1	<i>Title</i> : Hypertension among persons living with HIV — Zambia, 2021; A cross-sectional study of a national		
2	electronic health record system		
3			
4	Authors: Jonas Z. Hines ¹ , Jose Tomas Prieto ² , Megumi Itoh ¹ , Sombo Fwoloshi ^{3,4} , Khozya D. Zyambo ³ ,		
5	Dalila Zachary ¹ , Cecilia Chitambala ¹ , Peter A. Minchella ¹ , Lloyd B. Mulenga ³ , Simon Agolory ¹		
6			
7	Affiliations:		
8	1. U.S. Centers for Disease Control and Prevention, Lusaka, Zambia		
9	2. Palantir Technologies, Paris, France		
10	3. Ministry of Health, Lusaka, Zambia		
11	4. University of Zambia, School of Medicine		
12			
13	Keywords: Hypertension; Prevalence; HIV; Epidemiology; Non-communicable diseases; Zambia; Africa		
14			
15	Corresponding author:		
16	Jonas Hines		
17	U.S. Centers for Disease Control & Prevention (CDC) Zambia		
18	351 Independence Avenue, Woodlands, Lusaka, Zambia		
19	Phone: +260-211-257515		
20	Email: jhines1@cdc.gov		
21			

2

23 Abstract (word count: 337)

- 24 Background
- 25 Hypertension is a major risk factor for cardiovascular disease, which is a common cause of death in
- 26 Zambia. Data on hypertension prevalence in Zambia are scarce and limited to specific geographic areas
- 27 and/or populations. We measured hypertension prevalence among persons living with HIV (PLHIV) in
- 28 Zambia using a national electronic health record (EHR) system.
- 29
- 30 Methods
- 31 We did a cross-sectional study of hypertension prevalence among PLHIV aged ≥18 years in Zambia
- 32 during 2021. Data were extracted from the SmartCare EHR, which covers ~90% of PLHIV on treatment in

33 Zambia. PLHIV with ≥2 recorded blood pressure (BP) readings in 2021 were included. Hypertension was

- defined as ≥2 elevated BP readings (i.e., systolic BP of ≥140 mmHg or diastolic BP of ≥90 mmHg) during
- 35 2021 and/or on anti-hypertensive medication recorded in their EHR in the past five years. Multivariable
- 36 logistic regression was used to assess associations between hypertension and independent variables.
- 37

38 Results

- Among 750,098 PLHIV aged \geq 18 years with \geq 2 visits in SmartCare during 2021, 101,363 (13.5%) had \geq 2
- 40 blood pressure readings recorded in their EHR. Among these PLHIV, 14.7% (95% confidence interval [CI]:
- 41 14.5-14.9) had hypertension during 2021. Only 8.9% of PLHIV with hypertension had an anti-
- 42 hypertensive medication recorded in their EHR. The odds of hypertension were greater in older age
- 43 groups compared to PLHIV aged 18-29 years (adjusted odds ratio [aOR] for 30-44 years: 2.6 [95% CI: 2.4-
- 44 2.9]; aOR for 45-49 years: 6.4 [95% CI: 5.8-7.0]; aOR for ≥60 years: 14.5 [95% CI: 13.1-16.1]), urban areas
- 45 (aOR: 1.9 [95% CI: 1.8-2.1]), and persons prescribed ART for ≥6-month at a time (aOR: 1.1 [95% CI: 1.0-
- 46 1.2]).

3

4	7
	•

- 48 Discussion
- 49 Hypertension was common among a cohort of PLHIV in Zambia, with few having documentation of
- 50 being on antihypertensive treatment. Most PLHIV were excluded from the analysis because of missing
- 51 BP measurements in their EHR. Strengthening integrated management of non-communicable diseases in
- 52 ART clinics might help to diagnose and treat hypertension in Zambia. Data completeness needs to be
- 53 improved to routinely capture cardiovascular disease risk factors, including blood pressure readings
- 54 consistently for PHLIV in their EHRs.

4

56 Article (word count: 2,636)

- 57 Background
- 58 Non-communicable diseases are common causes of death in sub-Saharan African countries (1). In
- 59 Zambia, a country in southern Africa, cerebrovascular accidents (CVAs) and ischemic heart disease are
- among most common causes of death (2,3). With widespread availability of antiretroviral therapy (ART),
- 61 non-communicable diseases are increasingly a major cause of morbidity among persons living with HIV
- 62 (PLHIV) (4,5), including in Zambia (6,7). Hypertension is a known major risk factor for CVA and other
- 63 cardiovascular diseases. Although country-specific data on prevalence of hypertension in sub-Saharan
- 64 African countries is limited, one meta-analysis estimated prevalence to be 16% (8).
- 65

PLHIV are at increased risk for noncommunicable diseases including cardiovascular disease (4,9–11). This risk might be attributed to effects of HIV (i.e., chronic inflammation) and/or side effects (e.g., metabolic syndrome, renal disease) of some ART (12,13). Some studies indicate PLHIV have a higher hypertension prevalence than people without HIV (14,15), with roughly 20-25% of PLHIV globally estimated to have hypertension (5,16,17). However, in sub-Saharan Africa, where most PLHIV reside, hypertension prevalence is not well-characterized at national levels and it is unclear if the prevalence of hypertension differs between PLHIV compared to people without HIV (15,18–20).

73

Data on hypertension prevalence in Zambia are limited. In the 2018 Zambia Demographic and Health Survey, self-reported hypertension prevalence among women was 8.8% (this information was not ascertained from male participants) (21). Studies that objectively measure blood pressure have been limited geographically and/or conducted in special populations (7,22–26). For instance, in one study among PLHIV in Lusaka, hypertension prevalence was 6.4%, of which only one-half of persons were aware of their hypertension diagnosis (23). Notably, approximately one-quarter of PLHIV with

5

80 hypertension in that study had suffered a major cardiovascular event, including CVA or	myocardial
---	------------

81 infarction.

82

- 83 Thus, current estimates of hypertension among PLHIV in Zambia give an incomplete picture. In this
- study, we sought to measure the proportion of PLHIV with hypertension using data routinely captured in
- 85 a national electronic health record (EHR) system, SmartCare EHR.

86

87 Methods

88 We conducted a cross-sectional study of hypertension among PLHIV aged ≥18 years in Zambia from

39 January to December 2021 (the last full calendar year of data available). We analyzed data from the

90 SmartCare EHR, which was introduced for the HIV program in the early 2000s and has been scaled-up

91 nationally since then. SmartCare EHR supports clinical care by providing patients with their longitudinal

- 92 health record at any facility operating the EHR. As of 2021, SmartCare EHR was in use in ~1,500 Zambian
- 93 health facilities that provide care for approximately 90% of PLHIV on ART in Zambia.

94

Digitized SmartCare EHR data from health facilities are routinely consolidated and de-duplicated at the
district and provincial levels, transported to Zambia MOH headquarters in Lusaka, and stored in
Zambia's National Data Warehouse. All patient interactions (including clinical, pharmacy, and laboratory
visits) at health facilities utilizing SmartCare EHR are recorded and data for most patients are entered
into the system in real-time. In cases where health facilities record data on paper forms for retroactive
data entry into SmartCare EHR, the process is completed prior to consolidation. Data from inpatient care
are not captured in SmartCare EHR.

103	De-identified demographic data, clinical information, and pharmacy records were extracted from
104	Zambia's SmartCare EHR system. Data were extracted for demographic characteristics, past medical
105	history, medications, blood pressure measurements, height and weight, and laboratory data (CD4+
106	count, HIV viral load, and creatinine). Data are cleaned upon ingestion in Foundry (Palantir Technologies,
107	Paris, France) by casting laboratory tests results values and physical measurements to numeric format.
108	For some variables (i.e., non-HIV past medical history, diet, amount of physical activity, smoking history,
109	blood cholesterol levels, and blood glucose) data were either completely missing or too sparse to
110	analyze (i.e., <1% complete). Only PLHIV aged ≥18 years with ≥2 clinical visits in 2021 were eligible for
111	inclusion in the study (in Zambia, BP is measured at each clinical visit but not necessarily at other patient
112	interactions captured in SmartCare EHR [e.g., lab check, pharmacy pick-up]).
113	
114	We defined elevated blood pressure as a systolic blood pressure reading of ≥140 mmHg or diastolic
115	blood pressure readings of ≥90 mmHg. We defined hypertension as having ≥2 systolic blood pressure
116	(SBP) readings of ≥140 mmHg or ≥2 diastolic blood pressure (DBP) readings of ≥90 mmHg (27) during
117	2021, or any PLHIV prescribed an antihypertensive medication in SmartCare EHR (including amiloride,
118	amlodipine, atenolol, carvedilol, enalapril, furosemide, hydralazine, hydrochlorothiazide, losartan,
119	methyldopa, metoprolol, nifedipine, spironolactone, telmisartan, and valsartan) in the past five years.
120	Because past medical history was not well captured in the EHR, we could not include persons with a
121	historical hypertension diagnosis regardless of BP measurement readings during 2021. Among PLHIV
122	with hypertension, we defined grade 2 hypertension as ≥1 reading with systolic blood pressure ≥160
123	mmHg or diastolic blood pressure ≥100 mmHg and hypertensive urgency as ≥1 reading with systolic
124	blood pressure ≥180 mmHg or diastolic blood pressure ≥110 mmHg (27).
125	

7

ion case definition required two blood pressure readings. 95% confidence intervals (Cls) ed using the Clopper-Pearson exact method in R using epiR package (28). Bivariable logistic is used to measure the association between hypertension and independent variables. We nultivariable logistic regression with variables with ≤10% missingness (i.e., sex, age group, n/rural designation, years on ART, current ART regimen, prescription length, and most ad).
s used to measure the association between hypertension and independent variables. We nultivariable logistic regression with variables with ≤10% missingness (i.e., sex, age group, n/rural designation, years on ART, current ART regimen, prescription length, and most
nultivariable logistic regression with variables with ≤10% missingness (i.e., sex, age group, n/rural designation, years on ART, current ART regimen, prescription length, and most
n/rural designation, years on ART, current ART regimen, prescription length, and most
ad).
icted an additional age- and sex- adjusted analysis to investigate the relationships
rtension and kidney function. Specifically, we assessed the relationship between elevated
, glomerular filtration rate <60 mL/min/1.73 m^2) in the past year and hypertension. This
e analysis because creatinine data were too sparse to include in the multivariable analysis.
assessed the association between integrase-inhibitor-containing ART regimens and being
having obesity, because of prior association between metabolic syndrome and this
ss. This was relevant to the study objectives given there is an association between
drome and cardiovascular disease. Being overweight or having obesity and hypertension
two components of metabolic syndrome we could measure from SmartCare EHR; the
ents (high triglycerides, low high-density lipoprotein, and elevated fasting glucose) were
aptured. This analysis was age- and sex-adjusted.

148

Results

Among 1,299,263 active PLHIV in SmartCare EHR during 2021, there were 750,098 (57.7%) persons aged

149

150	≥18 years that had ≥2 clinical visits in 2021 (Figure 1). Of these, 101,363 (13.5%) had ≥2 blood pressure
151	readings recorded and were included in the analysis.
152	
153	The complete cohort differed from the analytic cohort for all variables, although absolute differences for
154	key variables like sex and age were minor (e.g., 5.5% were aged ≥60 years in the complete cohort
155	compared to 6.6% in analytic cohort) (Table 1). Health facilities with direct electronic data entry at the
156	point-of-care, which were concentrated in Lusaka and Southern Provinces, had greater blood pressure
157	data completeness than health facilities where data was captured on paper and retrospectively entered
158	into SmartCare EHR (22.5% versus 5.3% captured \geq 2 BP readings, respectively).
159	
160	Among PLHIV in the analytic dataset, the mean age was 41.6 years (standard deviation ± 11.4 years;
161	range 18-104 years) and 64.7% were females. The median time on ART was 5.0 years (interquartile
162	range: 2.0–9.0 years) and 95.7% of PLHIV were on dolutegravir-based ART regimens at most recent visit.
163	
164	During 2021, 35.0% of PLHIV had ≥1 elevated blood pressure reading. During 2021, 14.7% (95% CI: 14.5-
165	14.9) of PLHIV had hypertension (Table 2). The proportion of PLHIV with hypertension increased with
166	increasing age, from 4.3% among PLHIV aged 18-29 years, to 10.1% among PLHIV aged 30-44 years, to
167	21.6% among PLHIV aged 45-59 years, and 37.4% for among PLHIV aged ≥60 years. Among PLHIV with
168	hypertension, 60.7% had grade 2 hypertension and 27.0% had hypertensive urgency.
169	
170	Overall, 2.0% of PLHIV had an anti-hypertensive medication recorded in their EHR in the past five years;
171	8.9% of PLHIV with two or more readings of SBP ≥140 mmHg or DBP ≥90 mmHg had an anti-
172	hypertensive medication recorded in their EHR. Among any PLHIV with an anti-hypertensive medication

9

173 recorded, 85.9% had ≥1 reading with SBP ≥140 mmHg or DBP ≥90 mmHg and 60.2% had two elevated 174 readings (i.e., were still hypertensive). 175 176 In the multivariable model, the odds of hypertension were greater for older age groups, PLHIV residing 177 in urban areas and certain provinces, and PLHIV prescribed ART for \geq 6-month at a time (Table 2). 178 Although dolutegravir-based regimens were associated with higher odds of hypertension compared to 179 efavirenz-based regimens in the bivariable analysis, there was no difference after adjustment in the 180 multivariable model. PLHIV who were overweight or had obesity had greater odds of hypertension than 181 normal weight PLHIV (although data missingness precluded inclusion of this characteristic in the 182 multivariable model). 183 184 PLHIV with hypertension had greater odds of having an elevated creatinine (Table 3). Lastly, PLHIV on 185 dolutegravir-based regimens had higher odds of being overweight or having obesity compared to 186 persons on other regimens (adjusted OR: 1.16 [95% CI: 1.03-1.32]). 187 Discussion 188 189 Hypertension was common among PLHIV in Zambia. Many PLHIV with hypertension had dangerously 190 high blood pressure readings putting them at elevated risk for cardiovascular disease including CVAs and 191 acute cardiovascular events. This finding might explain why cardiovascular disease are among the most

192 common causes of death among PLHIV in Zambia (6,29,30). Few PLHIV with hypertension had

documentation of being on antihypertensive treatment and among those that were, most did not have

- their blood pressure under control (as demonstrated by elevated blood pressure readings in these
- 195 patients). Other studies in Zambia indicate suboptimal levels of hypertension treatment and control
- 196 (21,23), which is similar to other countries in Africa (20,31,32). Integrating noncommunicable disease

care into routine HIV care might increase prevention, diagnosis, and management of hypertension in

198	Zambia, potentially reducing cardiovascular disease-related morbidity and mortality (33). Although most
199	PLHIV were excluded from the study because of missing BP data, to our knowledge, this analysis is the
200	largest cohort study of hypertension among PLHIV.
201	
202	That many hypertensive PLHIV still had elevated blood pressure readings despite antihypertensive
203	treatment is demonstrative of the challenge of controlling hypertension even when treated (20,31,32);
204	nevertheless this finding warrants action, with a focus on strategies to increase treatment of PLHIV with
205	existing hypertension in Zambia and measures to prevent hypertension among those without it. Being
206	older and overweight are established risk factors for hypertension, including among PLHIV (11,20). The
207	observed geographic patterns of hypertension could be related to regional differences in diet (i.e., urban
208	dwelling PLHIV consuming higher sodium diets or greater pollution exposure than those in rural areas)
209	and/or be an artifact of poor data quality (i.e., highest proportion of PLHIV with hypertension observed
210	in provinces that also had better data completeness).
211	
212	Some reports link ART use with increased prevalence of hypertension among PLHIV in Africa (7,34,35).
213	Although we could not assess this relationship in this study that was confined to PLHIV on ART, longer
214	ART duration was not associated with hypertension, which is in contrast to findings from several other
215	studies from countries in Africa (17,36). Some types of ART have been associated with hypertension
216	(37), but in this analysis there were no associations between ART regimens and hypertension in the
217	multivariable model.
218	
219	The association of elevated BMI for PLHIV on dolutegravir-based regimens in this analysis could signify

220 metabolic syndrome among these persons, with a potential side effect of integrase inhibitors (38); we

11

221	were not able to analyze glucose or lipid measurements to confirm this hypothesis. However, because
222	many PLHIV in Zambia were transitioned to dolutegravir-based regimens from different ART regimens
223	(i.e., efavirenz-based regimens) in the recent past, the elevated BMI among participants could also pre-
224	date their transition to dolutegravir-based regimens so a different study design (i.e., cohort study) is
225	warranted to further explore this potential signal. Nevertheless, the superior HIV viral load control and
226	lower risk of HIV treatment failure make dolutegravir the preferred regimen in Zambia and other
227	countries with generalized HIV epidemics (39).
228	
229	The study had several limitations. Most importantly, blood pressure data completeness was very low,
230	with only approximately one-eighth of PLHIV in the dataset being analyzed. Despite this limitation, this is
231	one of the largest studies of hypertension reported from sub-Saharan Africa to date and provides the
232	first national level study of hypertension in Zambia. However, the estimate is not nationally
233	representative and, furthermore, only represents an estimate among PLHIV in care who were captured
234	by the SmartCare EHR. Comparison to non-HIV-infected persons was not possible, but as SmartCare EHR
235	is integrated into other care settings in Zambia, this will become possible. For some variables, high
236	amounts of missingness precluded their inclusion in the multivariable model and, furthermore, some
237	important variables (e.g., non-HIV past medical history) were not available. Additionally, past medical
238	history was not captured in the dataset, so the proportion of PLHIV with diagnosed hypertension could
239	not be assessed. Furthermore, very few records had a blood pressure medication documented. This

240 could reflect low levels of hypertension treatment, limited availability of sphygmomanometers, or could

241 result from data entry omissions at the point-of-care. If antihypertensive medications were not

consistently recorded, then the true prevalence of hypertension among PLHIV in Zambia is likely higher.

243 Next, only blood pressure readings occurring over a one-year period were assessed. This approach

reduced the likelihood that two elevated blood pressure measurements were separated by long periods

12

245	of time, but also led to the exclusion of blood pressure measurements that occurred outside of the
246	defined period potentially affecting the hypertension estimates. Lastly, the EHR does not capture
247	inpatient data, so information on consequences of uncontrolled hypertension (e.g., stroke or myocardial
248	infarction) were not available.
249	
250	This analysis points to a need to improve hypertension management for PLHIV in Zambia. Some of the
251	existing practices that rely on referring patients with elevated BPs to the outpatient department (i.e.,
252	urgent care) for further evaluation might result in patient attrition, missing opportunities to adequately
253	manage this common comorbidity among PLHIV in Zambia. Integrated primary care models for PLHIV
254	have better outcomes for non-communicable disease management (40), and can even result in better
255	viral suppression (41). ART clinics in Zambia might benefit from instituting integrated management of
256	noncommunicable diseases, including life-style modification, anti-hypertensive therapy with appropriate
257	treatment intensification, and medication adherence assessments for hypertension (42). An integrated
258	primary care model for conditions like hypertension is possible in countries like Zambia and can improve
259	patient outcomes (32,33). With integration, multi-month dispensing is a promising approach for co-
260	management of HIV and hypertension (43).
261	
262	Routinely monitoring for hypertension, along with documenting other health measures (e.g., diet,
263	smoking status, BMI) in the EHR would not only allow medical providers to determine client's
264	cardiovascular risk for CVAs or other cardiovascular events and target treatment, but also might provide
265	data needed to identify specific health facilities or clinicians that would benefit from educational
266	interventions in management of these risk factors and conditions. EHRs like SmartCare are promising
267	data sources for noncommunicable diseases surveillance given their reach, routine use in clinical setting,

and richness of information. For this to be successful, data completeness needs to be improved to

13

269	routinely capture cardiovascular disease risk factors, including blood pressure readings consistently for
270	PHLIV in their EHRs.
271	
272	Hypertension was common among PLHIV in Zambia and many persons might not be adequately
273	diagnosed or treated. It is important for ART clinic providers to consider hypertension among PLHIV and
274	institute strategies to manage it appropriately. This will require adequate capacitation of the Zambian
275	health workforce to recognize and manage hypertension. Additionally, care models that integrate
276	hypertension (and other NCDs) management into ART clinics are promising strategies to improve care.
277	EHRs might be used to routinely track program implementation at little additional data collection effort,
278	and can be adapted into noncommunicable diseases surveillance systems. Addressing hypertension and
279	other noncommunicable diseases will be important to reducing morbidity and mortality of PLHIV in
280	Zambia.
281	
282	Ethics statement: The study protocol was approved by the ERES Converge IRB in Lusaka, Zambia; it was
283	also reviewed in accordance with CDC human research protection procedures and was determined to be
284	research, but CDC investigators did not interact with human subjects or have access to identifiable data
285	or specimens for research purposes. all methods were carried out in accordance with relevant guidelines
286	and regulations. This project met requirements for waiver of informed consent documentation, which

- 287 was granted by ERES Converge IRB in Zambia.
- 288

289 Authorship Disclaimer

290 The findings and conclusions in this report are those of the author(s) and do not necessarily represent

the official position of the funding agencies

14

293 PEPFAR Funding Acknowledgment

- 294 This research has been supported by the President's Emergency Plan for AIDS Relief (PEPFAR) through
- the Centers for Disease Control and Prevention (CDC) through a cooperative agreement with the Zambia
- 296 Ministry of Health and a cooperative agreement with Palantir Technologies

- 298 Conflict of interest statement
- 299 The authors have no conflicts to disclose
- 300
- 301

15

302 References

303	1.	Abbafati C, Abbas KM, Abbasi-Kangevari M, Abd-Allah F, Abdelalim A, Abdollahi M, et al. Global
304		burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic
305		analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10258).
306	2.	Institute for Health Metrics and Evaluation. Zambia: What causes the most deaths? [Internet].
307		[cited 2020 Nov 17]. Available from: http://www.healthdata.org/zambia
308	3.	Mapoma CC, Munkombwe B, Mwango C, Bwalya BB, Kalindi A, Gona NP. Application of verbal
309		autopsy in routine civil registration in Lusaka District of Zambia. BMC Health Serv Res.
310		2021;21(1):1–11.
311	4.	Shah AS V, Stelzle D, Lee KK, Beck EJ, Alam S, Clifford S, et al. Global Burden of Atherosclerotic
312		Cardiovascular Disease in People Living With HIV: Systematic Review and Meta-Analysis.
313		Circulation. 2018 Sep;138(11):1100–12.
314	5.	Patel P, Rose CE, Collins PY, Nuche-Berenguer B, Sahasrabuddhe V V, Peprah E, et al.
315		Noncommunicable diseases among HIV-infected persons in low-income and middle-income
316		countries: a systematic review and meta-analysis. AIDS. 2018 Jul;32 Suppl 1(Suppl 1):S5–20.
317	6.	Cheelo M. Top causes of Mortality among Community Deaths in Zambia, 2020-2021. In: Annual
318		National HIV/TB/COVID-19/Hepataitis B Technical Conference. Lusaka, Zambia; 2021.
319	7.	Musekwa R, Hamooya BM, Koethe JR, Nzala S, Masenga SK. Prevalence and correlates of
320		hypertension in HIV-positive adults from the Livingstone Central Hospital, Zambia. Pan Afr Med J.
321		2021;39:237.
322	8.	Twagirumukiza M, De Bacquer D, Kips JG, de Backer G, Stichele R Vander, Van Bortel LM. Current
323		and projected prevalence of arterial hypertension in sub-Saharan Africa by sex, age and habitat:
324		an estimate from population studies. J Hypertens. 2011 Jul;29(7):1243–52.
325	9.	Benjamin LA, Corbett EL, Connor MD, Mzinganjira H, Kampondeni S, Choko A, et al. HIV,

16

326 antiretroviral treatment, hypertension, and stroke in Malawian adults: A case-control study.

327 Neurology. 2016 Jan;86(4):324–33.

- 328 10. Walker RW, Jusabani A, Aris E, Gray WK, Unwin N, Swai M, et al. Stroke risk factors in an incident
- 329 population in urban and rural Tanzania: a prospective, community-based, case-control study.
- 330 Lancet Glob Heal. 2013 Nov;1(5):e282-8.
- 11. Ake JA, Polyak CS, Crowell TA, Kiweewa F, Semwogerere M, Maganga L, et al. Noninfectious
- 332 Comorbidity in the African Cohort Study. Clin Infect Dis. 2019;69(4).
- 12. Hsue PY, Deeks SG, Hunt PW. Immunologic basis of cardiovascular disease in HIV-infected adults.
- 334 J Infect Dis. 2012 Jun;205 Suppl(Suppl 3):S375-82.
- 13. Friis-Møller N, Sabin CA, Weber R, d'Arminio Monforte A, El-Sadr WM, Reiss P, et al. Combination
- antiretroviral therapy and the risk of myocardial infarction. N Engl J Med. 2003
- 337 Nov;349(21):1993–2003.
- 338 14. Gallant J, Hsue PY, Shreay S, Meyer N. Comorbidities among US Patients with Prevalent HIV

339 Infection - A Trend Analysis. In: Journal of Infectious Diseases. 2017.

- 340 15. Davis K, Perez-Guzman P, Hoyer A, Brinks R, Gregg E, Althoff KN, et al. Association between HIV
- 341 infection and hypertension: a global systematic review and meta-analysis of cross-sectional
- 342 studies. BMC Med. 2021;19(1).
- 16. Xu Y, Chen X, Wang K. Global prevalence of hypertension among people living with HIV: a
- 344 systematic review and meta-analysis. J Am Soc Hypertens. 2017 Aug;11(8):530–40.
- 17. Bigna JJ, Ndoadoumgue AL, Nansseu JR, Tochie JN, Nyaga UF, Nkeck JR, et al. Global burden of
- hypertension among people living with HIV in the era of increased life expectancy: a systematic
 review and meta-analysis. J Hypertens. 2020 Sep;38(9):1659–68.
- 18. Dillon DG, Gurdasani D, Riha J, Ekoru K, Asiki G, Mayanja BN, et al. Association of HIV and ART
- 349 with cardiometabolic traits in sub-Saharan Africa: a systematic review and meta-analysis. Int J

17

350	Epidemiol. 2013 Dec;42(6):1754–71.
-----	------------------------------------

- 19. Mogaka JN, Sharma M, Temu T, Masyuko S, Kinuthia J, Osoti A, et al. Prevalence and factors
- associated with hypertension among adults with and without HIV in Western Kenya. PLoS One.
- 353 2022;17(1):e0262400.
- 20. Kwarisiima D, Balzer L, Heller D, Kotwani P, Chamie G, Clark T, et al. Population-Based
- 355 Assessment of Hypertension Epidemiology and Risk Factors among HIV-Positive and General
- 356 Populations in Rural Uganda. PLoS One. 2016;11(5):e0156309.
- 21. Zambia Statistics Agency, Ministry of Health, University Teaching Hospital Virology laboratory,
- 358 ICF. Zambia Demographic and Health Survey 2018. 2019;540.
- 22. Yan LD, Chi BH, Sindano N, Bosomprah S, Stringer JS, Chilengi R. Prevalence of hypertension and
- its treatment among adults presenting to primary health clinics in rural Zambia: analysis of an
 observational database. BMC Public Health. 2015 Sep;15:933.
- 362 23. Bauer S, Wa Mwanza M, Chilengi R, Holmes CB, Zyambo Z, Furrer H, et al. Awareness and
- 363 management of elevated blood pressure among human immunodeficiency virus-infected adults
- 364 receiving antiretroviral therapy in urban Zambia: a call to action. Glob Health Action.
- 365 2017;10(1):1359923.
- 366 24. Rush KL, Goma FM, Barker JA, Ollivier RA, Ferrier MS, Singini D. Hypertension prevalence and risk

factors in rural and urban Zambian adults in western province: a cross-sectional study. Pan Afr
 Med J. 2018;30:97.

- 369 25. Mulenga D, Siziya S, Rudatsikira E, Mukonka VM, Babaniyi O, Songolo P, et al. District specific
- 370 correlates for hypertension in Kaoma and Kasama rural districts of Zambia. Rural Remote Health.

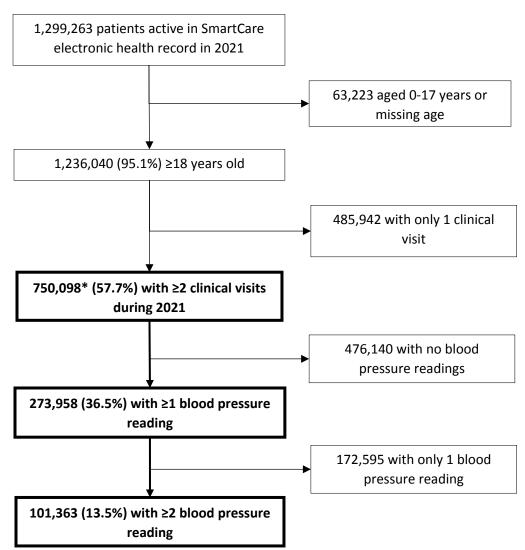
371 2013;13(3):2345.

- 372 26. Goma FM, Nzala SH, Babaniyi O, Songolo P, Zyaambo C, Rudatsikira E, et al. Prevalence of
- 373 hypertension and its correlates in Lusaka urban district of Zambia : a population based survey. Int

18

374		Arch Med [Internet]. 2011;4(1):34. Available from: http://www.intarchmed.com/content/4/1/34
375	27.	Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International
376		Society of Hypertension Global Hypertension Practice Guidelines. Hypertension. 2020;75(6).
377	28.	Stevenson M, Sergeant E, Nunes T, Heuer C, Marshall J, Sanchez J, et al. epiR: Tools for the
378		Analysis of Epidemiological Data [Internet]. 2021. Available from: https://cran.r-
379		project.org/package=epiR
380	29.	Nutakki A, Chomba M, Chishimba L, Zimba S, Gottesman RF, Bahouth MN, et al. Risk factors and
381		outcomes of hospitalized stroke patients in Lusaka, Zambia. J Neurol Sci. 2021 May;424:117404.
382	30.	Kapombe P, Cheelo M, Kamalonga K, Tally L, Stoops E, Mwango C, et al. Most common causes of
383		death in Zambia by HIV status, 2020-2021. In: AIDS 2022. Montreal, Canada; 2022.
384	31.	Muddu M, Tusubira AK, Sharma SK, Akiteng AR, Ssinabulya I, Schwartz JI. Integrated
385		Hypertension and HIV Care Cascades in an HIV Treatment Program in Eastern Uganda: A
386		Retrospective Cohort Study. J Acquir Immune Defic Syndr. 2019 Aug;81(5):552–61.
387	32.	Heller DJ, Balzer LB, Kazi D, Charlebois ED, Kwarisiima D, Mwangwa F, et al. Hypertension testing
388		and treatment in Uganda and Kenya through the SEARCH study: An implementation fidelity and
389		outcome evaluation. PLoS One. 2020;15(1):e0222801.
390	33.	Hickey MD, Ayieko J, Owaraganise A, Sim N, Balzer LB, Kabami J, et al. Effect of a patient-
391		centered hypertension delivery strategy on all-cause mortality: Secondary analysis of SEARCH, a
392		community-randomized trial in rural Kenya and Uganda. PLoS Med. 2021 Sep;18(9):e1003803.
393	34.	Nduka CU, Stranges S, Sarki AM, Kimani PK, Uthman OA. Evidence of increased blood pressure
394		and hypertension risk among people living with HIV on antiretroviral therapy: a systematic
395		review with meta-analysis. J Hum Hypertens. 2016 Jun;30(6):355–62.
396	35.	Lubega G, Mayanja B, Lutaakome J, Abaasa A, Thomson R, Lindan C. Prevalence and factors

397 associated with hypertension among people living with HIV/AIDS on antiretroviral therapy in


398		Uganda. Pan Afr Med J. 2021;38:216.
399	36.	Seaberg EC, Muñoz A, Lu M, Detels R, Margolick JB, Riddler SA, et al. Association between highly
400		active antiretroviral therapy and hypertension in a large cohort of men followed from 1984 to
401		2003. AIDS. 2005 Jun;19(9):953–60.
402	37.	van Zoest RA, Wit FW, Kooij KW, van der Valk M, Schouten J, Kootstra NA, et al. Higher
403		prevalence of hypertension in HIV-1-infected patients on combination antiretroviral therapy is
404		associated with changes in body composition and prior stavudine exposure. Clin Infect Dis.
405		2021;63(2).
406	38.	Hamooya BM, Mulenga LB, Masenga SK, Fwemba I, Chirwa L, Siwingwa M, et al. Metabolic
407		syndrome in Zambian adults with human immunodeficiency virus on antiretroviral therapy:
408		Prevalence and associated factors. Medicine (Baltimore). 2021 Apr;100(14):e25236.
409	39.	Phillips AN, Venter F, Havlir D, Pozniak A, Kuritzkes D, Wensing A, et al. Risks and benefits of
410		dolutegravir-based antiretroviral drug regimens in sub-Saharan Africa: a modelling study. Lancet
411		HIV [Internet]. 2019 Feb 1;6(2):e116–27. Available from: https://doi.org/10.1016/S2352-
412		3018(18)30317-5
413	40.	Appenheimer A Ben, Bokhour B, McInnes DK, Richardson KK, Thurman AL, Beck BF, et al. Should
414		Human Immunodeficiency Virus Specialty Clinics Treat Patients With Hypertension or Refer to
415		Primary Care? An Analysis of Treatment Outcomes. Open forum Infect Dis. 2017;4(1):ofx005.
416	41.	Hoang T, Goetz MB, Yano EM, Rossman B, Anaya HD, Knapp H, et al. The impact of integrated HIV
417		care on patient health outcomes. Med Care. 2009 May;47(5):560–7.
418	42.	Topp SM, Chipukuma JM, Chiko MM, Matongo E, Bolton-Moore C, Reid SE. Integrating HIV
419		treatment with primary care outpatient services: Opportunities and challenges from a scaled-up
420		model in Zambia. Health Policy Plan. 2013;28(4).
421	43.	Kimera ID, Namugenyi C, Schwartz JI, Musimbaggo DJ, Ssenyonjo R, Atukunda P, et al. Integrated

20

- 422 multi-month dispensing of antihypertensive and antiretroviral therapy to sustain hypertension
- 423 and HIV control. J Hum Hypertens. 2022 Mar;1–7.

424

21

426 Figures and Tables

- 427
- 428 Figure 1. Sample size flow diagram for analysis of persons living with HIV with hypertension in Zambia,
- 429 2021
- 430
- 431
- 432 * This is the population which was eligible for inclusion in the analysis
- 433

22

436 *Table 1.* Comparison of the variable distribution and completeness in the entire and analytic datasets for

437	hypertension	among persons	living with HIV	— Zambia, 2021
-----	--------------	---------------	-----------------	----------------

Variable	Entire dataset, n (%) (N=1,236,040)	Analytic dataset, n (%) (N=101,363)	p-value
Sex	(11-1,230,040)	(11-101,505)	
Female	781,829 (63.3)	65,570 (64.7)	<0.02
Male	454,211 (36.7)	35,793 (35.3)	
Age group	13 1,211 (30.7)	33,733 (33.3)	
18-29 years	232,099 (18.8)	16,191 (16.0)	<0.02
30-44 years	585,455 (47.4)	45,850 (45.2)	
45-59 years	350,092 (28.3)	32,681 (32.2)	
≥60 years	68,394 (5.5)	6,641 (6.6)	
Province	00,004 (0.0)	0,041 (0.0)	
Central	125,704 (10.2)	2,813 (2.8)	<0.0
Copperbelt	238,609 (19.3)	7,197 (7.1)	
Eastern	105,595 (8.5)	3,672 (3.6)	
Luapula	55,168 (4.5)	54.0 (0.1)	
Lusaka	343,981 (27.8)	45,414 (44.8)	
Muchinga	32,978 (2.7)	512 (0.5)	
Northern	52,014 (4.2)	58.0 (0.1)	
Northwestern	36,016 (2.9)	1,893 (1.9)	
Southern	128,299 (10.4)	35,082 (34.6)	
Western	91,156 (7.4)	4,120 (4.1)	
Missing	26,520 (2.1)	548 (0.5)	
Urban/rural designation			
Rural	387,472 (31.3)	18,454 (18.2)	<0.0
Urban	736,921 (59.6)	78,123 (77.1)	
Missing	111,647 (9.0)	4,786 (4.7)	
Years on ART	111,017 (5.0)	1,700 (1.7)	
0-1	340,014 (27.5)	19,087 (18.8)	<0.0
2-4	419,400 (33.9)	28,182 (27.8)	
5-9	301,575 (24.4)	32,408 (32.0)	
≥10	175,051 (14.2)	21,686 (21.4)	
Current ART regimen			
Efavirenz-based	49,083 (4.0)	1,423 (1.4)	<0.0
Dolutegravir-based	1,137,837 (92.1)	97,049 (95.7)	
Both efavirenz and dolutegravir listed	3,291 (0.3)	133 (0.1)	
Other	45,829 (3.7)	2,758 (2.7)	
Most recent ART prescription length	.0,020 (0.7)	2,730 (2.7)	
<3 months	141,776 (11.5)	6,275 (6.2)	<0.0
3-5 months	373,549 (30.2)	27,839 (27.5)	
6+ months	720,706 (58.3)	67,249 (66.3)	

23

Missing	9.00 (0.0)	0 (0.0)	
Body mass index (kg/m²)			
Normal (18.5-24.9)	336,236 (27.2)	51,056 (50.4)	<0.01
Low (<18.5)	59,860 (4.8)	8,776 (8.7)	
Overweight (25.0-29.9)	107,253 (8.7)	19,668 (19.4)	
Obesity (≥30.0)	53,674 (4.3)	10,585 (10.4)	
Missing	679,017 (54.9)	11,278 (11.1)	
Initial CD4+ count (cells/mm³)			
0-200	62,431 (5.1)	7,694 (7.6)	<0.02
201-350	61,544 (5.0)	7,195 (7.1)	
>350	107,473 (8.7)	12,847 (12.7)	
Missing	100,4592 (81.3)	73,627 (72.6)	
Most recent CD4+ count (cells/mm ³)*			
0-200	59 <i>,</i> 590 (4.8)	6,994 (6.9)	<0.0
201-350	101,297 (8.2)	12,567 (12.4)	
>350	369,859 (29.9)	49,690 (49.0)	
Missing	705,294 (57.1)	32,112 (31.7)	
Most recent viral load (copies/mL) ⁺			
<1000	975,952 (79.0)	92,115 (90.9)	<0.0
1,000-9,999	16,881 (1.4)	1,494 (1.5)	
≥10,000	26,338 (2.1)	2,595 (2.6)	
Missing	216,869 (17.5)	5,159 (5.1)	
Most recent creatinine [‡]			
Normal	36,457 (2.9)	8,892 (8.8)	<0.02
High	5,829 (0.5)	1,254 (1.2)	
Missing	119,3754 (96.6)	91,217 (90.0)	
Data capture at point-of-care			
Paper-based with retrospective input	495,498 (40.1)	73,406 (72.4)	<0.0
Direct electronic input	552,109 (44.7)	17,197 (17.0)	
Missing	188,433 (15.2)	10,760 (10.6)	

health record

* 38.9% of recent CD4+ count measurements were from 2020 or 2021

⁺ 98.4% of recent viral load measurements were from 2020 or 2021

[‡] Elevated creatinine defined as \geq 115 µmol/L in men and \geq 98 µmol/L in women ART: antiretroviral therapy

24

440 Table 2. Hypertension prevalence and odds ratios of hypertension among persons living with HIV —

441 Zambia, 2021 (N=101,363)*

	Prevalence, %	OR (95% CI)	aOR (95% CI) ⁺
Overall	14.7		
Sex			
Female	13.7	Referent	Referent
Male	16.4	1.23 (1.19-1.28)	1 (0.96-1.04)
Age group			
18-29 years	4.3	Referent	Referent
30-44 years	10.1	2.53 (2.33-2.75)	2.61 (2.39-2.85
45-59 years	21.6	6.19 (5.71-6.71)	6.36 (5.81-6.96
≥60 years	37.4	13.42 (12.26-14.7)	14.54 (13.14-16.09
Province			· · · · · ·
Central	11.8	Referent	Referen
Copperbelt	18.1	1.65 (1.45-1.88)	1.25 (1.08-1.44
Eastern	10.3	0.87 (0.74-1.01)	0.62 (0.5-0.78
Luapula	5.6	0.44 (0.14-1.42)	0.4 (0.09-1.67
Lusaka	15.4	1.37 (1.22-1.54)	1.11 (0.97-1.26
Muchinga	3.7	0.29 (0.18-0.46)	0.37 (0.21-0.63
Northern	10.3	0.87 (0.37-2.03)	1.23 (0.42-3.58
Northwestern	12.4	1.06 (0.88-1.26)	0.92 (0.76-1.11
Southern	14.6	1.28 (1.14-1.44)	0.97 (0.85-1.1
Western	8.9	0.73 (0.62-0.85)	0.78 (0.66-0.92
Urban/rural designation			
Rural	9.0	Referent	Referen
Urban	16.0	1.92 (1.82-2.03)	1.93 (1.81-2.05
Years on ART			
0-1	10.8	Referent	Referen
2-4	12.8	1.21 (1.14-1.28)	1.04 (0.97-1.11
5-9	15.0	1.46 (1.38-1.54)	1.02 (0.95-1.08
≥10	20.1	2.09 (1.97-2.21)	1.07 (1.00-1.14
ART regimen [‡]			
Efavirenz-based	11.5	Referent	Referen
Dolutegravir-based	14.8	1.33 (1.13-1.57)	1.15 (0.96-1.38
Other	13.7	1.22 (1.00-1.48)	1.00 (0.80-1.24
Most recent ART prescription length			
<3 months	11.3	Referent	Referen
3-5 months	12.6	1.14 (1.04-1.24)	0.98 (0.89-1.09
≥6 months	15.9	1.48 (1.36-1.60)	1.11 (1.01-1.22
Body mass index (kg/m²)			
Normal (18.5-24.9)	11.6	Referent	
Low (<18.5)	8.6	0.72 (0.66-0.78)	
Overweight (25-29.9)	19.9	1.9 (1.82-1.99)	

25

Obesity (≥30.0)	28.7	3.08 (2.93-3.24)	
Initial CD4+ count (cells/mm³)			
0-200	15.2	Referent	
201-350	15.0	0.98 (0.9-1.07)	
>350	13.6	0.87 (0.81-0.95)	
Most recent CD4+ count (cells/mm ³)			
0-200	15.2	Referent	
201-350	17.0	1.15 (1.06-1.24)	
>350	16.2	1.09 (1.01-1.16)	
Most recent viral load count (copies/mL)			
<1000	15.1	Referent	Referent
1,000-9,999	11.5	0.73 (0.62-0.86)	0.96 (0.81-1.14)
≥10,000	10.9	0.69 (0.61-0.78)	1.02 (0.89-1.17)
Most recent creatinine [¶]			
Normal creatinine	17.3	Referent	
Elevated creatinine	28.1	1.88 (1.64-2.15)	
		6 · · · · · · · · ·	

* Hypertension defined as ≥ 2 systolic blood pressure readings of ≥ 140 mmHg or ≥ 2 diastolic blood pressure readings of ≥ 90 mmHg among persons with ≥ 2 clinical visits during 2021

⁺ Adjusted for sex, age group, province, urban/rural designation, ART regimen, years on ART, script length, and body mass index

⁺ The most recently listed ART regimen in SmartCare electronic health record. If a regimen listed both dolutegravir and efavirenz, then it was excluded from the analysis (n= 128)

[¶] Elevated creatinine defined as ≥115 µmol/L in men and ≥98 µmol/L in women, corresponding to glomerular filtration rate of <60 mL/min/1.73m²

aOR: adjusted odds ratio; ART: antiretroviral therapy; CI: confidence interval; OR: odds ratio

26

443	<i>Table 3</i> . Prevalence and odds ratios of elevated creatine among persons living with HIV — Zambia, 2021	
-----	---	--

444 (N=10,146)*

	Prevalence, %	OR (95% CI)	aOR (95% CI)⁺
Overall	12.4		
Blood pressure			
Not hypertensive [‡]	10.9	Referent	Referent
Hypertensive [‡]	18.7	1.88 (1.64-2.15)	1.36 (1.18-1.57)
Sex			
Female	11.1	Referent	Referent
Male	14.4	1.35 (1.2-1.52)	1.19 (1.06-1.35)
Age Group			
18-29 years	4.8	Referent	Referent
30-44 years	10.2	2.28 (1.8-2.89)	2.21 (1.75-2.81)
45-59 years	15.7	3.72 (2.95-4.69)	3.38 (2.67-4.28)
≥60 years	27.0	7.42 (5.69-9.68)	6.37 (4.85-8.37)

* Elevated creatinine defined as \geq 115 µmol/L in men and \geq 98 µmol/L in women, corresponding to glomerular filtration rate of <60 mL/min/1.73m²

⁺ Adjusted for presence/absence of hypertension, sex, and age group

⁺ Hypertension defined as as having ≥2 systolic blood pressure readings of ≥140 mmHg or ≥2 diastolic blood pressure readings of ≥90 mmHg during the study period

aOR: adjusted odds ratio; CI: confidence interval; OR: odds ratio