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ABSTRACT 

Objective: To describe the reusable transformation process of electronic health records (EHR), claims, and 

prescriptions data into Observational Medical Outcome Partnership (OMOP) common data model (CDM), together 

with challenges faced and solutions implemented. 

Materials and Methods: We used Estonian national health databases that store almost all residents' claims, 

prescriptions, and EHR records. To develop and demonstrate the transformation process of Estonian health data to 

OMOP CDM, we used a 10% random sample of the Estonian population (n = 150,824 patients) from 2012-2019. 

For the sample, complete information from all three databases was converted to OMOP CDM version 5.3. The 

validation was performed using open-source tools. 

Results: In total, we transformed over 100 million entries to standard concepts using standard OMOP vocabularies 

with the average mapping rate 95%. For conditions, observations, drugs, and measurements, the mapping rate was 

over 90%. In most cases, SNOMED Clinical Terms were used as the target vocabulary. 

Discussion: During the transformation process, we encountered several challenges, which are described in detail 

with concrete examples and solutions. 

Conclusion: For a representative 10% random sample, we successfully transferred complete records from three 

national health databases to OMOP CDM and created a reusable transformation process. Our work helps future 

researchers to transform linked databases into OMOP CDM more efficiently, ultimately leading to better real-world 

evidence. 

BACKGROUND AND SIGNIFICANCE 

While randomized controlled trials are the gold standard for causative clinical studies, generating real-world 

evidence (RWE) from routinely collected real-world health data (RWD) has gained more and more attention in 

recent years as it provides information about a broader patient population in a less controlled environment when 

compared to the clinical trials, and it better reflects what is actually happening in the clinical practice[1–3]. RWD 
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can be used for a large variety of studies – for example, for the scientific evaluation of usage, effects, potential 

benefits, and risks of a medical product[3], drug adherence, health and treatment patterns, treatment guidelines[4].  

To generate high-quality RWE, diverse RWD from different healthcare settings and geographical locations 

integrated into data networks are needed[1]. Still, linking different real-world datasets and conducting multi-

database studies to produce high-quality RWE is a challenging task. It has been shown that many of the problems 

could be solved by using a single common data model for all datasets[5–7]. This would improve not only the quality 

of the outcome but also their acceptability in decision-making[6]. In recent years, there has been an increasing 

interest in transferring health data to the Observational Medical Outcome Partnership (OMOP) common data model 

(CDM)[8,9], which offers a standardized vocabulary and structure, improving the interoperability between 

databases. Moreover, several open-source software solutions have been developed to support the transformation and 

analysis process[10]. This all supports the transformation process of health data to OMOP and could be considered 

one key reason why OMOP has become increasingly popular. 

Previous research has described the successful transformation of data to OMOP CDM, which originate from 

different sources like biobanks[11], national databases, and registries[12–14], hospital databases[15–18], 

questionnaires[19], cohort studies[20–22]. Some studies focus on specific conditions or some part of a 

database[12,13,16,17,19,21] while others transfer whole databases with different diagnoses, drug adherence or 

health care procedures[11,15,20]. Despite the existing research, it has been stressed that continued sharing of 

experiences, methodologies, and challenges of the data transformation process to OMOP is needed as it helps to 

develop the transformation process and foster collaboration[21,23]. 

Today OHDSI network includes more than 453 databases mapped to the OMOP CDM[10], and an initiative to 

establish a federated network of OMOP healthcare datasets across Europe has been coordinated and partly funded in 

the European Health Data & Evidence Network (EHDEN) project[24]. However, the geographic distribution of 

OMOP datasets is uneven as the real-world datasets from Eastern European countries are much less represented than 

Western countries, leading to gaps in real-world evidence from these regions[25]. In addition, the number of datasets 

that contain data from several healthcare settings is small. However, in most clinical and epidemiological studies, 

information from electronic health records (EHR), claims, pharmacies, etc., is needed. 
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To the best of our knowledge, there is a lack of studies describing the integration process of claims data, electronic 

health records, and prescriptions data into a single complete patient-centered view. In Estonia, three separate 

national electronic health databases store such information separately. These databases use different coding systems 

and structure which have hindered the co-use of these databases. To address these issues, we developed a reusable 

process to transform these three separate electronic health databases into a single coherent patient centric OMOP 

CDM. The current paper describes the transformation process, challenges faced, and solutions implemented. 

METHODS 

Data sources 

Estonia is a small country in Northern-Eastern Europe with a population of 1.3 million consisting primarily of 

Estonians (70%). It is mandatory for all healthcare providers in Estonia to use three central operational health 

databases to enable easy data exchange between the institutions and interoperability. These databases cover clinical 

information from almost all healthcare settings (hospitals, specialists, family doctors, labs, pharmacies). Data could 

be potentially linked using personal identification codes provided to all residents. The main content and 

terminologies used in the databases are described in Table 1. There is some difference between the databases in the 

data coverage. Electronic health records (EHR) store data from all private and state-owned healthcare providers for 

insured and uninsured people, while health insurance claims include about 95% of the Estonian population who have 

public insurance[26]. Using the claims database is mandatory for reimbursement. All prescription drugs are 

prescribed digitally and stored in the corresponding database[27]. None of the health datasets is the primary source 

for death information (we were not allowed to use death registry data in this work), containing deaths related to 

healthcare services only (67%). 

 

Table 1. National health databases in Estonia 

Data source Content Terminologies 

Electronic health records 
(EHR) 

● inpatient and outpatient case 

summaries (including medical 

• ICD-10 diagnosis codes 

• SNOMED CT or local codes 
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history, lab tests, and their 

results, procedures, drugs, and 

allergies) 

● referrals and their responses 

 

for procedures and results 

• LOINC codes for lab tests 

• TNM codes and cancer stages 

• Other terminologies used in 

free text parts of clinical notes 

 

Drug prescriptions ● product name and code  

● ATC code 

● amount 

● administration guidelines 

● purchase date and location 

● the healthcare provider who 

issued the drug  

● ICD-10 diagnosis 

● ATC codes 

● Local drug product codes 

● ICD-10 diagnosis codes 

Health insurance claims ● diagnosis codes 

● services provided (e.g., 

admissions, lab tests, 

procedures, drug 

administrations) 

● surgical procedures conducted 

● ICD-10 diagnosis codes 

● Local service codes 

● NCSP codes 

ATC - Anatomical Therapeutic Chemical classifications; ICD-10 - International Classification of Diseases 10th revision; LOINC 

- Logical Observation Identifiers Names and Codes; NCSP - Nordic Medico-Statistical Committee Classification of Surgical 

Procedures; SNOMED CT - SNOMED Clinical Terms; TNM - Classification of Malignant Tumors 

 

 

Data from these three health databases complement each other; thus, linking adds additional value and improves the 

data quality. For example, health insurance claims provide information on which services (e.g., lab tests) have been 
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provided, while further details of these services (e.g., the results of the tests) can be found in EHR. The drug 

prescription database does not contain information for over-the-counter medications where no prescription is needed 

(for example, paracetamol) or inpatient medications, but such information can be sometimes found in free text in 

EHR. At the same time, diagnoses, drugs, and procedures may be recorded in multiple source datasets, which adds 

complexity to the linking of health data. The drawback of EHR is its lower quality as the information is partially 

recorded in a semi-structured or free-text format (e.g., the weight or blood pressure of the patient is given in clinical 

notes) which is challenging to use in automated analysis. Also, case summaries in EHR contain only the most 

relevant information but may miss other tests or services conducted on a patient. 

 

Carrying out an epidemiological study in Estonia requires obtaining approval from an ethics committee, followed by 

the collection of necessary data, typically from all three databases. To develop and demonstrate the transformation 

process of Estonian health data to OMOP CDM, we used a 10% random sample of the Estonian population (n = 

150,824 patients) from 2012-2019 (Figure 1). For the sample, complete information from all three databases was 

extracted. This work was approved by the Estonian Bioethics and Human Research Council (EBIN, no. 1.1-12/653). 

Extract, transform, and load process 

We transformed source data to the OMOP CDM version 5.3, which includes 15 clinical data tables for storing 

patient demographics and clinically relevant information. The transformation process had three main stages: first, 

creating the mapping between source and OMOP vocabularies; second, coming up with the technical 

implementation around the mapping process, starting with data extraction from source databases and ending with 

loading the data into the target database (extract, transform, load, ETL); and finally, validating the transformation 

results (Figure 2). 

Mapping source vocabularies to OMOP vocabularies 

Three source datasets (EHR, prescriptions, claims) used different terminologies to represent clinical events, and 

thus, they were all mapped to standard OMOP vocabularies. The standard vocabularies which are used in OMOP for 

medical information are SNOMED Clinical Terms (CT), RxNorm[28], Logical Observation Identifiers Names and 

Codes (LOINC), Unified Code for Units of Measure (UCUM), and OHDSI community-developed vocabularies 
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(Cancer Modifier, OMOP Extension, and RxNorm Extension). As for non-standard vocabularies, two approaches 

were used. Where mappings between non-standard and standard vocabularies (e.g., from International Classification 

of Diseases 10th revision ICD-10 to SNOMED CT) already existed in the OHDSI vocabularies repository 

Athena[29], the existing mappings were used. Otherwise, manual mapping was performed, prioritizing the most 

frequent and essential terms for the planned research studies. For manual mapping, we used the Usagi[30] tool, an 

application provided by the OHDSI community to help create mappings between non-standard source concepts and 

standard concepts. Manual mappings were validated by medical specialists. Next, we give a more detailed overview 

of the mapping process based on different source codes in our databases. 

 

The diagnosis codes in all three data sources were in ICD-10 format and were mapped to the OMOP vocabulary 

using the available mappings in Athena. 

 

Lab tests from EHR were encoded using LOINC codes. As LOINC codes are standard in the OMOP vocabulary, no 

additional mapping was required. However, we needed additional mappings for lab test results. In cases where lab 

test results were presented as text (e.g., “negative” or “positive”), these were standardized, and the appropriate 

answer was determined based on the corresponding LOINC code. If a LOINC answer code was not present in the 

OMOP LOINC vocabulary or was determined to be invalid, a mapping to SNOMED CT was created.   

 

To convert Anatomical Therapeutic Chemical classifications (ATC) codes to RxNorm, we used the standard ATC-

to-RxNorm mapping available in Athena. However, as ATC codes provide information at the ingredient level and 

do not include information about strength or drug form, we also used Estonian-specific drug product codes to 

manually map source data to the RxNorm clinical drug level (ingredient, their strength, and form). If a drug product 

code could not be mapped, the ATC-to-RxNorm mapping was used instead. 

  

The service codes are used on claims for administrative purposes. These are Estonian-specific codes, and the 

previous mapping to OMOP vocabularies was unavailable. These codes are divided into subgroups which include 

similar services, such as visits, procedures, surgeries, measurements without results, and drugs (e.g., specific cancer 

or hospital-given drugs). To map these codes to OMOP vocabularies, the codes were first translated to English, and 
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then the Usagi tool was used to map these codes to valid SNOMED CT, RxNorm, or LOINC codes, depending on 

the nature of the source code.   

 

Similarly to service codes, mappings for Nordic Medico-Statistical Committee Classification of Surgical Procedures 

(NCSP) codes and cancer-specific findings (TNM classification of malignant tumors, cancer stages, histopathology 

grades) were created using Usagi. The NCSP codes were mapped to standard SNOMED CT codes, and cancer-

specific findings were mapped to the Cancer Modifier vocabulary. 

 

If the source code could not be mapped to OMOP standard concept, the record was transferred to OMOP CDM with 

a concept identifier of “0” (meaning no matching concept) and placed in the appropriate target table based on the 

nature of the source concept. With this approach, the source concepts can still be used for defining studies within 

this dataset, however, such definitions likely will not work elsewhere.  

Technical implementation 

The ETL process was built using a combination of Bash scripts, SQL scripts, and manual comma-separated values 

(CSV) mapping files. The ETL process is shown in Figure 2. The process began with cleaning and validating the 

source data. From EHR documents, the necessary information was extracted from structured files of Extensible 

Markup Language (XML) and cleaned. As the format of the information is partially free-text or semi-structured in 

the EHR documents, natural language processing (NLP) methods were used to extract this information. The data 

from the three source datasets were combined into a single OMOP CDM database using developed pipelines and 

mappings. As there is no direct link between the same event in different data sources, no duplicate removal was 

performed. For example, if the same diagnosis code comes from an EHR document and claims, both are converted 

to OMOP CDM. Still, we determined the provenance of the information, whether it came from an EHR document, 

claim, or prescription data. The developed ETL process is reusable for other samples on these data sources. 

Validation 

The results of the ETL process were assessed using an open-source Achilles data characterization tool[31], 

DataQualityDashboard version 1.4.1[7], and the EHDEN CdmInspection tool[32]. Achilles data characterization 
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tool[31] allows getting an overview of the converted data. DataQualityDasboard[7] runs over 3000 checks on 

conformance, completeness, and plausibility on the data transformed to OMOP CDM. CdmInspection tool[32] runs 

additional vocabulary (for example, top unmapped and mapped codes in different tables) and infrastructure checks 

compared to Achilles and DataQualityDashboard. Any errors, warnings, or issues found were addressed by revising 

the ETL code or mappings, and the process was repeated until all solvable errors were resolved. 

RESULTS 

The transformation process for the OMOP CDM was developed using a sample of 10% of the Estonian population 

(n = 150,824 patients) with a similar age and gender distribution as the overall population (Figure 3). All persons 

have one observation period covering 1 Jan 2012 to 31 Dec 2019 except when the person was born later than 2012 

or died before 2019. In these cases, the observation period was adjusted accordingly. In total, the sample dataset 

contained 4,970,022 EHR documents, 6,222,818 claims, and 9,289,527 digital prescriptions. 

 

Out of 150,824 persons in the source data, we were able to transform 149,364 (99.0%) persons and their medical 

data to OMOP CDM. The remaining 1,460 persons did not have a birth year reported in any source datasets, which 

is a mandatory attribute in OMOP CDM. These patients had altogether 2,364 entries in source data. On the other 

hand, linking three datasets enabled us to determine the year of birth for 530 patients who were missing this 

information in some of the source datasets, and thus, we were able to include them in the target database.  

 

The distribution of source data across target tables is shown in Table 2. Most populated target tables are for 

measurements (32,230,620 entries) and conditions (20,351,014). The highest percentage of entries mapped to 

OMOP standardized vocabularies are for tables visit_occurence and visit_detail (100%), condition_occurence 

(99.9%), drug_exposure (98.7%), observation (97.1%), and measurement (90.8%).  
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Table 2. Number of entries in OMOP CDM tables together with mapping rates 

OMOP CDM table Total number of entries 

in table 

The number of entries 

mapped to OMOP standard 

concepts 

Mapping rate 

location 1 Not applicable Not applicable 

care_site 1,820 Not applicable Not applicable 

person 149,364 Not applicable Not applicable 

death 8,277 Not applicable Not applicable 

observation_period 149,364 Not applicable Not applicable 

visit_occurrence 18,281,120 18,281,120 100.0% 

visit_details 48,002 48,002 100.0% 

condition_occurrence 20,351,014 20,333,065 99.9% 

procedure_occurrence 6,956,568 5,392,192 77.5% 

drug_exposure 7,945,992 7,842,231 98.7% 

device_exposure 77,842 47,296 60.8% 

observation 15,203,064 14,762,978 97.1% 

measurement 32,230,620 29,250,571 90.8% 

 

 

Table 3 shows the mapping rate according to source vocabularies. Local service codes, ICD-10 codes, and LOINC 

codes were used the most in the data. For ICD-10 and LOINC codes, we covered almost all entries with standard 

concepts (100.0% and 99.3%, respectively). The coverage was also high for entries where local service codes were 

used (84.6%), although we only mapped 38.9% of source codes. 
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Table 3. Mapped concepts and number of entries according to source vocabularies 

Source 

vocabulary 

Number of 

source 

concepts 

Number of 

mapped concepts 

Mapped 

concepts, % 

Number of 

source entries 

Number of 

mapped 

entries 

Mapped 

entries, % 

ICD-10 9,752 9,751 100.0% 22,738,540 22,738,530 100.0% 

LOINC 3,169 2,652 83.7% 20,640,878 20,488,392 99.3% 

Drug product 

code 3,946 3,589 91.0% 7,562,932 7,502,917 99.2% 

ATC* 202 143 70.8% 60,015 12,682 21.1% 

Local service 

codes 2,518 979 38.9% 29,252,643 24,757,917 84.6% 

NCSP 3,960 602 15.2% 842,504 420,140 49.9% 

Other** 1,396 1,396 100.0% 709,268 709,268 100.0% 

* only entries which were not mapped on drug product code level 

** cancer-related codes, pathology codes, and body measurements 

 

The summary data of the output database can be found on a dedicated website[33]. The results of the 

DataQualityDashboard tool, which validates the plausibility, conformance, and completeness of the output dataset, 

are shown in Supplementary Table S1. Out of the 3,482 checks conducted, 3,431 passed, and 51 failed. The failed 

checks were evaluated individually, and it was determined that their failure was expected. Five plausibility checks 

failed because a gender-related clinical code was assigned to the wrong gender person. For example, four records 

with the concept of “primary malignant neoplasm of penis” were assigned to persons whose gender was female. For 

the completeness test, checks for five tables failed as the percentage of records where the standard concept value 

was “0” exceeded the threshold of 5%. This was due to the presence of unmapped records in the tables. 

Additionally, we had 41 checks failing due to the high proportion (>5%) of measurement values outside the range 
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specified in DataQualityDashboard. Our investigation revealed that the values were within reasonable ranges (thus, 

no error in the data), and to our knowledge, the range windows have been removed in the next version of 

DataQualityDashboard. 

DISCUSSION 

This paper describes the integration process of claims data, electronic health records, and prescriptions data into one 

complete patient-centered view. For a 10% random sample, three national health databases with complete records 

were linked and successfully transferred to OMOP CDM. Our experience shows that transferring health databases to 

OMOP CDM contains several challenges (Table 4). However, the outcome of the mapping and transformation 

process has a good quality and expands the possibilities for collaboration. To the best of our knowledge, this is one 

of the first papers of this kind and one of the largest by the proportion of the population of a country.  

 

Table 4. Main challenges and solutions of the current work 

Challenge Example Solution 

The same health event is 

represented in several source 

datasets without a clear link 

between them, potentially leading to 

duplicates. 

The same diagnosis code for a 

patient may be recorded in a EHR, 

claim, and prescription files. 

However, it may be difficult to link 

these documents to a single event 

due to the absence of a unique 

identifier for the case. 

 

Transform each record as they are 

(even if duplicates) but add the 

provenance information to the 

record so one can use it when 

making cohorts. 

No clear guidelines for choosing 

target vocabulary when multiple 

standard OMOP vocabularies are 

available. Additionally, there is no 

Physician Current Procedural 

Terminology Fourth Edition (CPT4) 

and SNOMED CT are both standard 

OMOP vocabularies for procedures; 

Use the target vocabulary you are 

more familiar with. Keep in mind 

that what constitutes a standard 

OMOP vocabulary may change 
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roadmap indicating which standard 

vocabularies may no longer be 

considered standard for OMOP 

CDM in the near future. 

similarly, LOINC and SNOMED 

CT are for lab tests. The National 

Cancer Institute Thesaurus (NCIt) 

was a standard OMOP vocabulary 

at the beginning of our study, but 

not standard anymore. 

over time. 

Hard to keep manual mapping files 

up to date as the standard target 

concepts change over time when 

updating the vocabularies. 

Local code “9124”, which is used 

for vaccination against diphtheria 

and tetanus, was mapped to 

SNOMED CT code “73152006” 

(administration of diphtheria and 

tetanus vaccine). That target 

concept changed from standard to 

non-standard at some point in time. 

Thus, we had to remap it to the 

concept code “1657590” from 

RxNorm vocabulary (diphtheria 

toxoid vaccine, inactivated / tetanus 

toxoid vaccine, inactivated 

injection). 

Whenever updating the vocabulary, 

recheck the mappings in Usagi 

before running the transformation. 

Usagi automatically creates the list 

of non-standard mappings so one 

can fix them before the actual data 

transformation. 

Hard to keep track of all the 

historical coding versions of the 

same event to use similar target 

mapping for these. 

 

The atypical squamous cells of 

undetermined significance (ASC-

US) result of the Papanicolaou test 

have been recorded in our datasets 

by SNOMED CT code ”39035006”, 

SNOMED CT morphology code 

When working with historical codes 

and data, always check the most 

recent target code for this event to 

reuse the same code. 
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“M-697102”, local codes “D”, “D1” 

and “D1.1”, and also in free-text 

format. 

Broad source codes are hard to map 

to specific target codes. 

 

Local code “7004” is used for all 

kinds of biopsies in the claims 

database. Also, “HPV test” 

(referring to human papillomavirus 

testing) or “eGFR” (estimated 

glomerular filtration rate) are noted 

in the text without further details on 

which particular test (LOINC code) 

was carried out. 

Try to use additional information 

from the same medical record to 

specify the target code. For 

example, a diagnosis code referring 

to the prostate may help to map the 

biopsy to a more specific prostate 

biopsy. 

Which of these events to transform 

- the prescription of the drug or the 

purchase? Or both? 

 

 

After a drug is prescribed to the 

patient, they may or may not 

purchase it. Sometimes the buy-out 

happens several months after the 

prescription. Although the OMOP 

CDM allows recording both types 

of events separately, drug era 

calculation does not differentiate 

between these. 

Prefer the purchase information as it 

better reflects what the patient may 

have consumed. 

Do not hesitate to consult with the 

OHDSI community and other 

research groups working with 

OMOP CDM, as their experience 

can give invaluable input on how to 

deal with your data most 

effectively. 

 

ATC codes for drugs consisting of 

several ingredients map to non-

standard RxNorm codes. 

ATC code “C09BX01” 

(perindopril, amlodipine, and 

indapamide; systemic) refers to an 

Use extra information about the 

drug, such as product information, 

to find standard RxNorm codes for 
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angiotensin-converting enzyme 

(ACE) inhibitor combination drug. 

It has three different ingredients. In 

OMOP CDM, there is no single 

standard concept for that 

combination drug, and mapping it 

into three separate ingredients 

(perindopril, amlodipine, 

indapamide) can lead to other 

problems. 

the mapping. 

It is not systematically specified in 

the LOINC coding system what the 

expected results of a lab test are, 

making it difficult to decide on 

which LOINC answer code the 

results should be mapped to. 

Depending on a particular lab test, 

the negative results can be given as 

“Negative”, “Not present”, “Not 

detected”, “Absent”, etc. For some 

tests, the expected results are not 

given at all in LOINC 

nomenclature. 

In cases where the official result 

code is not specified in LOINC, use 

LOINC standard “negative” code. 

It is difficult to achieve the best 

mapping quality without a complete 

understanding of the underlying 

medical practices. 

Although we have a specific code 

for prostate biopsy in a local code 

system, it is rarely used. Broader 

“biopsy” is used instead. 

Talk to medical personnel who can 

describe the underlying medical and 

data recording process.  

Mapping is usually never 100% 

complete. In each study, there is a 

need to map some additional data. 

For a cancer study, we need to 

extract tumor specific TNM and 

stage information from free text 

parts of the source data. 

Build the whole mapping and 

transformation process as a 

repeatable software code and 

workflow so that each following 

study can reuse the mappings from 
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previous studies. Be aware of the 

additional mapping needed and 

keep the necessary expertise in the 

team. 

 

 

In total, we transformed over 100 million entries to standard concepts using standard OMOP vocabularies with the 

average mapping rate 95%. For conditions, observations, drugs, and measurements, the mapping rate was over 90%. 

In most cases, SNOMED CT was used as the target vocabulary. Similarly to others[11,13,16,21], we were not able 

to map all the records.  

 

Previous studies have shown that one of the main difficulties during the transformation process is finding the 

relevant concepts[6,16,17,21,23]. This is also in line with our experience. In case source vocabulary was already 

considered standard vocabulary according to OMOP CDM or mapping between source and standard vocabulary was 

provided, we used that vocabulary. However, it is crucial to stay aware of the changes in standard vocabularies and 

to be prepared to update mappings continuously. There is also a possibility that standard vocabulary becomes non-

standard over time. For instance, at the beginning of our mapping process, there were two standard vocabularies for 

cancer findings, but later, one of them was changed to non-standard by the OHDSI community, which created 

additional work. It would be helpful if the OHDSI community could provide clear recommendations for determining 

the most suitable target vocabularies for mapping to avoid potential issues in the future. When mappings to standard 

vocabularies are not present, there are, unfortunately, no established guidelines for determining which vocabulary 

should be used. We recommend selecting the target vocabulary that the user is most familiar with. We agree with the 

previously reported assertions that the most problematic is the mapping of local code systems[16,21,23] as 

ambiguity in source codes makes it difficult, if not impossible, to find appropriate target codes. This is the main 

reason why our mapping rate of local service codes is rather low (39%). 

 

In addition to incomplete mapping, information loss during the transformation process can also occur due to data 

structure[23]. Our experience showed that integrating data from various healthcare settings can result in overlap, 
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where the same health event or episode may be represented in multiple datasets. In case of overlapping events, a 

decision had to be made as to whether to treat these multiple instances of the same event (e.g., diagnosis) “as is” or 

to attempt to combine them into a single event in the OMOP CDM. After careful consideration, it was ultimately 

decided not to link the records and to use multiple instances of the event in the OMOP database. Several factors 

justified this decision. Firstly, the process of combining multiple records into a single event is complex and prone to 

error. Secondly, the transformation process would result in the loss of information about the exact source code and 

dataset, which may be necessary for quality control or specific studies. Finally, previous studies conducted using the 

OMOP CDM have not typically been concerned with the number of records or have required a minimum time 

interval between records, effectively addressing the issue of multiple close-time-range recordings of the same 

event[34,35]. 

 

Several actions can support and improve the transformation process. One of them is communication and 

collaboration with different experts and consortiums[36] It is mandatory to consult with the medical personnel to 

understand the clinical practice and map the codes correctly. Still, in our case, despite our efforts and the inclusion 

of medical experts, more than half of the local codes remained unmapped (61%). During the mapping process, we 

consulted with the OHDSI community about drug prescriptions data. According to the recommendations received, 

only drugs purchased from the pharmacy were mapped in our study. While information about prescribed 

medications may sometimes be more important than the fact of purchase, it was decided to exclude it to minimize 

confusion in the execution phase of future studies. In addition, participation in international projects and 

consortiums can provide insight into any additional data requirements, existing problems, and necessary mappings 

for specific studies. By having one modular codebase, this knowledge will accumulate and can be built upon in 

subsequent studies.  

 

When planning a data transformation to OMOP CDM, it should be considered that transforming one or multiple 

linked datasets to a common data model cannot be taken as a one-time project but rather a continuous and iterative 

process requiring dedicated personnel, tools, and experience. This recommendation was previously highlighted by 

Candore et al.[36] as well. For example, conducting a study on the created dataset can reveal issues in the data that 

were missed during the transformation. This means that some transformation steps must be repeated to improve the 
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data quality. Due to the continuous and iterative nature of the transformation process, our experience highlights that 

it is essential to have the entire process as a version-controlled software code that can be reused, including any 

mappings created in previous studies. This will eventually lead to a gradual improvement in the quality of the 

dataset. 

 

Despite our efforts, our work has some limitations that must be considered. Firstly, the described transformation 

pipeline with the created mappings is directly applicable to Estonian national datasets only. Secondly, the created 

dataset cannot be made publicly available. Also, as the dataset includes data from 2012–2019, the current 

observation period can be too short for some studies. At the same time, the age and gender distribution of the sample 

follow the whole population; thus, the dataset can be considered representative. To date, the work is still ongoing to 

improve the quality of the dataset and extract as much important information as possible. For example, the mapping 

coverage for NSCP classification of surgical procedures or device exposures (Table 2 and Table 3) is currently 

modest, as these have not been the focus of our current research. Moreover, there is still a large amount of 

information stored as free text, which is being gradually extracted. 

 

As a result of the transformation process, we have created a rare example of Northern-Eastern European datasets 

mapped to OMOP CDM containing data from the 10% of Estonian population and almost all healthcare settings. To 

our knowledge, the harmonization and integration of these three national datasets have been a unique and innovative 

effort, even for a large OHDSI community. The usefulness of the dataset has been demonstrated through its 

application in various national and international studies and projects for generating evidence. For example, in 

Estonia, we have performed a study investigating the presence of HPV virus types and cervical cytology grades[37] 

and analyzed how artificial intelligence could be applied to health data for public service[38]. In addition, 

developing a tool for analyzing health event trajectories in any OMOP dataset[39] or participating in the study-a-

thon of a project to harness big data in prostate cancer research[40] would not have been possible without the 

transformation process. We have validated the data linkage and the above describe repeatable approach in the 

PIONEER study, where the cohort of patients with newly diagnosed prostate cancer had an inclusion criterion 

requiring both a diagnosis and biopsy to be recorded[41]. Using only EHR or prescription data would have yielded 

zero patients in Estonia while using only claims data would have yielded 235 patients. However, combining these 
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two datasets resulted in a person count of 635 patients. The repeatable transformation scripts have been reused with 

only minor adjustments on independent new cohorts on the prescriptions of 110,000 asthma patients, insurance 

claims and prescriptions of 400,000 COVID-19 patients with controls, and on all the medical data of more than 

200,000 gene donors of Estonian Biobank. This all has significantly contributed to the efficient use of real-world 

data. 

CONCLUSION 

This paper contributes to the broader use of real-world data. We have described our approach to link three central 

health databases in Estonia and successfully demonstrated transferring 10% of the data to OMOP CDM. The 

methods described can be applied to any future study using Estonian health data, and could potentially be used to 

convert the entire population's health data to OMOP CDM. Additionally, these principles can be applied beyond 

Estonia. Despite the challenges faced during the transformation process, our experience shows that OMOP CDM 

can be effectively used for healthcare data and that the transformation can increase the opportunities for health data 

analysis and collaboration. Our work helps future researchers to transform linked databases into OMOP CDM more 

efficiently, ultimately leading to better real-world evidence. 
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SUPPLEMENTARY MATERIAL 

Supplementary Table S1 - DataQualityDashboard results of the data transformed to OMOP CDM 

FIGURE LEGENDS 

Figure 1. The data acquisition process of national health databases in Estonia and the context of this paper. 

Figure 2. Overview of the data transformation process. 

Figure 3. Population pyramids of an Estonian population in 2019 (lines) and the study sample (bars). 
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