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Explainable Machine Learning Predictions of
Perceptual Sensitivity for Retinal Prostheses

Galen Pogoncheff, Zuying Hu, Ariel Rokem, and Michael Beyeler

Abstract— To provide appropriate levels of stimulation,
retinal prostheses must be calibrated to an individual’s
perceptual thresholds (‘system fitting’), despite thresh-
olds varying drastically across subjects, across electrodes
within a subject, and over time. Although previous work has
identified electrode-retina distance and impedance as key
factors affecting thresholds, an accurate predictive model
is still lacking. To address these challenges, we 1) fitted ma-
chine learning (ML) models to a large longitudinal dataset
with the goal of predicting individual electrode thresholds
and deactivation as a function of stimulus, electrode, and
clinical parameters (‘predictors’) and 2) leveraged explain-
able artificial intelligence (XAI) to reveal which of these
predictors were most important. Our models accounted for
up to 77% of the perceptual threshold response variance
and enabled predictions of whether an electrode was de-
activated in a given trial with F1 and AUC scores of up to
0.740 and 0.913, respectively. Deactivation and threshold
models identified novel predictors of perceptual sensitivity,
including subject age, time since blindness onset, and
electrode-fovea distance. Our results demonstrate that rou-
tinely collected clinical measures and a single session of
system fitting might be sufficient to inform an XAI-based
threshold prediction strategy, which may transform clinical
practice in predicting visual outcomes.

Index Terms— Retinal prostheses, perceptual thresh-
olds, electrode deactivation, explainable AI, Argus II

I. INTRODUCTION

To provide appropriate levels of stimulation, retinal pros-
theses must be calibrated to each subject’s amount of elec-
trical current needed to elicit visual responses (perceptual
threshold). In the case of the Argus II Retinal Prosthesis
System (Vivani Medical, Emeryville, CA; formerly Second
Sight Medical Products, Inc.) [1], this process is part of
system fitting, where perceptual thresholds are used to populate
subject-specific lookup tables that determine how the grayscale
values of an image recorded by the external camera are
translated into electrical stimuli. Current practices rely on a
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well-established adaptive up-down staircase procedure, which
predicts perceptual thresholds with reasonable accuracy based
on approximately 100 trials of a visual detection task [2].

However, perceptual thresholds have been shown to vary
drastically not just across subjects, but also across electrodes
within a subject as well as over time [2]–[5]. Thresholds often
undergo sudden and large fluctuations that can last several
weeks and cannot be explained by gradual changes in the
implant-tissue interface [5]. This makes threshold estimation a
major bottleneck in system fitting, as the procedure has to be
performed for each electrode and repeated on a regular basis.
With Argus II consisting of 60 electrodes, this procedure is
time-consuming at best, but will quickly become infeasible as
new devices are being developed that feature hundreds or even
thousands of electrodes [6], [7].

Although previous work has identified electrode-retina dis-
tance and impedance as key factors affecting thresholds [2]–
[4], the lack of accurate, automated threshold estimation
frameworks to date may suggest that these two factors alone
are far from comprehensive. Further complicating this matter,
many of the clinical parameters presumed useful in threshold
estimation are difficult or expensive to collect, are prone to
measurement error, and may vary drastically between subjects.
It is therefore paramount to know which parameters are
worth collecting. An explainable predictive model fitted to a
longitudinal dataset may help elucidate such parameters.

To address these challenges, we set out to develop explain-
able machine learning (ML) models that could:

• predict perceptual thresholds on individual electrodes as
a function of stimulus, electrode, and clinical parameters
(‘predictors’),

• infer deactivation of individual electrodes as a function
of these parameters, and

• reveal which of these predictors were most important to
perceptual thresholds and electrode deactivation.

Part of this work was previously presented in [8]. Other
studies previously focused on linear models [3], [4], which
provide easily interpretable model parameters, but are often
not powerful enough to fit the data. Higher-complexity ML
models may offer state-of-the-art prediction accuracy, but can
be ‘black boxes’ whose predictions are inscrutable, and hence
not actionable in a clinical setting. On the other hand, ex-
plainable artificial intelligence (XAI) relies on ML approaches
that can explain why a certain prediction was made while
maintaining high accuracy [9], [10]. Such models have the
potential to transform clinical practice in predicting visual
outcomes.
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TABLE I: Summary of the Argus II dataset. SF: system fitting, LT: life time.

RAW DATA CLEAN DATA: ELECTRODE DEACTIVATION CLEAN DATA: THRESHOLD PREDICTION

Data points Sessions Measured Data points Sessions Measured Deactivated Data points Sessions Measured
electrodes electrodes electrodes electrodes

SUBJECTS SF LT
12-001 892 44 51 865 43 51 8 39 685 42 45
12-004 369 33 49 369 33 49 15 45 139 27 31
12-005 968 32 56 885 30 56 1 6 863 30 56
14-001 308 16 48 292 14 48 5 43 158 13 28
17-002 418 34 52 398 32 52 2 51 210 27 39
51-001 323 22 54 309 21 54 2 48 157 17 28
51-003 299 15 56 287 14 56 39 54 89 13 20
51-009 391 12 54 391 12 54 1 7 381 12 54
52-001 665 24 60 665 24 60 0 0 661 24 60
52-003 490 19 55 490 19 55 12 53 293 17 43
61-001 84 9 28 — — — — — — — —
61-004 426 21 59 426 21 59 0 56 220 19 52
71-002 592 72 51 586 71 51 0 41 407 64 43

Total 6,225 353 673 5,963 334 645 85 443 4,263 305 499

II. RELATED WORK

A handful of previous studies have investigated factors
affecting perceptual thresholds in retinal prostheses [2]–[4],
focusing on a range of stimulus (e.g., pulse polarity, pulse
rate), electrode (e.g., area), and clinical (e.g., retinal thickness,
position of the implant) parameters.

De Balthasar et al. [2] correlated perceptual thresholds with
electrode impedance, electrode size, electrode-retina distance,
and retinal thickness in six recipients of the Argus I epiretinal
prosthesis. The study identified impedance and electrode-
retina distance as critical factors for determining perceptual
thresholds, but did not attempt to develop a predictive model.

Ahuja and colleagues [3] correlated perceptual thresholds
with mean electrode-retina distance (averaged across all elec-
trodes of a subject), the mean distance of electrodes from the
fovea (‘electrode-fovea distance’), and the dark-adapted full-
field light threshold in 22 recipients of the Argus II epiretinal
prosthesis. In addition to electrode-retina distance, the study
identified the residual light threshold as a critical factor, but
did not attempt to predict thresholds from these factors on
individual electrodes.

Shivdasani and colleagues [4] correlated perceptual thresh-
olds with a number of stimulus (return configuration, pulse
polarity, pulse width, inter-phase gap, pulse rate), electrode
(area and number of ganged electrodes), and clinical (reti-
nal thickness, electrode-retina distance) parameters in three
recipients of a suprachoroidal retinal prosthesis (Bionic Vision
Australia). In addition to electrode-retina distance, the study
identified the electrode configuration as important (lowest
thresholds were achieved with a monopolar return, anodic-
first stimulus polarity, short pulse widths with long inter-phase
gaps, and high stimulation rates).

In summary, all three studies identified the distance of
electrodes from the retinal surface (‘electrode-retina distance’)
as a critical factor, with electrode size and retinal thickness
having only a negligible effect on thresholds. However, these
studies were either focused on a small number of subjects
[2], [4] or were limited to predicting only the mean threshold

across electrodes from a small number of factors [3]. A cross-
validated predictive model is still lacking.

It is worth noting that some of these parameters are more
easily collected than others. For example, retinal thickness can
only be inferred from optical coherence tomography (OCT)
images, which is 1) difficult to collect as most retinal implant
recipients present with nystagmus, and 2) error-prone due to
electrodes casting shadows on the b-scan [3]. It is therefore
paramount to know which of these parameters are worth
collecting for the purpose of threshold prediction.

III. METHODS

A. Dataset
We retrospectively analyzed a longitudinal dataset of 6,225

perceptual thresholds and electrode impedances measured on
673 electrodes in 13 Argus II patients (Table I; for demo-
graphic information see Table A.1 and [3], [11], [12]). The
data was collected from 2007 − 2018 during 353 sessions
conducted at 7 different implant centers located across the
United States, the United Kingdom, France, and Switzerland.
A subset of the data was previously collected as part of the Ar-
gus II Feasibility Protocol (Clinical Trial ID: NCT00407602).
Our study, which did not involve human subjects research, was
deemed exempt from institutional review board (IRB) approval
by the IRB at the University of California, Santa Barbara.

Data cleaning and preprocessing was performed in accor-
dance with the two tasks central to our analyses (Subsec-
tion III-C) and is further detailed in Subsections III-E.1 and
III-E.2. Given the limited amount of data available from
Subject 61-001 after data cleaning, data from this subject
was omitted from our analyses. For all 12 remaining subjects,
threshold measurements were available for a majority of the
60 electrodes in the array, measured 12 − 72 times over the
lifetime of the device. The manufacturer would often deacti-
vate electrodes that were deemed nonfunctional, either because
impedance measurements indicated an open or short circuit,
or because no perceptual threshold below the charge density
limit could be measured. Whereas only a handful electrodes
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were deactivated during system fitting (labeled ‘SF’ in Table I,
Clean data: Electrode Deactivation column), most electrodes
were at least temporarily deactivated over the lifetime of the
device (labeled ‘LT’).

B. Feature Engineering

To prepare the raw data for ML, we combined threshold
and impedance values with clinical data sourced from the
literature, and performed feature engineering. Given our goal
of discovering the core predictors of perceptual sensitivity to
stimulation in patients with Argus II implants, all engineered
features used in the modeling proposed in this work were
domain-specific and constructed to be of direct, practical use
to clinicians and prosthetic vision researchers.

The resulting feature correlation matrix is shown in Fig. 1,
with each feature described in Table II and in more detail
below. As some parameters are more easily collected than
others, a major goal of this work was to identify which of
the available parameters are worth collecting for the purpose
of predicting perceptual thresholds. We therefore split the
available features into three different categories:

1) Routinely Collected Data: We sourced public information
about patient history (e.g., age at blindness diagnosis, age at
implant surgery) from previous studies [3], [11], [12]. Surgery
dates were obtained from Second Sight, and where not known
exactly, were triangulated from the known dates of the earliest
available impedance measurements and the 3-month follow-
up exam. Knowing surgery dates and the subject’s age at that
time allowed us to estimate the birth year for each subject (±1
year). Based on the above information and the dates of each
testing session we were therefore able to calculate for each
testing session: i) time since surgery, ii) time since diagnosis,
and iii) subject age at each session.

Implant placement and optic disc location were estimated
using retinal fundus images obtained either 12 months, 24
months, or 36 months after surgery. Since we did not have
access to fundus images from each session, we assumed
that the implant did not move over time [14]. We used a
procedure described in [15] and the pulse2percept software
[16] to perform image registration and extract the location
of the implant and each electrode with respect to the fovea
(Fig. 2). With these locations, retinal ganglion cell (RGC)
density was estimated following the methods of Curcio and
Allen in [13].

As mentioned above, previous work identified electrode-
retina distance as a key factor affecting thresholds [2]–
[4]. Unfortunately, we did not have access to OCT images
for all subjects. Instead we followed de Balthasar et al.
[2] to estimate electrode-retina distance from the available
impedance measurements (‘Impedance2Height’ in Table II).
Additional relationships between impedance, electrode-retina
distance, and thresholds proposed by [2] were used to obtain
surrogate threshold estimates (‘Impedances2Thresholds’ and
‘Impedances2Height2Thresholds’) from routinely collected
measurements of impedance.

Additional predictors relevant to perceptual sensitivity out-
comes that were available but omitted from this work include a

categorical variable specifying the clinic at which the Argus II
implant operation was performed for each subject, an indicator
of how many Argus II implant operations had been performed
at the site, a binary variable specifying whether the device
was implanted in the subject’s left or right eye, and the sex
of the subject. Although visual outcomes may also depend
on surgical precision (as complications during implantation
could exacerbate fibrosis), predictors relevant to the surgical
center were not considered in our study in an effort to focus
our analyses on factors relevant to the subject and implant.
Additionally, in concern of model generalization, features
relevant to implant eye and subject sex were removed, because
only two out of twelve subjects were female and only one
subject had the implant in their left eye.

2) System Fitting: Soon after system activation, patients
undergo a system fitting procedure during which electrode
impedances and perceptual thresholds are measured on all
60 electrodes. These values are then used to set several
system parameters, such as the charge density limit and the
largest allowable current. By default, charge density limits
are set to 0.35 mC cm−2 per phase for everyday use, and to
1 mC cm−2 for lab use, but can be reduced for electrodes that
are particularly sensitive. Analogously, stimulating currents are
limited to 1 mA per default, but can be reduced for sensitive
electrodes. Electrodes whose impedance value indicate either
a short or open circuit are immediately deactivated.

Features derived from measurements obtained during sys-
tem fitting (Table II, middle section) were only used as features
for the training data, never as labels that the algorithm was
supposed to predict. Several additional features, such as the
fraction of deactivated electrodes and the false positive rate
during threshold measurements (where the stimulating current
was zero but the patient reported seeing a phosphene), were
engineered using the observations obtained during system
fitting. Finally, for each measurement sample in the dataset,
we calculated the time that had passed since system fitting.

3) Follow-Up Examinations: Patients participating in the Ar-
gus II Feasibility Protocol regularly visited their eye clinic for
follow-up exams. We wondered how useful these more recent
threshold and impedance measurements were for predicting
perceptual sensitivity (Table II, bottom section). Since the time
between sessions varied, we also calculated the time that had
passed since the last examination.

C. Prediction Tasks
We studied predictors of perceptual sensitivity in the context

of two prediction tasks:
• Threshold prediction: a regression task in which the goal

of the ML model was to predict the perceptual threshold
on a given electrode at a specific point in time.

• Electrode deactivation: a binary classification task in
which the goal of the ML model was to correctly predict
whether or not an electrode was deactivated during at a
specific point in time.

Given the available data, these two tasks enabled us to
directly study the impact of each feature on quantitative
measures of perceptual sensitivity by means of XAI. While
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Fig. 1: Feature correlation heat map.

TABLE II: Features (measured and engineered) for perceptual sensitivity prediction.

Feature Description Precision

R
ou

tin
e

SubjectAge Subject age days
SubjectTimeBlind Estimated time since onset of blindness days
SubjectAgeAtDiagnosis Subject age at first retinitis pigmentosa (RP) diagnosis years
SubjectAgeAtSurgery Subject age at time of implant surgery years
ImplantTime Time since implant surgery days
Impedance Manufacturer-provided impedance reading at each electrode kΩ

ImpedanceCV Coefficient of variation for impedance values float
ElectrodeLoc{Rho | Theta} Electrode-fovea distance µm | rad
ImplantLoc{Rho | Theta | Rot} Mean electrode-fovea distance µm | rad | rad
OpticDiscLoc{X | Y} Optic disc location deg
RGCDensity Retinal ganglion cell (RGC) density [13] RGC/deg2

Impedances2Thresholds Threshold estimated from impedance values [2] µA

Impedances2Height Electrode-retina distance estimated from impedance values [2] µm

Impedances2Height2Thresholds Threshold estimated from estimated electrode-retina destances [2] µA

Sy
st

em
Fi

tti
ng

FirstImpedance Impedance reading at system fitting for each electrode kΩ

FirstThreshold Perceptual stimulus threshold at system fitting for each electrode µA

FirstMaxCurrent Largest allowable current at system fitting µA

FirstChargeDensityLimit Charge density limit at time of system fitting mCcm−2

FirstDeactivationRate Fraction of electrodes deactivivated at system fitting float
FirstFalsePositiveRate False positive phosphene perception rate during system fitting float
TimeSinceFirstMeasurement Elapsed time since system fitting days

Fo
llo

w
-U

p LastImpedance Impedance reading from previous session for each electrode kΩ

LastThreshold Perceptual stimulus threshold from previous session for each electrode µA

TimeSinceLastMeasurement Time elapsed previous electrode threshold measurement days
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A B

Fig. 2: The location and orientation of each subject’s implant
was estimated by combining their postsurgical fundus photo-
graph (A, bottom) with a baseline presurgical image in which
the fovea had been identified (A, top) to produce a registered
image (B; �: foveal pit, ◦: optic disc). The horizontal raphe
(A, white line) was approximated by fitting a parabola to the
main vascular arcade and finding the tangent to the parabola
inflexion point (adapted under CC-BY from [15]).

we expected that a subset of the predictors most important
to the ML models trained for each of these tasks would be
shared, we hypothesized that the models developed for the
regression task would better reveal predictors that contribute
to finer-granularity fluctuations in perceptual sensitivity.

D. Explainable Machine Learning Models
As in many neural engineering applications where ML

models are used in decision-making processes, it is critical that
the predictions made by the model are explainable. Specific to
perceptual outcome prediction, we aimed to develop models
that can inform clinicians of the most relevant parameters to
collect and how such parameters may be used to automate
stimulus threshold parameterization. In pursuit of these goals,
we considered both linear and nonlinear ML models.

We leveraged logistic regression (LR) with L1 and L2 loss
constraints for electrode deactivation and Elastic Net (EN)
linear models for threshold regression. We chose these models
both for their simplicity, explainability, and robustness to
correlated features afforded by L1 loss constraints. Meanwhile,
in addition to the regularization that results from L1 and
L2 loss, we expected that these low-variance models would
elucidate the perceptual outcome predictors that were most
generalizable across subjects in our logitudinal dataset.

In addition, we used gradient boosting models (specifically,
XGBoost models) in our non-linear modeling analysis. Unlike
linear models, whose output is based on a linear, weighted
combination of input feature values, XGBoost models are
based on ensembles of decision trees [17] defined on multiple
subsets of dataset features, allowing them to capture highly
nonlinear patterns in the underlying data. Such models have
enabled state-of-the-art results in a variety of practical tasks
with heterogeneous features and complex dependencies.

In modeling our data, we aimed to discover the most
salient features relevant to perceptual sensitivity, whether these
relationships were linear or not. Furthermore, the two model
types were used to establish benchmark results for electrode

deactivation and perceptual threshold prediction. To apply
these models to our longitudinal data, we assumed that each
testing session was independent. We thus treated timestamp-
related data (e.g., ‘SubjectTimePostOp’, ‘SubjectTimeBlind’)
as additional feature attributes.

To determine the relative importance of the different features
for each model’s predictions, we adopted the use of SHap-
ley Additive exPlanations (SHAP) [18]. SHAP is a feature
attribution technique based on the game-theoretically optimal
Shapley values, which determine how to fairly distribute a
‘payout’ (i.e., the prediction) among model parameters. As
SHAP analysis is model-agnostic, it is applicable to linear
and non-linear models in both electrode deactivation and
threshold prediction tasks. Although these models can be
explained through their fitted parameters, SHAP enables a
more direct comparison of the predictive behavior between
models with varied parameters and assumptions about the
underlying data. Additionally, SHAP values offer insight into
a model’s decision at the granularity of a single test sample.

In the analyses that follow, LR and EN models were imple-
mented using scikit-learn’s LogisticRegression and ElasticNet
APIs (v1.1.2). XGBoost models were implemented using
the XGBClassifier and XGBRegressor APIs of the XGBoost
package (v1.6.2). Bayesian hyperparameter optimization was
performed using the scikit-optimize package (v0.9.0). The
code to run the models and generate the figures can be
found at https://github.com/bionicvisionlab/
2023-ArgusThresholds.

E. Model Evaluation and Comparison

A significant challenge in developing ML models for bi-
ological data is the inherent inter-subject variability of such
data. It is not uncommon for a data distribution from one
subject to be divergent from the data distribution of another
(Fig. A.1). To estimate the performance of our proposed
electrode deactivation and threshold prediction models on data
from unobserved subjects, we therefore employed a leave-one-
subject-out (LOSO) analysis as follows: for each of the twelve
subjects, we instantiated a new model, trained the model on
data from the remaining eleven subjects, and finally generated
predictions exclusively for the data of the held-out test-subject.

To allow for a fair comparison between models, we per-
formed Bayesian hyperparameter optimization in a nested
LOSO cross-validation loop. During this hyperparameter op-
timization process, the posterior probability distribution of an
objective score (F1-score in the case of electrode deactivation
and R2 in the case of threshold prediction) was estimated,
given the model’s set of hyperparameters. We then selected
the hyperparameters expected to maximize the objective score
on the validation data and re-fit the model to the entire training
dataset prior to testing. Hyperparameters optimized for the LR
classification model included ‘C’ and ‘l1 ratio’, controlling
the total regularization strength and the portion of this regu-
larization contributed by L1 loss. Similarly, hyperparameters
(‘alpha’ and ‘l1 ratio’) were optimized for the EN regression
model. For both the XGBClassifier (XGB-C) and XGBRegres-
sor (XGB-R) models, we tuned the number of estimators in
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the ensemble (‘n estimators’), the max depth of each decision
tree (‘max depth’), partition criteria ‘min child weight’ and
‘gamma’, and L1 and L2 regularization terms (‘reg alpha’ and
‘reg lambda’, respectively).

We evaluated model performance when trained with the
three subsets of predictors described above (Table II): ‘Rou-
tine’ predictors, a set composed of the 18 predictors de-
rived from routinely collected clinical data; ‘System Fitting’
predictors, a subset which contained the predictors of the
‘Routine’ subset as well as the 7 predictors derived from
measurements obtained during system fitting; and ‘Follow-Up’
predictors, which contained the 25 predictors from the ‘System
Fitting’ subset in addition to the 3 follow-up trial predictors.
For ‘System Fitting’ and ‘Follow-Up’, the first measurement
from each electrode was removed from the dataset to prevent
leaking ground-truth data into the feature vectors.

1) Threshold Prediction: During threshold regression, mod-
els inferred a real-valued perceptual threshold for each elec-
trode. In this task, recordings associated with electrodes that
were deactivated in the session were removed, as no sensible
threshold current could be assigned to the deactivated electrode
in this case. As in the electrode deactivation task, we removed
trials with missing data or impedance readings of 0 kΩ and
normalized feature values. Furthermore, as perceptual thresh-
old estimation is a high-variance procedure, it was not un-
common to observe within-session variability of the threshold
for a given electrode or for subjects to report the presence
of a phosphene in the absence of stimulation (‘catch trials’).
To account for such sources of noise in threshold prediction,
we discarded outlier samples using an automated, statistical
method based on Chebyshev’s data distribution tail bounds
[19]. Model performance was quantitatively analyzed with the
adjusted coefficient of determination (R2

adj) and a variant of
the fraction of explainable variance explained (FEVE) [20].

FEVE ∈ (−∞, 1] offers a quantitative measure of explain-
able variance, like R2, while also accounting for variability
in measurements of the dependent variable of interest (i.e.,
perceptual threshold) influenced by uncontrolled factors during
measurement (e.g., perceptual lapses and false positive percep-
tions). FEVE was computed as follows:

FEVE = 1−
1
N

∑
ij(rij − r̂i)2 − σ2

i

Var[r]− σ2
i

, (1)

where rij was the j-th ground-truth perceptual threshold
measurement for electrode i in a single recording session,
r̂i was the predicted perceptual threshold for this electrode
during the session, N was the total number of perceptual
threshold observations, Var[r] was the variance of all percep-
tual threshold measurements r, and σ2

i = Ei [Varj [rij ]] was
the expected variance in perceptual threshold measurements
for stimuli presented at each electrode of each subject.

Unlike in [20], however, in which identical stimuli are
repeatedly presented in multiple trials, it was uncommon for
repeated threshold measurements to be made for the same
electrode on any given day. For this reason, we derived a
similar measure, FEVEd, which assumed that the perceptual
threshold of a given electrode remained constant over a period
of d days (i.e., responses r within d days of one another

Fig. 3: Magnitude of Spearman correlation coefficient between
each predictor and perceptual thresholds, grouped by feature
set (top: ‘Routine’, middle: ‘System Fitting’, bottom: ‘Follow-
Up’) and sorted by correlation magnitude. All predictors had
p < .05 except for ‘ElectrodeLocTheta’ (labeled n.s.).

were treated as repeated measurements for the given set of
electrodes). Note that FEVE0 ≡ FEVE from Eq. 1.

Adding to the difficulty of modeling data with a significant
degree of inter-subject variability, it is not uncommon to
observe diverging perceptual threshold distributions between
subjects (Fig. A.1). To account for these differences when
modeling perceptual thresholds with ‘System Fitting’ and
‘Follow-Up’ data subsets, we scaled each threshold measure-
ment according to the first threshold measured for the elec-
trodes of each subject instead of directly predicting perceptual
thresholds. This transformation implies that the models fitted
to ‘System Fitting’ and ‘Follow-Up’ feature sets learned to
predict changes in perceptual thresholds, relative to system
fitting measurements. We found that this enabled better model
generalization in LOSO threshold prediction. Note that this
was not possible when modeling with the ‘Routine’ feature
subset, however, since we assumed that no previous threshold
measurements were available in this scenario.

2) Electrode Deactivation: For the task of electrode deacti-
vation, each electrode was assigned class 1 if it was deactivated
in the given recording session and 0 otherwise. Trials with
missing values or invalid impedance readings (i.e., 0 kΩ) were
removed from the dataset prior to model fitting and analysis.

In each LOSO iteration, the synthetic minority oversampling
technique (SMOTE) [21] was applied to the training dataset
to balance the number of samples from each class. All feature
values were normalized according to the distribution of the
training data to have zero mean and unit standard deviation.
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Fig. 4: Predictor measurements plotted against perceptual stimulation thresholds and the associated linear-least squares
regression line. The corresponding slopes (m), p values (associated with a null hypothesis that the slope of the linear regression
line is zero), and Pearson Correlation Coefficients (r) are provided in the legend of each plot. Subplots are grouped by feature
set (‘Routine’, ‘System Fitting’, or ‘Follow-Up’) and ordered by their listing in Table II.
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TABLE III: Leave-One-Subject-Out Perceptual Threshold Regression Results. Each metric is evaluated over an aggregated test
set. Per-subject metric means and standard deviations are reported in parentheses.

Method R2
adj FEVE FEVE180

Routine
ElasticNet -1.752 (−3.034± 4.811) -1.828 (−2.930± 4.892) -1.925 (−3.209± 5.216)
XGB-Regressor -0.230 (−1.545± 2.417) -0.236 (−1.444± 2.497) -0.249 (−1.610± 2.778)

System Fitting
ElasticNet 0.133 (−0.767± 1.780) 0.140 (−0.885± 2.620) 0.145 (−0.785± 2.434)
XGB-Regressor 0.385 (−0.056± 0.416) 0.391 (0.041± 0.444) 0.405 (0.080± 0.440)

Follow-Up
ElasticNet 0.765 (0.378± 0.401) 0.772 (0.455± 0.386) 0.799 (0.536± 0.392)
XGB-Regressor 0.725 (0.389± 0.315) 0.732 (0.490± 0.237) 0.758 (0.565± 0.251)

IV. RESULTS

A. Factors Affecting Perceptual Sensitivity

Fig. 3 shows the Spearman correlation coefficient for
the 28 predictors, ordered by correlation magnitude. Aside
from historical threshold measurements (i.e., ‘LastThresh-
olds’ and ‘FirstThresholds’) which correlated strongest with
perceptual sensitivity measures in future sessions, measures
of impedance and estimates of electrode-retina distance
(‘Impedances2Height’) and threshold from these impedance
measurements (‘Impedances2Thresholds’) were among the
predictors that had highest correlation with perceptual sen-
sitivity. In terms of demographic factors, time since blindness
onset (‘SubjectTimeBlind’) and time since implantation (‘Im-
plantTime’) had the highest correlations.

Fig. 4 shows the correlation between perceptual thresholds
and the 28 predictors. Immediately observable in this figure
is the high degree of variability among perceptual threshold
measurements for any given predictor and the linear correla-
tion between many of these predictors and perceptual sensitiv-
ity. When fitting linear regression coefficients between these
predictors and their accompanying threshold measurements,
the line of best fit for all but two predictors (labeled ‘Im-
plantMeanLocTheta’ and ‘FirstFalsePositiveRate’ in Fig. 4,
respectively) had a significantly non-zero slope (p < 0.05).
It is worth noting, however, that such trends were not always
consistent across all 12 subjects.

Whereas previous studies were able to demonstrate that
thresholds are negatively correlated with impedance readings
(labeled ‘Impedance’ in Fig. 4) and positively correlated
with electrode-retina distance (‘Impedances2Height’) [2]–[4],
our data also highlights correlations with demographic fac-
tors. Most notably, thresholds tended to increase with sub-
ject age (‘SubjectAge’), subject age at implantation (‘Sub-
jectAgeAtSurgery’), and time since blindness onset (‘Sub-
jectTimeBlind’). Not surprisingly, thresholds also tended to
increase with time since implantation (‘ImplantTime’), which
is consistent with other studies [5]. In terms of neuroanatom-
ical parameters, thresholds were positively correlated with
electrode-fovea distance (‘ElectrodeLocRho’) and negatively
correlated with ganglion cell density (‘RGCDensity’), which
is a nonlinear function of electrode-fovea distance.

Thresholds over time were also strongly correlated with
different measures typically obtained during system fitting,
such as impedance and threshold readings (‘FirstImpedance’
and ‘FirstThreshold’, respectively) as well as established upper

bounds on the allowed current amplitude (‘FirstMaxCurrent’)
and charge density (‘FirstChargeDensityLimit’). Correlations
were similar for predictors obtained during follow-up exams.

B. Threshold Prediction

Table III shows aggregated LOSO threshold prediction re-
sults observed when modeling ‘Routine’, ‘System Fitting’, and
‘Follow-Up’ datasets with EN and XGB-R models. Results
are presented for FEVE ≡ FEVE0 and FEVE180, where the
latter assumed that perceptual thresholds remained stable over
a period of 180 days (see Subsection III-E). Note that in
some cases FEVE values were even more negative than R2

adj,
because of the subtraction of σ2

i in Eq. 1. Perceptual threshold
estimates compared to ground-truth for all 12 subjects can be
found in Figs. B.2–B.3.

Both EN and XGB-R models failed to yield accurate per-
ceptual threshold predictions when relying solely on routinely
collected data, as indicated by negative R2

adj and FEVE values.
Although many of these routine predictors correlated with
perceptual thresholds, the regression results suggest that they
alone do not carry sufficient information to predict perceptual
thresholds over time.

Upon the introduction of measurements recorded during
each subject’s system fitting session, the predictive power of
the XGB-R increased notably (R2

adj = 0.385), more so than
the linear model (R2

adj = 0.133). Finally, when considering
all collected and engineered predictors in our models (i.e.,
the ‘Follow-Up’ feature subset), both EN and XGB-R models
achieved accurate threshold predictions, explaining more than
70% of the variance in the data.

Post-hoc SHAP analysis (Fig. 5, top two rows) revealed that
among all ‘System Fitting’ features, the XGB-R predictions
were most influenced by initial threshold measurements from
system fitting, the time elapsed since implant surgery, and
the time elapsed since system fitting (‘FirstThresholds’, ‘Im-
plantTime’, and ‘TimeSinceFirstMeasurement’, respectively).
In these plots, each data point is associated with a thresh-
old prediction from the held-out cross-validation fold (test
set). SHAP values indicate each feature’s contribution to the
model’s prediction, with high SHAP values pushing the model
towards predicting high thresholds, and low SHAP values
pushing the model towards predicting low thresholds. As
previously observed in [3], [4], measures of impedance (from
both the current session and from system fitting) were also
instrumental in this model’s decision process.
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Fig. 5: Force plot of SHapley Additive exPlanations (SHAP) values for the ten predictors that had greatest impact on threshold
prediction (top two rows) and electrode deactivation inference (bottom two rows). Each data point is associated with a prediction
from the held-out test set. SHAP values indicate each feature’s contribution to the model’s decision. For threshold prediction,
predictors with high SHAP values influenced the model towards predicting greater threshold values while those smaller SHAP
values encouraged the model to predict relatively lower threshold values. In the case of electrode deactivation, positive SHAP
values indicate that the feature pushed the model towards predicting deactivation while negative values reflect that the feature
pushed the model away from predicting deactivation. Colors indicate predictor values. Results are shown for ‘System Fitting’
and ‘Follow-Up’ feature splits (see Table II).
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TABLE IV: Results for Leave-One-Subject-Out (LOSO) Electrode Deactivation Classification. Each metric is evaluated over
an aggregated held-out test set. Means and standard deviations across subjects are reported in parentheses. Subjects with no
deactivated electrodes were excluded from the mean and standard deviation aggregation reported in parentheses.

Method Precision Recall F1 AUC

Routine
Logistic regression 0.237 (0.248± 0.259) 0.392 (0.519± 0.434) 0.295 (0.260± 0.288) 0.466 (0.626± 0.140)
XGB-Classifier 0.219 (0.376± 0.337) 0.408 (0.512± 0.360) 0.285 (0.324± 0.282) 0.475 (0.645± 0.145)

System Fitting
Logistic regression 0.558 (0.447± 0.289) 0.746 (0.625± 0.383) 0.639 (0.502± 0.310) 0.813 (0.733± 0.125)
XGB-Classifier 0.500 (0.462± 0.243) 0.765 (0.663± 0.289) 0.605 (0.530± 0.261) 0.809 (0.693± 0.152)

Follow-up
Logistic regression 0.648 (0.545± 0.271) 0.843 (0.692± 0.351) 0.733 (0.602± 0.295) 0.913 (0.816± 0.133)
XGB-Classifier 0.646 (0.536± 0.265) 0.867 (0.712± 0.344) 0.740 (0.609± 0.295) 0.913 (0.758± 0.171)

The two models, given their inherently different assump-
tions about the relationships between the predictors and per-
ceptual thresholds, yield different insights into the most im-
pacting predictors of perceptual threshold. The most important
‘Follow-Up’ predictor for both model types was the thresh-
old measurement from the previous visit (‘LastThresholds’).
This is unsurprising, considering its strong correlation with
the electrode’s current perceptual threshold. Greater values
for ‘LastThresholds’ tended to influence the model towards
predicting a larger perceptual threshold sensitivity. Additional
predictors shared between EN and XGB-R models included
‘FirstThresholds’, ‘FirstImpedance’, ‘TimeSinceLastMeasure-
ment’, and ‘Impedance’. Of the top five predictors influenc-
ing the predictions of the EN model, the remaining four
were ‘TimeSinceLastMeasurement’, ‘FirstImpedance’, ‘First-
Thresholds’, and ‘OpticDiscLocY’. More time elapsed since
a subject’s previous visit often biased the model towards
predicting an increased perceptual threshold. Similarly, high
impedance values measured at system fitting tended to lead
towards the prediction of a higher perceptual threshold. In-
terestingly, a high initial threshold (measured during system
fitting) led to decreased threshold predictions. Exclusively
meaningful to the XGB-R model, advanced age (accounted
for in the predictor ‘SubjectAge’) often led to higher threshold
predictions in the XGB-R model.

Despite the improved generalization achieved by prediction
of a scaled threshold value (as opposed to the exact perceptual
threshold current; see Section III-E) in the case of modeling
with ‘System Fitting’ and ‘Follow-Up’ features, impractical
predictions were observed in rare occasions. Notably, an
unbounded regression model output permitted the prediction
of a negative perceptual threshold, but this was observed on
only four out of 6,225 occasions.

Overall, these models offer two unique perspectives on the
predictors most salient to thresholds in Argus II implants.

C. Predicting Electrode Deactivation
Table IV shows aggregated LOSO classification results

observed when modeling ‘Routine’, ‘System Fitting’, and
‘Follow-Up’ datasets with LR and XGB-C models.

LR and XGB-C models performed similarly when predict-
ing electrode deactivation using each subset of predictors.
Interestingly, without ever measuring perceptual thresholds
(‘Routine’), both LR and XGB-C models were able to predict
future electrode deactivations with an area under the ROC
curve (AUC) of 0.47. In this case, the model decisions

relied on initial impedance measurements as well as clinical
information about the subject’s age, time since blindness onset,
and time since device implantation. By incorporating threshold
measurements as well as other parameters typically collected
during system fitting, performance increased to an AUC of 0.8.
When additional measurements from follow-up examinations
were included, both models reached a peak AUC of 0.913.

The SHAP values for the ten most important features in
the dataset, according to the ‘System Fitting’ and ‘Follow-
Up’ models, are shown in Fig. 5 (bottom two rows). In these
plots, each data point is a prediction of electrode deactivation
from the held-out cross-validation fold (test set). SHAP values
indicate each feature’s contribution to the model’s decision,
with positive values indicating that a feature pushed the model
towards predicting deactivation, and negative values pushing
the model away from predicting deactivation. Of all the routine
clinical measures, subject age at diagnosis and the amount
of time the subject has been blind were observed as the
most important features for electrode deactivation inference.
Regardless, low electrode deactivation classification perfor-
mance was attained with LR and XGB-C models when relying
exclusively on routine clinical measures.

A significant improvement in predictive performance was
observed upon the introduction of threshold measurements and
related electrode-specific settings typically obtained during
system fitting. Specifically, initial thresholds and the pro-
portion of electrodes deactivated during system fitting were
important predictors for both LR and XGB-C models. Elec-
trodes with greater initial threshold were more likely to be
deactivated in the future. Similarly, higher proportions of
deactivated electrodes during system fitting tended to influence
the model towards predicting electrode deactivation for that
subject. Higher electrode-fovea distances (‘ElectrodeLocRho’)
biased both models towards predicting deactivation.

Not surprisingly, when data from follow-up examinations
was considered as well, the most recently obtained threshold
measurement proved to be the most important predictor. This
is consistent with the finding that threshold measurements
often go through large fluctuations over time [5], which cannot
be predicted from an initial threshold measurement during
system fitting. However, routinely collected measures were
nonetheless important to the follow-up model’s predictions.

In all three scenarios, and with each model type, time since
blindness onset (‘SubjectTimeBlind’) proved to be highly
predictive of future electrode deactivations.
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V. DISCUSSION

The present study is a retrospective investigation of a
large clinical dataset and demonstrates the untapped value
in clinical recordings taken from neuroprostheses. In this
work, we demonstrate the prediction of electrode deactivation
and perceptual thresholds using XAI models and the insights
into measurable factors influencing perceptual sensitivity that
can be gleaned from these models. Automating threshold
prediction using imaging and clinical data may be an important
and cost-effective strategy for retinal implant calibration.

On a longitudinal dataset composed of data from 12 subjects
with Argus II retinal prostheses, electrode deactivations were
predicted with AUC values from 0.475 when exclusively using
routine clinical measures up to 0.813 when incorporating
system fitting data and 0.913 when leveraging information
from previous examinations. Additionally, perceptual thresh-
olds were predicted using routine, system fitting, and follow-
up measurements, with associated R2

adj values of up to 0.765.
On the one hand, these findings highlight the importance of
periodical threshold measurements to continuously monitor
device performance. On the other hand, in the absence of such
measurements, our work demonstrates that routinely collected
clinical measures and a single session of system fitting might
be sufficient to inform an XAI-based threshold prediction
strategy. Although the results presented in this study were
based on measurements exclusively from the Argus II retinal
implant, the predictors that we analyzed are likely highly
relevant to a wider range of retinal prostheses.

Unfortunately, we did not have access to fundus pho-
tographs at each session of the original dataset. We therefore
had to assume that the location of the array stays stable over
time, which is supported by a recent study highlighting the
long-term stability of the Argus II implant [14].

Consistent with previous studies [2]–[4], we found that
electrode impedance is an important predictor of perceptual
thresholds. In addition, our models discovered correlations
with demographic factors, demonstrating that thresholds tend
to increase with subject age, time since blindness onset,
and time since implantation. This is not surprising, as RP
is a progressive disease that may lead to worsening visual
outcomes as time progresses. Interestingly, the importance of
electrode-retina distance for the purpose of threshold predic-
tion was age-dependent (Fig. 6): whereas low electrode-retina
distances were associated with lower perceptual thresholds for
the youngest subjects, the opposite was true for the oldest
subjects in the dataset. For a wide range of subject ages
(between −1.5 and +2 in normalized age), electrode-retina
distances were not predictive of perceptual thresholds.

Interestingly, our models also identified electrode-fovea
distance (i.e., retinal eccentricity) as an important predictor
of perceptual thresholds. As RP progresses from the periphery
inwards, this and other neuroanatomical markers could stand in
as a proxy for disease progression, which may be important for
predicting visual outcomes with patient-specific computational
models of prosthetic vision [15], [22], [23]. However, as our
study is limited to Argus II data, future work should focus
on replicating these results based on data from other (and

Fig. 6: SHAP dependencies between subject age (‘Sub-
jectAge’) and electrode-retina distance (approximated by
‘Impedances2Height’) observed in the full XGB-R model
(‘Follow-Up’). Positive SHAP values indicate that the model
was pushed towards predicting higher thresholds. SHAP mag-
nitude indicates the strength of the effect. For instance, the
data points on the far left of the plot (i.e., the youngest
subjects in the dataset) indicate that low electrode-retina dis-
tances (blue) were correlated with lower perceptual thresholds
(negative SHAP values). For subjects above normalized age
+2, electrode-retina distances were strongly correlated with
higher perceptual thresholds (large positive SHAP values).

preferably: multiple) retinal implants.
To the best of our knowledge, this work (along with our

preliminary study [8]) comprises a novel systematic study
on perceptual sensitivity for the field of retinal prostheses.
Accurate predictive models of electrode deactivation and per-
ceptual thresholds that rely on established and interpretable
clinical measures has the potential to benefit both the retinal
implant and wider neuroprosthetics communities. In the near
future, such data-driven approaches could complement expert
knowledge-driven interventions [24], making increasingly few
assumptions about the underlying data and instead automat-
ically inferring and exploiting relationships among the mea-
sured features, thus potentially transforming clinical practice
in predicting visual outcomes.
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APPENDIX

A. Supplemental Data and Figures
1) Subject Demographics: Summary subject demographics are provided in Table A.1. Data reported in this table relevant

to subject age and the amount of time for which the subject had been blind reflects information from the earliest recording
obtained from each subject. All subject demographics were provided by, or estimated from, previous studies [3], [11], [12].

TABLE A.1: Subject Demographics

Feature Mean ± Std Dev Range Frequency
Age (years) 58.85± 8.24 [45, 72] –
Time Blind (years) 37.54± 10.71 [20, 53] –
Gender: Male – – 11
Gender: Female – – 2
Implant Eye: Right – – 12
Implant Eye: Left – – 1

2) Subject Threshold Distributions: High variance in perceptual thresholds across subjects and among the electrodes of a
single implant make threshold prediction a challenging task. Kernel density estimates of perceptual thresholds for each of the
twelve subjects studied in this work are provided in Fig. A.1. Perceptual threshold variance was lowest for subjects 12-005,
51-009, and 52-001. Qualitatively, higher R2

adj values were typically observed in LOSO regression evaluation for these subjects.

Fig. A.1: Kernel density estimates of perceptual thresholds for each subject.

B. Per-subject Regression Model Fit
A closer inspection of regression model outputs at the subject level reveals additional insights into EN and XGB-R model

behavior when fitted to each subset of feature data. When fitted to ‘Routine’ features, the linear EN model predicted relatively
consistent perceptual thresholds for nine of the twelve subjects (Fig. B.2, top), likely suggesting poor linear relationships
between ‘Routine’ predictors and perceptual thresholds. Similar behavior can be observed from the EN models fitted to
‘System Fitting’ data (Fig. B.2, middle) and is additionally reflected in the low R2

adj values for these models. Introducing
‘Follow-Up’ features significantly improved explained perceptual threshold variance for all subjects (Fig. B.2, bottom), and
enabled R2

adj values greater than 0.7 for five of the twelve subjects. The higher variance XGB-R model also failed to capture
generalizable relationships between ‘Routine’ predictors and perceptual thresholds (Fig. B.3, top), despite our finding that some
of these predictors (including, but not limited to, time since blindness onset, electrode impedance, and electrode-fovea distance)
are important to threshold prediction. When ‘System Fitting’ features were included, improvements in explained variance can
be observed for a few of the subjects but there were still a number of subjects whose perceptual thresholds were not well
modeled (Fig. B.3, middle). R2

adj values for all subjects, with the exception of 51-001, improved when the XGB-R model was
fitted with ‘Follow-Up’ features (Fig. B.3, bottom). Similar to the results observed with the EN model, highest R2

adj values
were observed for subjects 12-001, 12-005, 52-001, and 71-002.
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Fig. B.2: Ground truth and EN predicted perceptual thresholds based on ‘Routine’ measures (top), ‘System Fitting’ measures
(middle), and ‘Follow-Up’ measures (bottom).
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Fig. B.3: Ground truth and XGB-R predicted perceptual thresholds based on ‘Routine’ measures (top), ‘System Fitting’
measures (middle), and ‘Follow-Up’ measures (bottom).
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