC neurons 

have been implicated in adaptive glycemic response during pregnancy27. In that context, our ESR1 

locus is particularly interesting given that the ventromedial hypothalamus (VMH) contains glucose-

sensing neurons that express the estrogen receptor-α (ERα, encoded by ESR1) and act to regulate 

glucose levels28. Moreover, ERα neurons in the ARC have altered expression of several of our class G 

genes (e.g. PCSK1, MTNR1B, SPC25) in response to ERα knockout or perturbation of estrogen levels 

(which occurs in pregnancy)29. The involvement of these cells in GDM is further supported by our cell-

type specificity results highlighting Nr5a1_Adcyap1 in ARC which project from the VMH30 and appear to 

correspond to a similar gene expression pattern to Glu731 in our conditional analysis (Supplementary 

Figure 27, Supplementary Table 28, Supplementary Note). In contrast, while pregnancy is 

characterized by impaired insulin sensitivity and some of our class G genes (e.g. PCSK1 and MTNR1B) 

affect insulin biosynthesis and secretion32,33, no evidence of a genetic relationship between GDM and 

insulin levels is observed either in top hits or genome-wide at the current sample sizes. Nonetheless, 

given the complexity of GDM the limited sample size of our dataset allows us to glean insight into only a 

few potential mechanisms. Much larger studies are warranted for a comprehensive view of the overall 

in-depth molecular underpinnings of GDM susceptibility. 
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The current study design in the rather homogeneous Finnish population carries specific strengths and 

weaknesses associated with this analysis approach. On one hand GWAS discovery is enhanced by 

population homogeneity17 and the linkage of national birth, inpatient and outpatient medical registries 

enables robust phenotyping (see Online Methods). The generalizability of the results may suffer 

however as some detected loci may be for rare alleles specifically enriched in the Finnish population. In 

our analyses of GDM two loci mapped to rare alleles enriched in Finland, which may be difficult to 

replicate elsewhere, while 70% of the loci correspond to variants that are common (MAF>10%), in non-

Finnish European ancestry individuals (Table 1). Nonetheless, additional studies prioritizing ancestrally 

diverse populations are needed for a better understanding of the genetic underpinnings of GDM in all 

populations at risk.  

 

In summary, we discovered 9 novel loci associated with GDM and demonstrate that GDM genetic risk 

is distinct from T2D both at the locus and genomic scale. Our results suggest that the genetics of GDM 

risk falls into two categories – one part T2D risk and one part predominantly gestational contributors to 

disease. Tissue characterization of GDM genetics further implicates tissues previously identified in 

adaptive pregnancy responses, raising hypotheses regarding genetic effects in these tissues during 

pregnancy. Broadly this work underscores the benefits of focusing on resources on disorders of 

pregnancy as pregnancy is a natural perturbation that offers leverage to discover loci with novel 

physiologic mechanisms of glycemic or homeostatic control. 
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Methods 
Cohort 
The FinnGen Study is a public–private partnership project combining data from Finnish biobanks and 

electronic health records from national registries. The linked national health registers include data on 

hospital and outpatient visits, primary care, cause of death, and medication records. Approval from the 

FinnGen Study was received to use the data in the present work. After a 1-year embargo, the FinnGen 

summary stats are available for download. In this study, we used the results from the FinnGen release 

R8, which includes data from 342,499 individuals and more than 4500 disease endpoints. 

  

Phenotyping 
Full details of phenotyping are described in the Supplementary Note. Briefly, clinical endpoints with 

corresponding dates were constructed for gestational diabetes and related diagnoses for exclusions for 

all FinnGen participants as described in the Supplementary Note. Temporal phenotyping was then 

performed to phenotype each pregnancy for presence of glycemic disease and then assign individuals 

as cases or controls. Beginning with 330,000 pregnancies among genotyped FinnGen participants, we 

defined a “pregnancy window” of 40 before delivery until 5 weeks after delivery. A pregnancy met 

inclusion criteria for “gestational diabetes” if it had (I1) gestational diabetes ICD codes occurring in the 

pregnancy window, (I2) any diabetes codes occurring in the pregnancy window (e.g. for ICD8), or (I3) 

abnormal blood glucose test results in the Medical birth register, which contains data on the mother’s 

diseases during pregnancy. Pregnancies were then excluded for: (E1) any previous diabetes diagnosis 

code occurring outside a pregnancy window; (E2) any previous significant pancreatic disease, including 

chronic pancreatitis, pancreatic necrosis, pancreatic cancer, or cystic fibrosis; or (E3) any previous 

Type 1 or Type 2 diabetes code. Pregnancies passing these exclusion criteria and without any inclusion 

criteria for gestational diabetes were designated as “unaffected”. Then to phenotype individuals, cases 

were identified among the 151,000 genotyped females with a history of pregnancy as those at least 1 

pregnancy meeting inclusion criteria for gestational diabetes and passing exclusion criteria. Controls 

were defined as females with only “unaffected” pregnancies (i.e. no diabetes or significant pancreatic 

diseases occurring prior to or during any pregnancy, and no abnormal blood glucose in the Medical 

birth register). 

 

Genotyping and GWAS 
A detailed description of the study design and analytical methods are available in the online 

documentation. 
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In brief, FinnGen individuals have been genotyped with Illumina and Affymetrix chip arrays. QC was 

performed to remove samples and variants of poor quality. Imputation was performed using population-

specific SISu v3 importation reference panel. 

A subset of unrelated individuals of genetically confirmed Finnish ancestry was identified. GWAS was 

performed using REGENIE 2.2.4. Sex, age, 10 PCs, and genotyping batch were included as covariates 

in the analysis. 

  

Finemapping 
Finemapping of a 1.5MB locus around any GWAS lead SNP was performed using the SuSiE 

algorithm18 which reports causal variants and a 95% credible set for each independent signal. Details 

described previously17 and here, https://finngen.gitbook.io/documentation/methods/finemapping.  As LD, 

we used in-sample dosages (i.e cases and controls used for each phenotype) computed with LDStore. 

Independent signals were those that either represent the primary strongest signal with lead p< 5*10-8 

or as secondary signals that must have genome-wide significance and log bayes factor (BF)>2. 

  

Annotation 
Variants were annotated with Ensembl Variant Effect Predictor (VEP) version 104, 

(https://www.ensembl.org/info/docs/tools/vep/index.html) data to give the projected variant consequence. 

Each variant was also annotated for enrichment in Finland compared to compared to non-Finnish-

Swedish-Estonian Europeans, as described previously17. Annotation with known prior GWAS loci was 

performed as previously described17. In brief, for each independent association we annotated every 

phenotype in GWAS Catalog that was significantly associated with either (1) the lead PIP variant or (2) 

any variant in the credible set. Similar annotation was performed for metabolite associations from the 

MetSIM study34 (Supplementary Note). Each locus was also annotated with SNP2GENE in FUMA 

version v1.3.7 (fuma.ctglab.nl/snp2gene/) for chromatin interactions (Supplementary Table 10), eQTL 

associations (Supplementary Table 4), and prior GWAS hits (Supplementary Table 3). 

  

Colocalization 
Colocalization was performed on all fine mapped regions as previously described for the FinnGen 

study17. In brief, the probabilistic model to intergrate GWAS and eQTL data was eCAVIAR35 however 

the input posterior inclusion probabilities (PIP) estimated by the SuSiE algorithm18. The eCAVIAR 

method uses PIPs for variants in each region to compute a colocalization posterior probability (CLPP, 
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see Supplementary Note). The intersection of variants in credible sets was then checked across 

multiple phenotypes from FinnGen (Supplementary Table 2), GTEx (Supplementary Table 5), eQTL 

Catalogue (Supplementary Table 6), GeneRisk (Supplementary Table 7), and the UK Biobank 

(Supplementary Table 8).  

 

Gene enrichment analysis 
Gene-level association results from MAGMA were used to identify tissue and pathway enrichments 

using the SNP2GENE and GENE2FUNC modules of FUMA (version v1.4.1). The MAGMA results were 

tested for (a) association with gene expression levels in GTEx v8 (Supplementary Table 12, 

Supplementary Figure 14), (b) enrichment in sets of differentially expressed genes identified across 

tissues from GTEx v8 (Supplementary Table 13, Supplementary Figure 15), (c) enrichment in gene sets 

for pathways or other biological processes including those defined by KEGG (MsigDB c2), GO 

biological processes (MsigDB c5), or WikiPathways (Supplementary Table 14), and (d) enrichment in 

gene sets defined by reported associations in GWAS Catalog (Supplementary Table 14, 

Supplementary Figure 17). 

 

Genetic correlation 
We estimated the SNP heritability (ℎ2

SNP) of GDM and pairwise genetic correlations (SNP-rg) between 

GDM and diabetes-related diseases and traits using LDSC Version 1.0.1. Testing difference of 𝑟! from 

perfect correlation was performed using a one tailed Z-score test: 

𝑍 =
1 − 𝑟!
𝑠𝑒)𝑟!*

	 

See Supplementary Note for details on additional genetic correlation analyses. 

Significant Cross-trait OUtliers and Trends in JOint York regression (SCOUTJOY) 
To compare heterogeneity of GDM-associated loci's genetic effects in any two disorders we developed 

SCOUTJOY (Supplementary Note), extending the heterogeneity detection algorithm introduced by MR-

PRESSO36 to handle sample overlap and estimation error in GWAS of each phenotype. To estimate 

the primary relationship in effect sizes between the two disorders while accounting for estimation error 

we derive estimators for York regression37 with a fixed intercept. Global heterogeneity testing was then 

performed using simulated null replicates to test the hypothesis that the observed effect sizes across 

top hits are consistent with a single uniform relationship. Outlier variants were similarly identified as 

having larger than expected residuals from the York regression. We extend this outlier detection 
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method from MR-PRESSO to allow iterative assessment of each variant based on the outlier status of 

all other variants. Code for SCOUTJOY and York regression with a fixed intercept is available on github 

(link to be provided on acceptance). 

 

 

Shared variants analysis 
We applied linemodels package (https://github.com/mjpirinen/linemodels) to summary statistics from 

T2D GWAS and GDM GWAS. The analysis included 28 lead variants from the GWASes (13 from GDM 

and 15 from T2D). We classified the variants into two classes based on their bivariate effect sizes. The 

classes were represented by line models whose slopes were estimated using an EM-algorithm, 

resulting in values 1.53 (labelled as class T) and 0.25 (labelled as class G). For both models, the scale 

parameters determining the magnitude of effect sizes were set to 0.2 and the correlation parameters 

determining the allowed deviation from the lines were set to 0.99. The membership probabilities in the 

two classes were computed separately for each variant by assuming that the classes were equally 

probable a priori. Since the two GWAS did not have overlapping samples, the correlation of their effect 

estimators was set to 0. 

 

Cell type specificity analyses 
To get better resolution on specific cell types, we performed cell-type specificity analyses with high 

quality single cell murine datasets using FUMA (https://fuma.ctglab.nl/tutorial#celltype; Supplementary 

Note). First, we identified tissue-level associations with Tabula Muris data38 identifying significant 

associations (FDR < .05) with expression in brain and pancreas after Benjamini-Hochberg multiple 

testing correction (Supplementary Figure 27). We then performed cell-type specificity analyses as 

previously described25, augmenting Tabula Muris with additional high quality scRNA-seq of 

hypothesized involved brain regions (Supplementary Note). Analysis was performed on genetic 

summary statistics for both our Gestational Diabetes GWAS and for a recent Type 2 Diabetes 

European meta-analysis dataset19. We also compare the pancreatic results to analysis of high quality 

scRNA-seq of pancreas in humans to assess the impact of known differences in human vs. mouse 

pancreatic cellular function and physiology (Supplementary Table 29, Supplementary Figure 28).  

 

Ethics statement 
 

Patients and control subjects in FinnGen provided informed consent for biobank research, based on the 

Finnish Biobank Act. Alternatively, separate research cohorts, collected prior the Finnish Biobank Act 
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came into effect (in September 2013) and start of FinnGen (August 2017), were collected based on 

study-specific consents and later transferred to the Finnish biobanks after approval by Fimea, the 

National Supervisory Authority for Welfare and Health. Recruitment protocols followed the biobank 

protocols approved by Fimea. The Coordinating Ethics Committee of the Hospital District of Helsinki 

and Uusimaa (HUS) approved the FinnGen study protocol Nr HUS/990/2017. 

 

The FinnGen study is approved by Finnish Institute for Health and Welfare (THL), approval number 

THL/2031/6.02.00/2017, amendments THL/1101/5.05.00/2017, THL/341/6.02.00/2018, 

THL/2222/6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/2019, Digital and population data 

service agency VRK43431/2017-3, VRK/6909/2018-3, VRK/4415/2019-3 the Social Insurance 

Institution (KELA) KELA 58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 98/522/2019, 

and Statistics Finland TK-53-1041-17. 
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Tables 
Table 1: 14 genome-wide significant fine-mapped signals for GDM.  
 

 Region Lead variant Ref/Alt AF Beta (SE) p 
Nearest 

gene Mutationa 
Cred. 
sizeb pClassGc Knownd 

ClassG Loci - GDM-predominant effect          

 2:27508073-27519736 rs780093 T/C 0.649 0.12(0.0149) 6.75E-16 GCKR intron 3 0.995 T2D 

 2:16890084 rs1402837 C/T 0.17 0.11(0.0186) 3.87E-09 SPC25 intron 1 0.981  

 5:96357306-96392261 rs1820176 T/C 0.314 -0.14(0.0154) 7.86E-20 PCSK1 intron 26 >0.999  

 6:151805650 rs537224022 C/G 0.00984 -0.447(0.0812) 3.82E-08 ESR1 5' UTR 1 0.999  

 11:92975544 rs10830963 C/G 0.358 0.403(0.0143) 8.65E-175 MTNR1B intron 1 >0.999 GDM,T2D 

 12:97449565-97470365 rs74628648 C/T 0.0786 -0.169(0.027) 4.03E-10 NEDD1 intron 15 0.978 T2D 

 16:81488676 rs2926003 C/T 0.337 -0.0824(0.0151) 4.52E-08 CMIP intron 48 0.987  

 X:19266251-19485409 rs56381411 C/T 0.0153 -0.404(0.0638) 2.44E-10 MAP3K15 missense 4 >0.999  

ClassT Loci - T2D-predominant effect          

 6:20673649-20703721 rs34499031 T/TAA 0.332 0.12(0.0148) 5.10E-16 CDKAL1 intron 8 <0.001 GDM,T2D 

 10:112994312-113014674 rs34872471 T/C 0.203 0.168(0.0173) 1.69E-22 TCF7L2 intron 4 <0.001 GDM,T2D 

 12:4275678-4367206 rs76895963 T/G 0.0305 -0.26(0.0445) 4.69E-09 CCND2 intron 2 <0.001 T2D 

Unclassified Loci           

 3:123346931-123405666 rs6798189 G/A 0.184 -0.103(0.0186) 2.60E-08 ADCY5 intron 16 0.138 T2D 

 9:22129580-22136490 rs1333051 A/T 0.115 -0.126(0.0228) 2.92E-08 CDKN2B regulatory 5 0.465 GDM,T2D 

 9:22133646-22134652 rs7019437 C/G 0.438 0.0394(0.0142) 5.49E-03 CDKN2B intergenic 5 n/a  

 

For each independent association identified by finemapping with SuSiE, the lead variant (highest 

posterior inclusion probability [PIP]) and the region spanned by the credible set is reported. Loci are 

grouped according to their classification in the shared variants analysis (Online Methods, 

Supplementary Table 22). Genomic positions are on GRCh38. Reference (ref) and alternative (alt) 

alleles, alternative allele frequency (AF), GWAS results, and nearest coding gene are given for the lead 

variant. β (log odds ratio), its standard error (SE), and corresponding two-sided Pare from logistic 

regression using REGENIE. aMost severe annotated consequence among variants in the credible set. 
bNumber of variants in the credible set for the region. cPosterior probability that the lead variant is in the 

GDM-predominant class identified in the shared variants analysis. The secondary finemapped 
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association on chromosome 9 (rs7019437) was omitted from that analysis. dWhether the locus has 

been reported as significantly associated with GDM or T2D in previous GWAS15,19,39.   
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Figures 
A. 

 
 B. 

 
Figure 1: Genome-wide association results for GDM.  
(A) Manhattan plot of GWAS of GDM in 12,332 cases and 131,109 parous female controls of Finnish 

ancestry. The x-axis reflects chromosomal positions and the y-axis reflects −log10(P) values for the 

two-tailed association test for each variant, presented on a log scale. Red dotted line indicates the 
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significance threshold (P = 5 × 10−8). Colored SNPs represent the credible set members for the 13 

genome-wide significant loci, with blue indicating loci previously associated with GDM and orange 

indicating novel associations. Labels indicate the gene nearest to the fine-mapped lead SNP. (B) 

Genetic correlations (SNP-rg) between GDM and other diseases, traits and biomarkers estimated using 

LD score regression. Depicted traits are significant after Bonferroni correction for 53 traits (p < 9.4e-4); 

results for all tested traits are reported in Supplementary Tables 15-16. Error bars show +/- 1 standard 

error. Colors indicate phenotype category. 
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Figure 2: Classification of the genetic effects of SNPs in GDM and T2D.  
Comparison of log odds ratios in GWAS of GDM (x-axis) and T2D in males (y-axis) for top-

associated SNPs from GDM (13 SNPs) and (15 SNPs). Two distinct classes of SNP effects 

were identified by a Bayesian classifier in shared variants analysis: Class T (blue) containing 

SNPs with T2D-predominant genetic effects and Class G (red) with GDM-predominant effects 

(Supplementary Table 22). Grey SNPs were not confidently assigned to either class (posterior 

probability > 95%). Dotted ellipses indicate the 95% probability regions of the fitted bivariate 

effect size distributions with each class. 
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Figure 3: Cell type specificity analysis of GDM and T2D highlights different cell 
associations.  

Cell type specificity analysis was performed for GDM and for prior meta-analysis of T2D from 

Mahajan et al.19 using high quality murine single-cell RNA-seq datasets with FUMA 

(Supplementary Tables 26-29). Unadjusted P-values are reported for the association between 

relative gene expression in the given cell type and MAGMA gene-level associations in the 

GWAS. Results are shown for cell types that both (a) are significantly associated with at least 

one GWAS after correction for multiple testing of all cell types in all datasets, and (b) have 

putatively independent association conditional on other cell types in the same RNA-seq dataset. 

Colors indicate RNA-seq dataset source and significance. 
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