Overestimation of anticoagulant benefit in patients with atrial fibrillation and low life expectancy: evidence from 12 randomized trials

Sachin J. Shah, MD, MPH (1); Carl van Walraven, MD, MSc (2); Sun Young Jeon, PhD (3); W. John Boscardin, PhD (3, 4); FD Richard Hobbs, FMedSci (5), Stuart Connolly, MD (6); Michael Ezekowitz MB, ChB, DPhil (7); Kenneth E. Covinsky, MD, MPH (3); Margaret Fang, MD, MPH (3), Daniel E. Singer, MD (1)

(1) Division of General Internal Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
(2) Departments of Medicine and Epidemiology & Community Medicine, University of Ottawa, Ottawa ON, CA
(3) Department of Medicine, University of California San Francisco, San Francisco, CA, USA
(4) Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
(5) Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford UK
(6) Population Health Research Institute, McMaster University, Hamilton, ON, Canada
(7) Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USA and Cardiovascular Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, USA

Corresponding Author
Sachin J. Shah, MD, MPH
100 Cambridge Street, Suite 1600
Boston, MA 02114
sshah@mgh.harvard.edu
415-862-8616

Manuscript: 3113 words
Abstract: 266 words

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objectives: Compare anticoagulant benefit for patients with atrial fibrillation estimated with the CHA2DS2-VASc model vs. a Competing Risk Model that accounts for the competing risk of death and does not assume a consistent growth in treatment benefit over time.

Design: Secondary analysis of randomized controlled trials (RCTs).

Setting: 12 RCTs randomizing patients with atrial fibrillation to oral anticoagulants or either placebo or antiplatelets.

Participants: 7933 adults with non-valvular atrial fibrillation.

Exposure: Predicted anticoagulant absolute risk reduction (ARR) by guideline-endorsed model (CHA2DS2-VASc) vs. a Competing Risk Model that uses the same inputs as CHA2DS2-VASc but accounts for the competing risk of death and allows for non-linear growth in benefit over time.

Main outcome measures: Ischemic stroke or systemic embolism

Results: 7933 participants had a median life expectancy of 8 years (IQR 6, 12), determined by comorbidity-adjusted life tables. 43% were randomized to oral anticoagulation (median age 73 years, 36% women). The guideline-endorsed CHA2DS2-VASc model estimated a larger ARR than the Competing Risk Model (median ARR at 3 years, 6.9% vs. 5.2%). ARR differences varied by life expectancies: for those with life expectancies in the highest decile, 3-year ARR difference (CHA2DS2-VASc model – Competing Risk Model 3-year risk) was -1.2% (42% relative underestimation); for those with life expectancies in the lowest decile, 3-year ARR difference was 5.9% (91% relative overestimation).

Conclusions: Anticoagulants effectively reduced stroke risk, but their benefits were misestimated with CHA2DS2-VASc, which does not account for the competing risk of death nor
decelerating treatment benefit over time. Overestimation was most pronounced in patients with
the lowest life expectancy and when benefit was estimated over a multi-year horizon.
Introduction

Anticoagulants are the mainstay of preventative therapy for millions of older adults with atrial fibrillation. While anticoagulants reduce the risk of ischemic stroke and systemic embolism, they also increase the risk of bleeding. To help patients and clinicians weigh the risks and benefits of treatment, clinical guidelines and decision support tools endorse using the CHA2DS2-VASc score to estimate a patient’s annual risk of ischemic stroke or systemic embolism without treatment.\(^1\text{–}^5\) The ACC/AHA/HRS consensus guidelines recommend that this baseline risk be used to estimate a patient’s expected absolute risk reduction by applying the relative risk reduction from a meta-analysis of randomized trials.\(^1\text{,}^6\) Guidelines recommend anticoagulant therapy when the absolute risk reduction exceeds a threshold. The premise is that treatment benefits outweigh risks when an individual’s estimated event risk exceeds this threshold.

While transparent, this approach makes two assumptions that can affect the accuracy of expected benefit. First, this approach does not account for the competing risk of death. A competing risk is an alternative outcome that occurs before, and necessarily precludes, the event of interest (e.g., cancer death before stroke from atrial fibrillation), thus limiting the absolute benefit achievable by anticoagulant treatment.\(^7\text{–}^{11}\) Competing risks are germane to anticoagulant use in atrial fibrillation because 80% of older adults with atrial fibrillation have geriatric syndromes (e.g., falls, activities of daily living impairments), which are associated with limited life expectancy.\(^12\text{,}^{13}\) Second, this approach assumes that the therapeutic benefit continues to increase at a constant rate over time—that is, the risk of stroke over two years is twice the one-year risk and thus the absolute risk reduction over two years is twice the one-year absolute risk reduction. Both issues are readily addressed by estimating benefit using a competing risk model; however, it is unknown if doing so will materially affect absolute risk reduction estimates attributable to anticoagulants.
We used patient-level data from 12 randomized trials of anticoagulants for atrial fibrillation to determine if a competing risk model affects the measurement of absolute stroke risk reduction. First, we compared the guideline-endorsed approach to measuring absolute risk reduction (i.e., CHA$_2$DS$_2$-VASc score) to a competing risk model (i.e., Fine-Gray model14), using the same covariates as the CHA$_2$DS$_2$-VASc score to estimate risk reduction. Second, we determined if differences in expected stroke risk reduction between the guideline-endorse CHA$_2$DS$_2$-VASc approach and a competing risk model varied by life expectancy.

Methods

Study design and participants

We used patient-level data from the Atrial Fibrillation Investigators (AFI) database to address the study objectives. In brief, the AFI database contains patient-level data from 12 published clinical trials where patients were randomized to full-dose oral anticoagulant (OAC), antiplatelets, or placebo. Trials include Atrial Fibrillation, Aspirin, and Anticoagulation Study 1 (AFASAK-1),15 AFASAK-2,16 Boston Area Anticoagulation Trial for Atrial Fibrillation (BAATAF),17 Birmingham Atrial Fibrillation Treatment of the Aged Study (BAFTA),18 Canadian Atrial Fibrillation Anticoagulation (CAFA),19 European Atrial Fibrillation Trial (EAFT),20 Primary Prevention of Arterial Thromboembolism in Atrial Fibrillation (PAATAF),21 National Study for Prevention of Embolism in Atrial Fibrillation (NASPEAF),22 the Stroke Prevention in Atrial Fibrillation 1 (SPAF-1),23 SPAF-2,24 SPAF-3,25 and Stroke Prevention in Non-rheumatic Atrial Fibrillation (SPINAF).26 We did not include patients with mitral stenosis and patients in SPAF-1, EAFT, PATAF, and SPAF-3 who were deemed ineligible to receive anticoagulants (trial details in Appendix 1 and Appendix 2).
Participant characteristics

Research coordinators and physicians collected patient characteristics before therapy initiation. While specific features varied from study to study, common elements included a history of stroke or transient ischemic attack, hypertension or systolic blood pressure ≥ 160 mmHg or use of antihypertensives, diabetes, angina, myocardial infarction, peripheral vascular disease, smoking, and congestive heart failure, and body mass index. History of myocardial infarction was not collected in NASPEAF and peripheral vascular disease was not collected in AFASAK1, BAATAF, or BAFTA. Because history of myocardial infarction and peripheral vascular disease were missing for all participants in specific trials, we assumed they were missing at random and imputed them in 20 datasets using chained equations. We excluded <1% of participants who were missing data otherwise collected in a given trial (Appendix 3).

Treatment exposure

We examined all patients based on their treatment allocation (i.e., intention to treat). Because studies have shown that antiplatelet and low-dose warfarin are ineffective thromboprophylaxis in AF, we categorized all trial participants as being randomized to full-dose anticoagulants or control. Patients randomized to placebo, antiplatelets, low-dose warfarin, or low-dose warfarin with aspirin were considered controls. AFASAK2, PAATAF, and SPAF3 used low-dose warfarin and reported a mean international normalized ratio (INR) of < 1.5 supporting their categorization as a control. While NASPEAF also had a low-dose anticoagulant arm, the mean INR was 2.0; therefore, we excluded participants randomized to the NASPEAF low-dose anticoagulant arm.
Outcome ascertainment

The primary outcome was ischemic stroke or systemic embolism. We detail outcome definitions by trial in Appendix 4. In general, trials defined ischemic stroke as a focal neurological deficit lasting >24 hours. All trials except AFASAK-1 required a CT or MRI showing the absence of blood. Systemic embolism was collected as an outcome in all but SPINAF and, by and large, defined as an embolism to internal organs or limbs and required evidence via angiography, surgery, or autopsy (Appendix 4). Patients were evaluated at 3- to 6-month intervals or when a clinical outcome event was suspected. Except in AFASAK-1, a central committee, blinded to intervention allocation, adjudicated all clinical events.

Life expectancy

We estimated the life expectancy of each participant at the time of trial enrollment using the life table method.28 We started with gender- and enrollment year-specific life tables from the U.S. Centers for Disease Control and Prevention, aggregated by the Berkeley Center for Demography.29 These tables, generated from population data, predict annual mortality rates stratified by age, sex, and year. The life table method uses these stratified annual mortality rates to calculate life expectancy. We used the life table method to estimate each participant’s life expectancy by adjusting the annual mortality rate for the additional mortality risk associated with their comorbidities at the time of trial enrollment (Appendix 5).

Analysis

Guidelines recommend using the CHA2DS2-VASc score to estimate anticoagulation benefit.1–3 Thus, to speak directly to guideline-recommended clinical practice, we estimated absolute risk reduction from anticoagulants using the CHA2DS2-VASc score as the base case.
Our first analytic goal was to determine if using a competing risk framework generates estimates of stroke risk reduction different from those of the guideline-endorsed CHA₂DS₂-VASc model. To accomplish this, we estimated the absolute risk reduction as the ACC/AHA/HRS guidelines recommend. Specifically, we assigned each patient an off-treatment risk of ischemic stroke or systemic embolism corresponding to their CHA₂DS₂-VASc score. Rates come from the 2012 study by Friberg et al., which used the Swedish Atrial Fibrillation cohort to validate off-treatment thromboembolic rates corresponding to each CHA₂DS₂-VASc score. These rates are used in patient-facing decision tools, online calculators, and decision analytic models. To calculate the absolute risk reduction, we multiplied the off-treatment stroke rate by 0.64, the efficacy of anticoagulants by Hart et al. Using this procedure for each patient, we estimated the annual absolute risk reduction; this precise method is endorsed by the ACC/AHA/HRS Atrial Fibrillation management guidelines to estimate benefit. Because patients and physicians prefer to make anticoagulant decisions using a 1-to-5-year time horizon, we extrapolated this annual reduction over five years. To account for the declining population at-risk when estimating absolute risk reduction from the baseline stroke annual rate, we used the following standard formula:

\[\text{ARR in year } Y = 1 - \exp(-\text{annual stroke rate} \times 0.64 \times Y). \]

The same approach is also used in decision aids.

Next, we estimated the absolute risk reduction using the Fine-Gray extension of the Cox proportional hazards model, treating death unrelated to ischemic stroke or systemic embolism as a competing event. We fit a Fine-Gray model where time to ischemic stroke or systemic embolism is a function of age (<65 years, 65-74 years, >75years), gender, congestive heart failure, diabetes, hypertension, prior stroke or transient ischemic attack, and vascular disease stratified by randomization to oral anticoagulants. We chose these covariates since they are the same inputs used in the CHA₂DS₂-VASc score. We then used the resulting treatment-stratified models to estimate the cumulative incidence of ischemic stroke or systemic embolism for each
participant given their covariates at each study time point, assuming first they had been randomized to oral anticoagulants and then assuming they had been randomized to control (i.e., predicted values). The difference between the two estimates represented the ARR for a given patient at a given time point. We determined the misestimation of the CHA₂DS₂-VASc method as the difference between the ARR estimated by CHA₂DS₂-VASc and the ARR estimated by the Competing Risk Model. We used the paired t-test to determine if the two methods produced statistically different estimates of benefit at each year after randomization.

Our second analytic goal was to determine if life expectancy predicted variation in the CHA₂DS₂-VASc model misestimation. To achieve this, we determined the association between life expectancy and misestimation of the CHA₂DS₂-VASc method over a 3-year horizon. We chose 3 years since it is the midpoint between the 1-to-5 year horizon preferred by patients and physicians and has been used in prior anticoagulation decision analyses. We examined misestimation of the CHA₂DS₂-VASc method by decile of life expectancy at trial enrollment, hypothesizing that the misestimation would be greater at lower life expectancies.

We performed all statistical analyses using SAS 9.4 (Cary, NC). This study protocol was approved by the University of California, San Francisco Human Subjects Research Committee (21-34930), and Massachusetts General Hospital (2022P001783).

Patient and public involvement

Patients were not involved in the design, conduct, or reporting of this study. The UCSF Patient and Family Advisory Council has advised on how best incorporation of the study findings (i.e., stroke rates) into patient-facing decision aids.
Results

Patient characteristics and overall event rates

This study included 7933 patients from 12 randomized trials where 3407 (43%) were randomized to oral anticoagulation (Table 1). The median age was 73 years at enrollment, 36% were women, and the median CHA₂DS₂-VASc score was 3 [IQR 2, 4]. At enrollment, the median life expectancy was 8 years [IQR 6, 12] (Appendix 6). Most patients (83%) ended the follow-up period without a clinical event (median follow-up time 731 days, IQR [415, 1025]). (Table 2). In these trials, 530 (7%) patients’ first clinical event was an ischemic stroke or systemic embolism (median time to event 334 days [IQR 120, 580]). Additionally, 630 (8%) patients died before any other clinical event (median time event 457 days [IQR 216, 772]).

Relative hazard of ischemic stroke and systemic embolism

Anticoagulants were effective at reducing the relative hazard of ischemic stroke and systemic embolism (Appendix 7). The Fine-Gray model, which treated death as a competing event, estimated anticoagulants reduced the hazard of ischemic or systemic embolism by 61% compared to placebo and antiplatelets (hazard ratio 0.39, 95% CI 0.31 to 0.49).

Comparison of absolute risk reduction estimates

Relative to the Competing Risk Model, the CHA₂DS₂-VASc model overestimated the absolute risk reduction (ARR) of anticoagulants (Figure 1, Appendix 9). As the time horizon increased, the CHA₂DS₂-VASc estimate of median benefit increased linearly. In contrast, in the Competing Risk Model estimated a non-linear absolute risk reduction over time—while benefit increased over time, it decelerated, i.e., absolute risk reduction grew by less each year. As a
result, the CHA$_2$DS$_2$-VASc model overestimated anticoagulation benefit as the time-horizon increased. After 1 year, the CHA$_2$DS$_2$-VASc model and the Competing Risk Model produced clinically similar estimates of absolute risk reduction, although the CHA$_2$DS$_2$-VASc estimate was statistically smaller (median ARR 2.3\% vs. 2.4\%, p<0.001). After 3 years, the CHA$_2$DS$_2$-VASc-based ARR was clinically and statistically larger than the Competing Risk Model (median ARR 6.9\% vs. 5.2\%, p<0.001). This difference increased when absolute risk reduction was estimated over a 5-year horizon (median ARR 11.2\% vs. 6.3\%, p<0.001).

In a sensitivity analysis, we assessed the possibility that because the guideline estimates of absolute risk reduction were developed in external cohorts, they may be miscalibrated (Appendix 8). The sensitivity analysis shows that recalibrating the absolute risk reduction of CHA$_2$DS$_2$-VASc score in the AFI database does not meaningfully change the results presented in Figure 1.

Life expectancy and misestimation of benefit

As life expectancy decreased, the CHA$_2$DS$_2$-VASc model increasingly overestimated the stroke and systemic embolism risk reduction attributable to anticoagulants in absolute and relative terms (Figure 2). The figure plots the absolute and relative difference between the 3-year ARR estimated by the CHA$_2$DS$_2$-VASc model and the Competing Risk Model by life expectancy decile at trial enrollment. In the decile with the highest life expectancy (16 to 47 years), on average, over 3 years, the CHA$_2$DS$_2$-VASc model underestimated benefit by 1.2\% (95\% CI 1.1\% to 1.3\%) in absolute terms and 42\% (95\% CI 40\% to 45\%) in relative terms. By comparison, in the decile with the lowest life expectancy (1 to 4 years), on average over 3 years, the CHA$_2$DS$_2$-VASc model overestimated benefit by 5.9\% (95\% CI 5.6\% to 6.1\%) in absolute terms and 91\% (95\% CI 87\% to 95\%) in relative terms.
Using patient-level data from 12 randomized trials, we demonstrated that while anticoagulants effectively reduce ischemic stroke and systemic embolism risk, failing to use a competing risks framework resulted in a meaningful overestimation of treatment benefit. This finding was most pronounced when risk reduction was estimated over a multi-year horizon. Further, we showed that as life expectancy decreased, treatment benefit was increasingly underestimated. While those with the highest life expectancy may benefit more than guideline estimates would suggest, benefit for those with the lowest life expectancy was strikingly overestimated.

The study results directly apply to the AHA/ACC/HRS1,2 and European Society of Cardiology (ESC)3 atrial fibrillation guidelines in which the cornerstone of anticoagulant decision-making is estimating the absolute risk reduction. Guidelines ask clinicians to estimate the off-treatment stroke risk using the CHA\textsubscript{2}DS\textsubscript{2}-VASc score and to use that baseline risk to infer the probable absolute risk reduction. Anticoagulants are recommended above a CHA\textsubscript{2}DS\textsubscript{2}-VASc score threshold—i.e., when the absolute risk reduction exceeds a threshold. Thus, if clinical guidelines continue to recommend treatment using an absolute risk reduction threshold, these results suggest guidelines should re-estimate benefit using a competing risk framework. At the very least, guidelines should acknowledge that current methods overestimate benefits for those with limited life expectancy and when estimating benefits over a multi-year horizon.

The current study’s findings should influence anticoagulant decision aids for patients with atrial fibrillation. To advance anticoagulant shared decision-making, investigators and professional societies have developed conversation aids that display a patient’s risk of stroke with and without anticoagulants. For example, the American College of Cardiology’s CardioSmart tool and the Mayo Clinic Anticoagulation Choice Decision Aid both display a pictogram of absolute risk with and without treatment to communicate treatment effects.4,5
These implementation tools are built to reflect clinical guidelines and do so faithfully. However, both should note that benefit estimates are overstated for those with limited life expectancy and when benefit is estimated over a multi-year horizon.

These results also lend credence to physicians for whom advanced age, frailty, and function—all significant determinants of life expectancy—factor in their anticoagulant decision-making.成年人 aged 65 years and older constitute 80% of all American adults with atrial fibrillation.进一步, prior work indicates that upwards of 80% of older adults with atrial fibrillation have geriatric syndromes (e.g., dependency in activities of daily living) known to be associated with a reduced life expectancy. 在 this study, we estimated life expectancy using basic medical comorbidity data available in the trial database. Modern, more accurate tools go beyond comorbidities using physical function, cognition, and self-reported health to estimate life expectancy. Life expectancy estimates from such tools are routinely used to inform the risk and benefits of interventions in older adults (e.g., cancer screening). Until guidelines formally account for it, clinicians may consider estimating life expectancy to guide the discussion about the benefit of anticoagulants when treating older adults. This may be particularly relevant when treating patients with both a limited life expectancy and borderline CHA2DS2-VASc scores.

Finally, these findings should inform the methods used to develop and validate future stroke risk models. While the CHA2DS2-VASc score continues to be endorsed by U.S. and European guidelines, investigators are actively developing a new generation of stroke risk prediction models. Contemporary models like the ABC stroke risk score, CARS, and the ATRIA stroke model all outperform the CHA2DS2-VASc score. However, none used an analysis framework that both accounts for the competing risk of death and changing risk over a multi-year horizon. The ABC model establishes a non-linear stroke risk by showing 3-year risk is not simply three times the 1-year risk, findings that were redemonstrated in this paper. When developing the ABC model, Hijazi et al. also conducted a sensitivity analysis comparing their...
model to a competing risk model. They found a tight correlation when risk was estimated over a 1-year horizon, results mirrored in this study. We expanded on their work by showing that this correlation was weaker when using a longer time horizon (e.g., 3 years). More importantly, we identified substantial heterogeneity—as life expectancy decreased, overestimation increased.

There are limitations to this study inherent to the data available and the study design. First, this study relied on data from RCTs conducted between 1989 and 2007 and thus may be only partially representative of contemporary patients with atrial fibrillation. Specific differences include the risk of stroke and death from non-atrial fibrillation causes and the added safety of direct-acting anticoagulants. This limitation is balanced by the fact that the AFI cohort is one of the largest patient-level atrial fibrillation cohorts where anticoagulant treatment was randomized. The results were unaffected by selection bias that hampers contemporary risk models developed in observational cohorts. More importantly, while dated, these trials are the foundation upon which current guidelines recommend anticoagulants. Second, this study could not address the relationship between life expectancy and the misestimation of anticoagulant harm. Specifically, the AF Investigators database does not include inputs used in contemporary hemorrhage prediction tools (e.g., ATRIA bleed, HAS-BLED). While it is important to consider the effect a competing risk framework may have on estimating the risk of bleeding, current guidelines do not incorporate bleeding risk into treatment recommendations. For example, for patients with scores above the CHA₂DS₂-VASc treatment threshold, guideline recommendations do not change whether the bleeding risk is high or low. Finally, because nationality was unavailable for study participants, we relied on U.S. life tables to calculate life expectancy.

In summary, we showed that while oral anticoagulants were effective, treatment benefit was overstated when using the guideline-endorsed approach because guidelines do not account for the competing risk of death and assume a constant growth in treatment benefit over time. Overestimation was most pronounced in patients with the lowest life expectancy and when
benefit was estimated over a multi-year horizon. These findings should inform guidelines and
decision aids, clinicians treating patients with limited life expectancy, and investigators
developing stroke risk prediction models.
ACKNOWLEDGMENTS

We thank Dr. Sei Lee, Professor of Medicine at UCSF, for his valuable methodological feedback. Dr. Shah had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Conflict of Interest Disclosure: Dr. Shah, Dr. Jeon, Dr. Boscardin, and Dr. Covinsky reported funding from the National Institute on Aging/National Institutes of Health related to the conduct of this study (noted below). Dr. Fang reported grants from the National Heart, Lung, and Blood Institute/National Institutes of Health during the conduct of the study (K24HL141354) and grants from Patient-Centered Outcomes Research Institute outside the submitted work. Dr. Singer was supported, in part, by the Eliot B. and Edith C. Shoolman Fund of Massachusetts General Hospital. He has received research support from Bristol Myers Squibb and consultancy fees from Bristol-Myers Squibb, Fitbit, Medtronic, and Pfizer. Professor Hobbs is, in part, supported by the NIHR (ARC OTV and MIC) and has received occasional consultancy fees from Bayer, BMS Pfizer, Novartis, and AZ unconnected to this study.

Funding: This study was funded by the NIA (K76AG074919, P30AG044281).

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Data sharing: Researchers can apply to the AF Investigators for data access.

Ethical review: The Committee on Human Research at the University of California, San Francisco, and the Partners Human Research Committee at Massachusetts General Hospital approved the analysis for this study and waived the requirement for patient consent (Protocol 21-35046 and 2022P001783, respectively).
References

37. Shah Sachin J., Singer Daniel E., Fang Margaret C., Reynolds Kristi, Go Alan S., Eckman Mark H. Net Clinical Benefit of Oral Anticoagulation Among Older Adults With Atrial
doi:10.1161/CIRCOUTCOMES.119.006212

Table 1: Characteristics of patients with atrial fibrillation in 12 randomized trials

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>n=7933</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years (median [IQR])</td>
<td>73 [67, 78]</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>5040 (64%)</td>
</tr>
<tr>
<td>Female</td>
<td>2893 (36%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>6780 (85%)</td>
</tr>
<tr>
<td>Yes</td>
<td>1153 (15%)</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>4049 (51%)</td>
</tr>
<tr>
<td>Yes</td>
<td>3884 (49%)</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>5533 (70%)</td>
</tr>
<tr>
<td>Yes</td>
<td>2400 (30%)</td>
</tr>
<tr>
<td>Prior stroke</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>6413 (81%)</td>
</tr>
<tr>
<td>Yes</td>
<td>1520 (19%)</td>
</tr>
<tr>
<td>Angina</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>6566 (83%)</td>
</tr>
<tr>
<td>Yes</td>
<td>1367 (17%)</td>
</tr>
<tr>
<td>Prior myocardial infarction</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>6514 (82%)</td>
</tr>
<tr>
<td>Yes</td>
<td>876 (11%)</td>
</tr>
<tr>
<td>Missing*</td>
<td>543 (7%)</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>5109 (64%)</td>
</tr>
<tr>
<td>Yes</td>
<td>429 (5%)</td>
</tr>
<tr>
<td>Missing†</td>
<td>2395 (30%)</td>
</tr>
<tr>
<td>Body mass index kg/m² (median [IQR])</td>
<td></td>
</tr>
<tr>
<td>BMI among those with data</td>
<td>26 [24, 29]</td>
</tr>
<tr>
<td>Missing‡</td>
<td>2070 (26%)</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
</tr>
<tr>
<td>Never smoker</td>
<td>2427 (31%)</td>
</tr>
<tr>
<td>Former smoker</td>
<td>1843 (23%)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>790 (10%)</td>
</tr>
<tr>
<td>Missing§</td>
<td>2873 (36%)</td>
</tr>
<tr>
<td>CHA₂DS₂-VASc score</td>
<td></td>
</tr>
<tr>
<td>Score (median [IQR])</td>
<td>3 [2, 4]</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Missing</td>
<td>2938 (37%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trial</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AFASAK1</td>
<td>1002 (13%)</td>
</tr>
<tr>
<td>AFASAK2</td>
<td>677 (9%)</td>
</tr>
<tr>
<td>BAATAF</td>
<td>420 (5%)</td>
</tr>
<tr>
<td>BAFTA</td>
<td>973 (12%)</td>
</tr>
<tr>
<td>CAFA</td>
<td>375 (5%)</td>
</tr>
<tr>
<td>EAFT</td>
<td>661 (8%)</td>
</tr>
<tr>
<td>NASPEAF</td>
<td>543 (7%)</td>
</tr>
<tr>
<td>PATAF</td>
<td>364 (5%)</td>
</tr>
<tr>
<td>SPAF1</td>
<td>208 (3%)</td>
</tr>
<tr>
<td>SPAF2</td>
<td>1098 (14%)</td>
</tr>
<tr>
<td>SPAF3</td>
<td>1044 (13%)</td>
</tr>
<tr>
<td>SPINAF</td>
<td>568 (7%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Randomized study arm assignment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Warfarin</td>
<td>3407 (43%)</td>
</tr>
<tr>
<td>Control‡</td>
<td>4526 (57%)</td>
</tr>
</tbody>
</table>

Legend

AFASAK - Atrial Fibrillation, Aspirin, and Anticoagulation Study; BAATAF - Boston Area Anticoagulation Trial for Atrial Fibrillation; BAFTA - Birmingham Atrial Fibrillation Treatment of the Aged Study; CAFA - Canadian Atrial Fibrillation Anticoagulation; EAFT - European Atrial Fibrillation Trial; PAATAF - Primary Prevention of Arterial Thromboembolism in Atrial Fibrillation; NASPEAF - National Study for Prevention of Embolism in Atrial Fibrillation; SPAF - Stroke Prevention in Atrial Fibrillation; SPINAF - Stroke Prevention in Non-rheumatic Atrial Fibrillation

* History of myocardial infarction was not available for NSPEAF trial participants

† History of peripheral vascular disease was not available for AFASAK1, BAATAF, or BAFTA trial participants

‡ Height and weight were not available for BAATAF or AFASAK2 trial participants

§ Smoking status was not available for AFASAK1, CAFA, or BAFTA participants. In EAFT, data collection did not distinguish between former and never smokers

□ CHA\textsubscript{2}-DS\textsubscript{2}-VASc scores are for those with complete cases. It excludes 2395 participants enrolled in trials where peripheral vascular disease data are not available, and 543 participants enrolled in trials where history of myocardial infarction was not available.

¶ Control includes those assigned placebo, aspirin, low-dose warfarin, or low-dose warfarin and aspirin. Patients enrolled in SPAF3 and AFASAK2 and assigned to low-dose warfarin had a mean internal normalized ratio (INR) of < 1.5 supporting their categorization as a control. Patients enrolled in NASPEAF and randomized to low-dose anticoagulant had a mean INR of 2.0 and were therefore not included as a control.

Since missing data were missing for entire trials, they were assumed to be missing completely at random.
Table 2: Trial outcomes, rates and follow-up time

<table>
<thead>
<tr>
<th>First clinical outcome</th>
<th>Events (%)</th>
<th>Days from randomization, median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic stroke or systemic embolism</td>
<td>530 (7%)</td>
<td>334 (120, 580)</td>
</tr>
<tr>
<td>Systemic bleed</td>
<td>175 (2%)</td>
<td>413 (163, 731)</td>
</tr>
<tr>
<td>Intracranial hemorrhage</td>
<td>29 (0%)</td>
<td>300 (201, 620)</td>
</tr>
<tr>
<td>Death, all-cause</td>
<td>630 (8%)</td>
<td>457 (216, 772)</td>
</tr>
<tr>
<td>Study end without a clinical event</td>
<td>6569 (83%)</td>
<td>731 (415, 1025)</td>
</tr>
</tbody>
</table>
Figure 1: Estimated median absolute risk reduction by CHA₂DS₂-VASc model compared with Competing Risk Model

Legend

For each patient in the cohort, we estimate the absolute risk reduction attributable to oral anticoagulation annually for 5 years using the CHA₂DS₂-VASc model and again using a Fine-Gray model, a survival model that accounts for the competing risk of death. We plot the median benefit at each time point. We graphed the median ARR because the CHA₂DS₂-VASc model produces discrete estimates of benefit (i.e., not normally distributed). Data are presented as a table in Appendix 9. Component on- and off-treatment cumulative incidence rates also displayed in Appendix 9.
Figure 2: Misestimation of Stroke Risk Reduction by CHA\textsubscript{2}DS\textsubscript{2}-VASc score at 3 years,

(A) Absolute misestimation ($\text{ARR}_{\text{CHA2DS2-VASc}} - \text{ARR}_{\text{Competing Risk Model}}$)
Legend

The dot represents the mean overestimation, and the error bars represent the 95% confidence interval of the mean. The misestimation of absolute risk reduction (ARR) is calculated for each patient as the difference between the ARR computed by the CHA2DS2-VASc score and the ARR computed by the Fine-Gray model, a survival model that accounts for the competing risk of death. Positive numbers represent the overestimation of the CHA2DS2-VASc model. Tabular results can be found in Appendix 10.
Appendix

Appendix 1: Trial inclusion and exclusion criteria and study period ... 28
Appendix 2: Trial arms and enrollment .. 33
Appendix 3: Cohort flow diagram .. 35
Appendix 4: Primary Trial Outcome Definition ... 36
Appendix 5 Estimation of life expectancy .. 38
 5.1 Background .. 38
 5.2 Table: Excess mortality risk for comorbidities adjusted for in this analysis 39
 5.3 Worked example ... 39
 5.4 Performance of life expectancy compared to age .. 40
Appendix 6: Table 1 Baseline characteristic after 20 chained imputations 41
Appendix 7: Relative effectiveness of anticoagulants ... 42
Appendix 8 Comparing ARR estimated by CHA2DS2-VASc with an internally re-calibrated
 CHA2DS2-VASc ARR ... 43
 8.1 Background .. 43
 8.2 Comparison of stroke/systemic embolism rates and absolute risk reduction with
 anticoagulants per 100 person-years re-estimated in the AFI database .. 44
 8.3 Table Estimated ARR by CHA2DS2-VASc model compared with Competing Risk Model
 and recalibrated CHA2DS2-VASc (replication of Figure 1) ... 44
Appendix 9: Estimated ARR by CHA2DS2-VASc model compared to Competing Risk Model 45
 9.1 Table: Figure 1 in tabular format .. 45
 9.2 Figure: Estimated cumulative incidence of stroke or systemic embolism by model and
 treatment status ... 45
Appendix 10: Misestimation of ARR by CHA2DS2-VASc score at 3 years (Figure 2 in tabular
 format) ... 46
Appendix 1: Trial inclusion and exclusion criteria and study period

<table>
<thead>
<tr>
<th>Trial</th>
<th>Inclusion</th>
<th>Exclusion</th>
<th>Trial period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial Fibrillation, Aspirin, and Anticoagulation Study 1 (AFASAK-1)</td>
<td>≥18 years old</td>
<td>Anticoagulation for >6 months</td>
<td>Nov 1985 to Jun 1988</td>
</tr>
<tr>
<td></td>
<td>ECG-verified atrial fibrillation</td>
<td>Cerebrovascular event within the past month</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primary physician consent</td>
<td>Contraindications for aspirin or warfarin therapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Previous side-effects of aspirin or warfarin therapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pregnancy or breastfeeding</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Persistent BP > 180/100 mmHg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Psychiatric diseases</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chronic alcoholism</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heart surgery with valve replacement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rheumatic heart disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥18 years old</td>
<td>Anticoagulation for >6 months</td>
<td>May 1993 to Oct 1996</td>
</tr>
<tr>
<td>AFASAK-2</td>
<td>AF on 2+ ECGs at least 1 month apart</td>
<td>Age < 60 years with lone AF (i.e., with no underlying ischemic or hypertensive heart disease, congestive heart failure, hyperthyroidism, or chronic obstructive pulmonary disease)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mitral stenosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SBP >180 mm Hg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DBP >100 mm Hg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke or TIA within 6 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Risk factors for bleeding risk factors</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contraindication to warfarin or aspirin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Already receiving dose-adjusted warfarin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mitral stenosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atrial flutter</td>
<td></td>
</tr>
<tr>
<td>Boston Area Anticoagulation Trial for Atrial Fibrillation (BAATAF)</td>
<td>AF on 2+ ECG</td>
<td>Intermittent AF with no ECG with AF within 18 months</td>
<td>Sept 1985 to Apr 1990</td>
</tr>
<tr>
<td></td>
<td>No evidence of mitral stenosis on echocardiography</td>
<td>Transient AF during acute illness</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planned cardioversion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Echocardiographic evidence of intracardiac thrombus, ventricular aneurysm, severe congestive heart failure or prosthetic valve</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stroke <6 months ago predisposition to intracranial hemorrhage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIA requiring treatment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Predisposition to intracranial hemorrhage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indication or contraindication for anticoagulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Required aspirin therapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Abnormal thyroid function tests</td>
<td></td>
</tr>
<tr>
<td>Trial</td>
<td>Inclusion</td>
<td>Exclusion</td>
<td>Trial period</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Birmingham Atrial Fibrillation Treatment of the Aged Study (BAFTA)<sup>18</sup></td>
<td>Age ≥75 years; atrial fibrillation or atrial flutter on an ECG within the past 2 years</td>
<td>Rheumatic heart disease Major nontraumatic hemorrhage within 5 years Intracranial hemorrhage Peptic ulcer disease by endoscopy in the last year Esophageal varices Allergy to warfarin or aspirin Terminal illness as judged by primary care physician Surgery within past 3 months BP >180/110 mmHg Primary care physician judged that the patient should or should not be on warfarin (i.e., no equipoise)</td>
<td>Apr 2001 to Sept 2006</td>
</tr>
<tr>
<td>Canadian Atrial Fibrillation Anticoagulation (CAFA)<sup>19</sup></td>
<td>Chronic atrial fibrillation for ≥ 1 month or paroxysmal atrial fibrillation ≥3 times in previous 3 months (documented at least twice on ECG) Age ≥19 years old Absences of mitral valve prosthesis or mechanical aortic valve prosthesis Absence of mitral valve stenosis on echocardiography</td>
<td>Requirement for anticoagulation Contraindication to anticoagulation Stroke or TIA within the past year Requirement for antiplatelet drug therapy Hyperthyroidism Uncontrolled hypertension Myocardial infarction within the past month</td>
<td>Jun 1987 to Apr 1990</td>
</tr>
<tr>
<td>European Atrial Fibrillation Trial (EAFT)<sup>20</sup></td>
<td>Age >25 years old TIA or minor stroke (grade 3 or less on modified Rankin scale) in previous 3 months Atrial fibrillation at the time of TIA/stroke or paroxysmal atrial fibrillation in preceding 24 months No rheumatic valvular disease on echocardiography</td>
<td>Atrial fibrillation secondary to other illness (e.g., hyperthyroidism) Indication or contraindication for aspirin NSAID medication use Antiplatelet medication use Oral anticoagulation use No other cardioembolic source (e.g., prosthetic valve, cardiac aneurysm, atrial myxoma, cardiothoracic ration > 0.65, myocardial infarction in preceding 3 months, disorders of blood coagulation) Scheduled for carotid endarterectomy or coronary surgery in next 3 months</td>
<td>Oct 1988 to Apr 1993</td>
</tr>
<tr>
<td>Trial</td>
<td>Inclusion</td>
<td>Exclusion</td>
<td>Trial period</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Primary Prevention of Arterial Thromboembolism in Atrial Fibrillation (PAATAF)²¹</td>
<td>Age ≥ 60 years
Chronic or intermittent atrial fibrillation on ECG in past 2 years</td>
<td>Treatable causes of AF
Previous stroke
Rheumatic valve disease
MI or cardiovascular surgery in past 1 year
Cardiomyopathy with left ventricular ejection fraction <40%
Chronic heart failure
Cardiac aneurysm
Previous systemic or retinal infarction
Coumarin use in past 3 months
Contraindications to aspirin or coumarin (hemoglobin concentration < 7.0 mmol/l, ventricular or duodenal ulcer in the past three years, gastrointestinal or urogenital bleeding in the past year, aspirin intolerance, coagulation disorder, and severe hepatic or renal disease)</td>
<td>Jan 1990 to Dec 1996</td>
</tr>
<tr>
<td>National Study for Prevention of Embolism in Atrial Fibrillation (NASPEAF)²²</td>
<td>Chronic or documented paroxysmal atrial fibrillation
Age > 60 years
High risk by SPAF3 criteria: Impaired left ventricle manifested by congestive heart failure within 100 days or fractional shortening ≤ 25%Systolic blood pressure >160 mm Hg on one reading and >150 mm Hg on second reading or documented systolic blood pressure >160 mm Hg in preceding 3 monthsPrior ischemic stroke, TIA, or systemic embolism more than 30 days prior to entryFemale and age over 75 years</td>
<td>Mechanical valve prosthesis
Stroke in previous 6 months
Serum creatinine >3 mg/dL
Alcoholism or drug addiction
Severe uncontrolled hypertension
Indication for NSAIDs
Indication or contraindication for antiplatelet or anticoagulant therapy</td>
<td>Jun 1995 to Jun 2001</td>
</tr>
<tr>
<td>Trial</td>
<td>Inclusion</td>
<td>Exclusion</td>
<td>Trial period</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| Stroke Prevention in Atrial Fibrillation 1 study (SPAF-1) | AF on ECG (constant or intermittent) in the preceding 12 months | Prosthetic heart valve
Personal physician refuses study
No echocardiographic evidence of rheumatic mitral stenosis
Successful cardioversion (electrical or chemical)
NYHA class IV congestive heart failure
Mitrail regurgitation with congest heart failure and atrial diameter >5.5 cm
Idiopathic cardiomyopathy with congestive heart failure
Myocardial infarction in preceding 3 months
Coronary bypass surgery within previous 1 year
Coronary angioplasty within previous 3 months
Unstable angina within previous 1 year
Stroke, TIA, carotid endarterectomy in previous 24 months
Life expectancy < 24 months due to other medical condition
Chronic renal failure with serum creatinine > 3.0 mg/dL
Thrombocytopenia with platelet count < 100,000 platelets /mm³
Anemia with hemoglobin concentration < 10 g/dL
Severe chronic alcohol habituation
Indication or contraindication for warfarin or aspirin therapy
Treatment with non-steroidal anti-inflammatory drugs
Additional exclusion from anticoagulation arm:
- On antihypertensive therapy and SBP>180 mm Hg and DBP > 100 mm Hg
- Prothrombin time > 2 seconds on 2 occasions
- Stool test positive for occult blood
- Inability to obtain follow up for prothrombin time monitoring
- Previous intracranial hemorrhage, gastrointestinal, or genitourinary bleeding within previous 6 months
- Previous severe hemorrhage with therapeutic anticoagulation
- Lone AF (age<60 years, left atrial size <2.1 cm/m², no associated cardiopulmonary disease except mitral valve prolapse)
- Patient or physician refuses
- Age > 75 years (for patients enrolled before Nov 1988) | Jun 1987 to Nov 1989 |
<p>| SPAF-2™ | AF on ECG (constant or intermittent) in the preceding 12 months | Same as reported for SPAF-1 | Sept 1985 to 1992 |</p>
<table>
<thead>
<tr>
<th>Trial</th>
<th>Inclusion</th>
<th>Exclusion</th>
<th>Trial period</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAF-3°</td>
<td>AF on ECG within 6 months</td>
<td>Same as reported for SPAF-1</td>
<td>May 1993 to Oct 1995</td>
</tr>
<tr>
<td></td>
<td>1 or more high risk features:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Impaired left ventricle manifested by congestive heart failure within 100 days or fractional shortening ≤ 25%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Systolic blood pressure > 160 mm Hg on one reading and > 150 mm Hg on second reading or documented systolic blood pressure > 160 mm Hg in preceding 3 months</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Prior ischemic stroke, TIA, or systemic embolism more than 30 days prior to entry</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Female and age over 75 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No echocardiographic evidence of rheumatic heart disease</td>
<td>Definite indication for anticoagulant or antiplatelet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AF on 2 ECGs at least 4 weeks apart</td>
<td>Chronic alcoholism, social or psychological condition unsuitable to anticoagulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal prothrombin time ratio</td>
<td>Co-existing medical disorder</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hemostasis disorder</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peptic ulcer disease within 2 years, esophageal varices, history of intracranial hemorrhage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>History of gastrointestinal hemorrhage within 2 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planned surgery or invasive procedure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab abnormalities (Hct < 32%, platelet count < 100,000 /mm3, AST, ALT, or alkaline phosphatase > 2x ULN, guaiac-positive stool, > 5 RBCs/hpf in urine)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uncontrolled hypertension > 180/105 mm Hg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bacterial endocarditis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Atrial tumor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anticoagulation within 6 months ago</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use of nonsteroidal anti-inflammatory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Uninterpretable echocardiogram</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIA within 5 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Previous cerebral infarction</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyperthyroidism</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Planned cardioversion</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unstable angina</td>
<td></td>
</tr>
</tbody>
</table>

Appendix 2: Trial arms and enrollment

<table>
<thead>
<tr>
<th>Trial</th>
<th>Mean observation time</th>
<th>Anticoagulant arm(s)</th>
<th>Antiplatelet arm</th>
<th>Combination</th>
<th>Placebo arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial Fibrillation, Aspirin, and Anticoagulation Study 1 (AFASAK-1)</td>
<td>1.3 yrs</td>
<td>Dose adjusted warfarin with goal INR 2.8-4.2 (N = 335)</td>
<td>Aspirin 75 mg/d</td>
<td>n/a</td>
<td>N = 336</td>
</tr>
<tr>
<td>AFASAK-2</td>
<td>1.6 yrs</td>
<td>Fixed dose warfarin 1.25mg/d (N=167)* Dose-adjusted warfarin with goal INR 2.0-3.0 (N=170)</td>
<td>Aspirin 300 mg/d (N=169) Fixed-dose warfarin and aspirin 300 mg/d (N=171)†</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Boston Area Anticoagulation Trial for Atrial Fibrillation (BAATAF)</td>
<td>2.2 years</td>
<td>Dose-adjusted warfarin with goal INR 1.5-2.7 (N=212) ‡</td>
<td>n/a</td>
<td>n/a</td>
<td>N=208</td>
</tr>
<tr>
<td>Birmingham Atrial Fibrillation Treatment of the Aged Study (BAFTA)</td>
<td>2.7 years</td>
<td>Dose-adjusted warfarin with goal INR 2.0-3.0 (N=488)</td>
<td>Aspirin 75 mg/d</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Canadian Atrial Fibrillation Anticoagulation (CAFA)</td>
<td>1.3 years</td>
<td>Dose-adjusted warfarin with goal INR 2.0-3.0 (N=187)</td>
<td>n/a</td>
<td>n/a</td>
<td>N=191</td>
</tr>
<tr>
<td>European Atrial Fibrillation Trial (EAFT)** Group 1 (eligible for anticoagulants) §</td>
<td>2.3 years</td>
<td>Dose-adjusted warfarin with goal INR 2.5-4.0 (N=225)</td>
<td>Aspirin 300 mg/d (N=230)</td>
<td>n/a</td>
<td>N=214</td>
</tr>
<tr>
<td>Primary Prevention of Arterial Thromboembolism in Atrial Fibrillation (PAATAF)</td>
<td>3.0 years</td>
<td>Dose-adjusted warfarin with goal INR 2.5-3.5 (N=131) Low-intensity coumarin with INR goal 1.1-1.6 (N=122) □</td>
<td>Aspirin 150 mg/day (N=141)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>National Study for Prevention of Embolism in Atrial Fibrillation (NASPEAF)¶</td>
<td>2.4 years</td>
<td>Dose-adjusted acenocumarol with goal INR 2.0-3.0 (N=323)</td>
<td>Triflusal 600 mg/day (N=235)**</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Stroke Prevention in Atrial Fibrillation 1 study (SPAF-1)** Group 1 (eligible for anticoagulants) §§ ††</td>
<td>1.2 years</td>
<td></td>
<td></td>
<td>N=211</td>
<td></td>
</tr>
<tr>
<td>SPAF-2</td>
<td>2.7 years</td>
<td>Dose-adjusted warfarin with goal INR 2.0-4.5 (N=555)</td>
<td>Aspirin 325 mg/d (N=545)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Trial</td>
<td>Mean observation time</td>
<td>Anticoagulant arm(s)</td>
<td>Antiplatelet arm</td>
<td>Combination</td>
<td>Placebo arm</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>--</td>
<td>-----------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SPAF-3**</td>
<td>1.1 years</td>
<td>Dose adjusted warfarin with goal INR 2.0 to 3.0 (N=523)</td>
<td></td>
<td>Low, fixed dose warfarin (0.5 to 3.0 mg/d) to raise INR to between 1.2 and 1.5 and aspirin 325 mg/d (N=521) ‡‡</td>
<td>N=260</td>
</tr>
<tr>
<td>Stroke Prevention in Non-rheumatic Atrial Fibrillation (SPINAF)**</td>
<td>1.7 years</td>
<td>Warfarin with goal INR 1.5 to 2.7‡ (N=265)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Legend **

INR – international normalized ratio
* Trial reported a mean INR of 1.14, supporting categorization as control
† Trial reported a mean INR of 1.12, supporting categorization as control
‡ INR estimate prothrombin-time ratio
§ Group 2 were those deemed ineligible for anticoagulants and were thus excluded from the current analysis
¶ Trial reported a mean INR of 1.4 supporting categorization as control
‖ NASPEAF included patients with valvular atrial fibrillation, sample size reported here excludes those with valvular AF. Combination arms were excluded because the trial reported a median INR of 1.9 in the intermediate-risk group, and 2.1 in the high-risk group.
** Similar clinical efficacy to aspirin 300 mg/day
†† SPAF1 participants randomized to anticoagulation and aspirin were followed after the termination of SPAF1 and their results are reported in SPAF-2
‡‡ Mean INR in the fixed-dose group was 1.3 supporting categorization as control
Appendix 3: Cohort flow diagram

Randomized patients who met inclusion criteria (n= 8002)

Excluded due to missing data where the data element was otherwise collected in a trial (n=69)
- Missing height (n=41)
- Missing weight (n=27)
- Missing smoking status (n=6)
- Missing hypertension status (n=5)
- Missing diabetes status (n=4)
- Missing vascular disease status (n=3)
- Missing angina status (n=3)
- Missing heart failure status (n=1)
- Missing stroke history (n=1)
- Missing myocardial infarction history (n=1)
- Missing disenrollment date (n=1)

Final cohort (n= 7933)
Appendix 4: Primary Trial Outcome Definition

<table>
<thead>
<tr>
<th>Trial</th>
<th>Ischemic stroke</th>
<th>Systemic embolism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrial Fibrillation, Aspirin, and Anticoagulation Study 1 (AFASAK-1)(^{15})</td>
<td>Clinical signs or a medically confirmed history of acute onset of a neurological deficit of presumed vascular origin lasting >24hrs. CT when possible; death certificates and autopsy reports for fatal strokes.</td>
<td>Embolism to viscera or extremities based on symptoms relevant diagnostics test, surgery, or autopsy</td>
</tr>
<tr>
<td>AFASAK-2(^{16})</td>
<td>Acute focal neurological deficit of presumed vascular origin >24 hours; no blood on CT/MRI</td>
<td>Embolism to kidney, spleen, gut, lung, or extremities by angiography, surgery, or autopsy</td>
</tr>
<tr>
<td>Boston Area Anticoagulation Trial for Atrial Fibrillation (BAATAF)(^{17})</td>
<td>Focal neurologic deficit >24 hours without blood on CT</td>
<td>Assessed as an outcome but not defined; no events reported</td>
</tr>
<tr>
<td>Birmingham Atrial Fibrillation Treatment of the Aged Study (BAFTA)(^{18})</td>
<td>Focal neurological deficit >24 hours without blood on CT</td>
<td>Embolism to kidney, spleen, gut, or extremities by angiography, scintigraphy, surgery, or autopsy</td>
</tr>
<tr>
<td>Canadian Atrial Fibrillation Anticoagulation (CAFA)(^{19})</td>
<td>Focal neurologic deficit >24 hours with new, appropriate finding on CT, excluding lacunar events</td>
<td>Embolism to gut, kidney, or extremities by angiography or surgery</td>
</tr>
<tr>
<td>European Atrial Fibrillation Trial (EAFT)(^{20})</td>
<td>Focal neurologic deficit >24 hours without blood on CT</td>
<td>Sudden vascular insufficiency of limbs or internal organs associated with evidence of arterial occlusion, in the absence of previous obstructive disease</td>
</tr>
<tr>
<td>Primary Prevention of Arterial Thromboembolism in Atrial Fibrillation (PAATAF)(^{21})</td>
<td>Focal neurologic deficit >24 hours without blood on CT</td>
<td>Acute vascular occlusion resulting in recovery, permanent sequelae, or death</td>
</tr>
<tr>
<td>National Study for Prevention of Embolism in Atrial Fibrillation (NASPEAF)(^{22})</td>
<td>Focal neurologic deficit >24 hours without blood on neuroimaging</td>
<td>Abrupt vascular insufficiency without previous symptoms</td>
</tr>
<tr>
<td>Stroke Prevention in Atrial Fibrillation 1 study (SPAF-1)(^{23})</td>
<td>Acute focal neurological deficit in the distribution of a single brain artery lasting >24 hours; no blood on CT/MRI</td>
<td>Abrupt vascular insufficiency associated with clinical or radiologic evidence of arterial occlusion in the absence of other likely mechanisms (e.g., atherosclerosis, instrumentation).</td>
</tr>
<tr>
<td>Trial</td>
<td>Ischemic stroke</td>
<td>Systemic embolism</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>SPAF-2<sup>24</sup></td>
<td>Focal neurological deficit of sudden onset had to persist beyond 24 hours; ischemic cause was confirmed by neuroimaging or autopsy</td>
<td>Abrupt vascular insufficiency related to arterial occlusion without previous obstructive disease.</td>
</tr>
<tr>
<td>SPAF-3<sup>25</sup></td>
<td>Focal neurological symptoms or signs of sudden onset persisting for more than 24 h; the absence of primary hemorrhage was confirmed by neuroimaging or autopsy</td>
<td>Abrupt vascular insufficiency related to arterial occlusion without previous obstructive disease.</td>
</tr>
<tr>
<td>Stroke Prevention in Non-rheumatic Atrial Fibrillation (SPINAF)<sup>26</sup></td>
<td>Focal neurologic deficit >12 hours without blood or tumor on CT</td>
<td>Not considered a primary or secondary outcome</td>
</tr>
</tbody>
</table>
Appendix 5 Estimation of life expectancy

5.1 Background

We estimated the life expectancy for each participant using the life table method. We started with the Centers for Disease Control and Prevention life tables. We selected the sex- and enrollment year-specific life table for each participant. We modified the expected annual mortality based on the excess mortality risk associated with their baseline comorbidities for each year following trial enrollment. The following equation estimated modified mortality risk:

\[
q_{xi} = 1 - e^{-1[\sum n_i z * q_x + q_x]} \quad (1)
\]

Where \(q_{xi} \) is the estimated 1-year mortality risk for the \(i^{th} \) patient at a given age on or after trial enrollment. \(z \) represented the excess hazard of a patient comorbidity (indicator variable \(n_i \)) and \(q_x \) is the CDC life table mortality risk based on the patient’s age, sex, and trial enrollment year. Values of \(z \) are presented in Appendix Table 5.2. We chose specific comorbidities to adjust life expectancy based on our prior studies, baseline characteristics present in the AFI database, and conditions for which published epidemiological studies on excess mortality risk exist. We used this approach in prior analyses.
5.2 Table: Excess mortality risk for comorbidities adjusted for in this analysis

<table>
<thead>
<tr>
<th>Condition</th>
<th>Subset</th>
<th>Excess mortality risk ((z) in equation 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes (Tancredi et al. NEJM 2015, Table 2)</td>
<td>< 55 years</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>Age >= 55, < 65 years</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>Age >= 65, < 75 years</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>Age >= 75 years</td>
<td>0.11</td>
</tr>
<tr>
<td>Heart Failure (Roger et al. JAMA 2004 Table 3 5-yr mortality standardized against age, sex, year-specific population mortality)</td>
<td>Male 1979 to 1984</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>Female 1979 to 1984</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>Male 1985 to 1990</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>Female 1985 to 1990</td>
<td>2.11</td>
</tr>
<tr>
<td></td>
<td>Male 1991 to 1995</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>Female 1991 to 1995</td>
<td>2.38</td>
</tr>
<tr>
<td></td>
<td>Male after 1996</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td>Female after 1996</td>
<td>2.05</td>
</tr>
<tr>
<td>Stroke (Brønnum al. Stroke 2001 Table 2)</td>
<td>Male >= 70 years</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>Male < 70 years</td>
<td>2.01</td>
</tr>
<tr>
<td></td>
<td>Female >= 70 years</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>Male < 70 years</td>
<td>2.52</td>
</tr>
<tr>
<td>Body Mass Index (Flegal et al. 2005 JAMA; Table 2)</td>
<td>BMI < 18.5 and (Age >=60, < 70 years)</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>BMI 18.5 and (Age >= 70 years)</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>BMI > 35 and (Age < 60 years)</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>BMI > 35 and (Age >= 60, < 70 years)</td>
<td>0.63</td>
</tr>
<tr>
<td>Tobacco use (Carter et al. NEJM 2015; supplemental appendix C)</td>
<td>Current use</td>
<td>1.80</td>
</tr>
<tr>
<td></td>
<td>Former use</td>
<td>0.50</td>
</tr>
<tr>
<td>Acute myocardial infarction (Norgaard et al. Diabetologia 2010; Table 2)</td>
<td>Male before 2001</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>Female before 2001</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>Male 2001 or after</td>
<td>0.465</td>
</tr>
<tr>
<td></td>
<td>Female 2001 or after</td>
<td>0.91</td>
</tr>
</tbody>
</table>

5.3 Worked example

Consider an 80-year-old man enrolled in a trial in 1990 with a history of an acute myocardial infarction and diabetes. The baseline 1-year mortality risk for an 80-year-old male in 1990 (\(q_x\)) is 0.08542 from the CDC life table. Based on equation (1) above, this patient’s individualized mortality risk (\(q_{xi}\)) would be calculated as:

\[
q_{xi} = 1 - e^{-1[0.40 + 0.08542 + (0.11\times 0.08542) + (0.08542)]}
\]

\[
q_{xi} = 0.12101
\]
We perform the same calculation for each year for each patient following trial enrollment. Updated mortality rates are then used to calculate the patient’s estimated life expectancy at trial enrollment using the life table method.

5.4 Performance of life expectancy compared to age

In the final study cohort, life expectancy and age are inversely correlated (Pearson correlation coefficient of -0.77). To determine their relative performance, we fit two separate Cox models with time to death as the outcome. The first included age as the sole predictor and the other with life expectancy as the sole predictor. We found that life expectancy has a better discriminatory capacity when predicting death at 3 years in the AFI cohort (Harrell’s c-statistic 0.68 vs. 0.61).
Appendix 6: Table 1 Baseline characteristic after 20 chained imputations

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years (median [IQR])</td>
<td>73 [67, 78]</td>
</tr>
<tr>
<td>Life expectancy, years (median [IQR])</td>
<td>8 [6, 12]</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>64%</td>
</tr>
<tr>
<td>Female</td>
<td>36%</td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>85%</td>
</tr>
<tr>
<td>Yes</td>
<td>15%</td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>51%</td>
</tr>
<tr>
<td>Yes</td>
<td>49%</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>70%</td>
</tr>
<tr>
<td>Yes</td>
<td>30%</td>
</tr>
<tr>
<td>Prior stroke</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>81%</td>
</tr>
<tr>
<td>Yes</td>
<td>19%</td>
</tr>
<tr>
<td>Angina</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>83%</td>
</tr>
<tr>
<td>Yes</td>
<td>17%</td>
</tr>
<tr>
<td>Prior myocardial infarction</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>88%</td>
</tr>
<tr>
<td>Yes</td>
<td>12%</td>
</tr>
<tr>
<td>Peripheral vascular disease</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>92%</td>
</tr>
<tr>
<td>Yes</td>
<td>8%</td>
</tr>
<tr>
<td>Body mass index kg/m² (median [IQR])</td>
<td>26 [24, 29]</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
</tr>
<tr>
<td>Never smoker</td>
<td>49%</td>
</tr>
<tr>
<td>Former smoker</td>
<td>36%</td>
</tr>
<tr>
<td>Current smoker</td>
<td>16%</td>
</tr>
<tr>
<td>CHA₂DS₂-VASc score (median [IQR])</td>
<td>3 [2, 4]</td>
</tr>
<tr>
<td>Trial</td>
<td></td>
</tr>
<tr>
<td>AFASAK1</td>
<td>13%</td>
</tr>
</tbody>
</table>
BAATAF 5%
CAFA 5%
SPAF1 3%
SPINAF 7%
EAFT 8%
PATAF 5%
SPAF2 14%
AFASAK2 9%
SPAF3 13%
NASPEAF 7%
BAFTA 12%

Randomized study arm assignment
Warfarin 43%
Control 57%

Appendix 7: Relative effectiveness of anticoagulants

Fine-gray model parameters where death is treated as a competing risk

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HR</th>
<th>LL</th>
<th>UL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (65-74 years, reference <65 years)</td>
<td>1.17</td>
<td>0.95</td>
<td>1.45</td>
</tr>
<tr>
<td>Age (75+ years, reference <65 years)</td>
<td>1.59</td>
<td>1.17</td>
<td>2.15</td>
</tr>
<tr>
<td>Women</td>
<td>1.15</td>
<td>0.97</td>
<td>1.35</td>
</tr>
<tr>
<td>History of congestive heart failure</td>
<td>1.12</td>
<td>0.89</td>
<td>1.42</td>
</tr>
<tr>
<td>History of hypertension</td>
<td>1.40</td>
<td>1.20</td>
<td>1.65</td>
</tr>
<tr>
<td>History of diabetes</td>
<td>1.40</td>
<td>1.21</td>
<td>1.62</td>
</tr>
<tr>
<td>History of prior stroke or TIA</td>
<td>3.13</td>
<td>2.45</td>
<td>4.00</td>
</tr>
<tr>
<td>History of peripheral vascular disease</td>
<td>1.13</td>
<td>0.91</td>
<td>1.40</td>
</tr>
<tr>
<td>Randomization to anticoagulant arm</td>
<td>0.39</td>
<td>0.31</td>
<td>0.49</td>
</tr>
</tbody>
</table>

* For interpretability, BMI and life expectancy hazard ratios are listed for the 75th percentile versus the 25th percentile.
Appendix 8 Comparing ARR estimated by CHA2DS2-VASc with an internally re-calibrated CHA2DS2-VASc ARR

8.1 Background

To calculate absolute risk reduction in the main analysis, we used the procedure detailed in the “2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation.” This procedure is also used in decision aids developed by the ACC and Mayo Clinic. In brief, this method uses annual stroke rates corresponding to each CHA2DS2-VASc score from Friberg et al. (European Heart Journal (2012) 33, 1500–1510) and then apply a 0.64 relative risk reduction estimated by Hart et al. (Ann Intern Med. 2007;146:857-867). Together these two studies are used to estimate the absolute risk reduction attributable to therapy in guidelines and decision tools.

The main analysis compared the guideline estimate of absolute risk reduction to a Fine-Gray model that treats death as a competing event, which is estimated in the AFI database. Since the guideline estimates were developed in external cohorts, they may be miscalibrated resulting in the over-estimate of treatment benefit observed in the main analysis.

In this sensitivity analysis, we determined if the CHA2DS2-VASc would perform better if it were re-estimated in the AFI database. We estimate CHA2DS2-VASc specific stroke rates by dividing the number of events by person time. We then apply the hazard ratio of treatment from this analysis to determine the absolute risk reduction. This approach mirrors the current guidelines approach but is recalibrated.

The sensitivity analysis shows that recalibrating the absolute risk reduction by CHA2DS2-VASc score in the AFI database does not meaningfully change the primary conclusion. In fact, the sensitivity analysis showed that recalibration resulted in greater differences in estimates when compared to the Competing Risk Model.
8.2 Comparison of stroke/systemic embolism rates and absolute risk reduction with anticoagulants per 100 person-years re-estimated in the AFI database

<table>
<thead>
<tr>
<th>CHA2DS2-VASc score*</th>
<th>Guidelines reported expected event rates (used in main analysis)</th>
<th>Event Rates from AFI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ischemic Stroke/systemic embolism rate, off-treatment (Friberg 2012)**</td>
<td>Absolute Risk Reduction (Frieberg 2012 & Hart 2007)</td>
</tr>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.13</td>
</tr>
<tr>
<td>1</td>
<td>0.6</td>
<td>0.38</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
<td>1.60</td>
</tr>
<tr>
<td>3</td>
<td>3.7</td>
<td>2.37</td>
</tr>
<tr>
<td>4</td>
<td>5.5</td>
<td>3.52</td>
</tr>
<tr>
<td>5</td>
<td>8.4</td>
<td>5.38</td>
</tr>
<tr>
<td>6</td>
<td>11.4</td>
<td>7.30</td>
</tr>
<tr>
<td>7</td>
<td>13.1</td>
<td>8.38</td>
</tr>
<tr>
<td>8</td>
<td>12.6</td>
<td>8.06</td>
</tr>
</tbody>
</table>

Legend
*no patients in the AFI database had a CHA2DS2-VASc score of 9
** Friberg 2012 did not present 95% confidence intervals, or the data needed to calculate confidence intervals

8.3 Table Estimated ARR by CHA2DS2-VASc model compared with Competing Risk Model and recalibrated CHA2DS2-VASc (replication of Figure 1)

<table>
<thead>
<tr>
<th>Years after randomization</th>
<th>ARR by Competing Risk Model (Main analysis Fig 1)</th>
<th>ARR by CHA2DS2-VASc (Main analysis Fig 1)</th>
<th>ARR by recalibrated CHA2DS2-VASc (Sensitivity analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.4% [IQR 1.8% to 3.6%]</td>
<td>2.3% [IQR 1.6% to 3.5%]</td>
<td>2.7% [IQR 2.1% to 3.7%]</td>
</tr>
<tr>
<td>2</td>
<td>4.0% [IQR 2.9% to 5.8%]</td>
<td>4.6% [IQR 3.1% to 6.8%]</td>
<td>5.3% [IQR 4.1% to 7.2%]</td>
</tr>
<tr>
<td>3</td>
<td>5.2% [IQR 3.8% to 7.4%]</td>
<td>6.9% [IQR 4.7% to 10.0%]</td>
<td>7.8% [IQR 6.0% to 10.6%]</td>
</tr>
<tr>
<td>4</td>
<td>6.2% [IQR 4.5% to 8.7%]</td>
<td>9.0% [IQR 6.2% to 13.1%]</td>
<td>10.2% [IQR 8.0% to 13.9%]</td>
</tr>
<tr>
<td>5</td>
<td>6.3% [IQR 4.6% to 8.9%]</td>
<td>11.2% [IQR 7.7% to 16.1%]</td>
<td>12.6% [IQR 9.9% to 17.0%]</td>
</tr>
</tbody>
</table>
Appendix 9: Estimated ARR by CHA$_2$DS$_2$-VASc model compared to Competing Risk Model

9.1 Figure 1 in tabular format

<table>
<thead>
<tr>
<th>Time horizon (years)</th>
<th>CHA$_2$DS$_2$-VASc model ARR, median (IQR)</th>
<th>Competing Risk Model ARR, median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.3% (IQR 1.6%, 3.5%)</td>
<td>2.4% (IQR 1.8%, 3.6%)</td>
</tr>
<tr>
<td>2</td>
<td>4.6% (IQR 3.1%, 6.8%)</td>
<td>4.0% (IQR 2.9%, 5.8%)</td>
</tr>
<tr>
<td>3</td>
<td>6.9% (IQR 4.7%, 10.0%)</td>
<td>5.2% (IQR 3.8%, 7.4%)</td>
</tr>
<tr>
<td>4</td>
<td>9.0% (IQR 6.2%, 13.1%)</td>
<td>6.2% (IQR 4.5%, 8.7%)</td>
</tr>
<tr>
<td>5</td>
<td>11.2% (IQR 7.7%, 16.1%)</td>
<td>6.3% (IQR 4.6%, 8.9%)</td>
</tr>
</tbody>
</table>

9.2 Estimated cumulative incidence of stroke or systemic embolism by model and treatment status

[Graph showing cumulative incidence of ischemic stroke or systemic embolism over time]
Appendix 10: Misestimation of ARR by CHA$_2$DS$_2$-VASc score at 3 years (Figure 2 in tabular format)

<table>
<thead>
<tr>
<th>Decile of life expectancy (range)</th>
<th>Absolute misestimation of CHA$_2$DS$_2$-VASc estimate at 3 years, mean (95% CI)</th>
<th>Relative misestimation of CHA$_2$DS$_2$-VASc estimate at 3 years (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (16 to 47 yrs.)</td>
<td>-1.3% (-1.3% to -1.2%)</td>
<td>-44% (-46% to -41%)</td>
</tr>
<tr>
<td>2 (13 to 16 yrs.)</td>
<td>-1.0% (-1.1% to -0.9%)</td>
<td>-27% (-30% to -25%)</td>
</tr>
<tr>
<td>3 (11 to 13 yrs.)</td>
<td>-0.3% (-0.5% to -0.1%)</td>
<td>-7% (-10% to -4%)</td>
</tr>
<tr>
<td>4 (9 to 11 yrs.)</td>
<td>0.1% (-0.1% to 0.3%)</td>
<td>5% (2% to 8%)</td>
</tr>
<tr>
<td>5 (8 to 9 yrs.)</td>
<td>0.3% (0.1% to 0.5%)</td>
<td>9% (6% to 12%)</td>
</tr>
<tr>
<td>6 (7 to 8 yrs.)</td>
<td>0.5% (0.2% to 0.7%)</td>
<td>17% (15% to 20%)</td>
</tr>
<tr>
<td>7 (6 to 7 yrs.)</td>
<td>0.8% (0.6% to 1.0%)</td>
<td>23% (20% to 25%)</td>
</tr>
<tr>
<td>8 (5 to 6 yrs.)</td>
<td>1.8% (1.5% to 2.0%)</td>
<td>37% (34% to 41%)</td>
</tr>
<tr>
<td>9 (4 to 5 yrs.)</td>
<td>3.0% (2.7% to 3.2%)</td>
<td>58% (54% to 62%)</td>
</tr>
<tr>
<td>10 (1 to 4 yrs.)</td>
<td>4.7% (4.5% to 5.0%)</td>
<td>78% (74% to 82%)</td>
</tr>
</tbody>
</table>