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ABSTRACT 
Although the existence of non-recurrent and recurrent forms of ductal carcinoma in situ (DCIS) 
of the breast are observed, no evidence-based test can make this distinction.  This retrospective 
case-control study used archival DCIS samples stained with anti-phospho-Ser226-GLUT1 
(glucose transporter type 1) and anti-phosphofructokinase type L (PFKL) antibodies.  
Immunofluorescence micrographs were used to create machine learning (ML) models of 
recurrent and non-recurrent biomarker patterns, which were evaluated in cross-validation 
studies.  Clinical performance was assessed by holdout studies using patients’ whose data were 
not used in training.  Micrographs were stratified by the recurrence probability of each image.  
Recurrent patients were defined by at least one image with a probability of recurrence  >98% 
whereas non-recurrent patients had none.  These studies demonstrated no false negatives, 
identified true positives, and uniquely identified true negatives.  Roughly 20% of the microscope 
fields of recurrent lesions were computationally recurrent.  Strong prognostic results were 
obtained for both Caucasian and African American women.  Our machine tool provides the first 
means to accurately predict recurrent and non-recurrent patient outcomes.  We suggest that at 
least some false positives were true positives that benefitted from surgical intervention.  The 
intracellular locations of phospho-Ser226-GLUT1 and phosphofructokinase type L likely 
participate in cancer recurrences by accelerating glucose flux, a key feature of the Warburg 
Effect.   
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INTRODUCTION 
Human cancer recurrences have not been adequately examined, although cancer 

recurrences and their sequelae are primary contributors to cancer mortality.  Consequently, 
cancer recurrences have been described as a “black box” (1).  Various factors correlate with 
cancer recurrences including family history, germline mutations such as BRCA1 and 2, 
immunohistochemistry findings, and gene expression studies (1-4).  However, without strongly 
correlating biomarkers, no definitive, broadly relevant mechanism(s) is available, and without a 
mechanism, prognostic tests and new drugs are difficult to design.  Current FDA-approved tests 
provide a probability of recurrence, not a definitive prognostic or predictive finding.  Instead of 
relying upon descriptive approaches, moderately correlating factors, or low signal-to-noise 
methods, we used a hypothetico-deductive approach focusing upon early glycolytic biomarkers 
that accelerate glucose utilization (5-9).  We hypothesize that DCIS recurrences and non-
recurrences can be traced to spatial relationships among glycolytic components of cells and 
tissues.  Since Warburg’s seminal work (10), we have known that enhanced glucose utilization 
accompanies aggressive cancer.  Numerous laboratory and animal studies confirm the role of 
glucose management in cancer (11).  Glucose utilization in human cancer is illustrated by the 
ability of fluorodeoxyglucose and positron emission tomography to visualize aggressive cancers 
(12).    Physical and chemical changes in early rate-limiting glycolytic transporters and enzymes 
may accelerate glucose uptake and identify pre-invasive lesions competent to become 
aggressive cancers.  To test this concept, we used machine learning (ML) to compare features 
of glucose flux-controlling steps within DCIS lesions of patients who will or will not experience a 
cancer recurrence.  We found that phospho-Ser226-GLUT1, whose Vmax dramatically increases 
after phosphorylation (13), traffics to the ductal epithelial cell periphery in lesions of patients who 
will experience a recurrence (5).  The enzymes PFKL and phosphofructokinase/fructose-2,6-
bisphosphatase type 4 (PFKFB4) have been localized to nucleoli (14).  We confirmed this 
finding in ductal epithelial cells of patients who will not exhibit a recurrence (6).  In patients who 
will report a recurrence, PFKL and PFKFB4 are desequestered from nucleoli to accumulate 
near plasma membranes (6).  Thus, peri-membrane regions of ductal epithelial cells of patients 
who will recur are endowed with special glycolytic advantages.  The heightened Vmax of 
phospho-Ser226-GLUT1 accelerates glucose equilibration across plasma membranes.  PFKL 
also enhances glycolytic flux due to its diminished feedback regulation.  Phospho-Ser226-
GLUT1 and PFKL trafficking to membranes serves multiple functions (7).  For example, 
accumulation of glycolytic, pentose phosphate pathway, and glutathione synthesis enzymes 
near cell surfaces allows substrates to directly enter these pathways.  Aggregation of 
biochemical pathway components accelerates product formation.  Castellana et al. (15) have 
shown that two-step pathways are accelerated 6-fold whereas three-step pathways are 
accelerated 110-fold by co-clustering.  This study leverages these concepts to create ML 
models of glycolytic biomarker features to predict DCIS patient outcomes.  Racial disparities in 
cancer care are well-known (16); for example, more African American women die from breast 
cancer after DCIS than Caucasian, Hispanic or Asian women (17).  For this reason, we sought 
to create broadly applicable prognostic machine classifiers exhibiting high performance for 
African American women. 

 
METHODS 
Study Design 
 We test the hypothesis that cancer recurrences and non-recurrences can be predicted 
using ML.  DCIS lesions from recurrent and non-recurrent patients were labeled with biomarkers 
associated with heightened glucose fluxes.  These micrographs were used to train computers. 
We sought to obtain broadly generalizable computer models to ensure the faithful evaluation of 
patients.  Many patients had full or partial mastectomies, and therefore false positives are 
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expected because surgeries reduce patient recurrences.  This limitation is acceptable because 
it is the only ethical means of extracting statistically significant data.   
 
Patients and Patient Samples 
Patient Characteristics 
 This study included DCIS samples from 185 women who were followed for at least 10 
years.  At the time of diagnosis, the patients were aged 33-92 years.  For recurrent patients, the 
mean disease-free period to recurrence was 76+62 months.  We define a recurrence as any 
subsequent event, including invasive and metastatic disease, chest wall recurrences, 
contralateral recurrences, and new DCIS.  Data from 70 patients were used for computer 
training whereas the remaining 115 patient samples were used for holdout studies.   

Patients with a “pure” DCIS diagnosis were admitted to this study.   For inclusion, certain 
metadata were required (age, race, non-recurrent/recurrent status, type of recurrence, time to 
recurrence, surgery, chemo-/radiotherapy, surgical margins, cancer history, relevant family 
history).  All DCIS samples with evidence of lymph node involvement or invasive cancer were 
excluded from this study.  Patients had no previous or concurrent cancer.  Tissue samples were 
obtained from women who had undergone partial mastectomies (67%), total mastectomies 
(31%), or biopsy alone-no other surgery (1%).    
FFPE Samples 

Archival formalin fixed paraffin embedded (FFPE) pathology samples were obtained 
from the St. Louis Breast Tissue Registry at Washington University School of Medicine (St. 
Louis, MO) and Beaumont Hospital (Royal Oak, MI).  This tissue sourcing strategy was used to 
ensure that laboratory personnel did not have access to electronic medical records of patients 
whose samples were under study.  All experiments were blinded or double-blinded and all 
outcome predictions were made by the software, not the observer (see below).  The use of 
human material was in accordance with the Declaration of Helsinki on the use of material in 
scientific research.  All experiments were approved by the University of Michigan Institutional 
Review Board (No. HUM000044189).   
Patient Number 

The patient number necessary to obtain the required sensitivity was estimated as 
described by Jones et al. (18) according to the equation: 
 
       Nsen  =  χ2  [(SN(1-SN)) / W2]    Eq. 1 
     P 
 
where Nsen = the number of patients, SN = the anticipated sensitivity, W = the maximal 
acceptable width of the 95% confidence  interval (0.1) (19), χ2  = 3.8, and P = prevalence.  
Given the distributions below, this is a conservative estimate of the maximal acceptable width of 
the confidence interval.  The anticipated sensitivity is 0.95.  As 51/115 holdout patients 
experienced recurrences in this dataset, we used a recurrence prevalence of 44.3%.   This is 
similar to the abundance found for DCIS patients treated with biopsy alone-no other surgery 
(46.6+21%), which was obtained by combining 10 published studies (20-29).  We found that 41 
patients are needed to analyze sensitivity.  The specificity was evaluated using: 
 
       Nspec  =  χ2  [(SP(1-SP)) / W2]    Eq. 2 
           (1-P) 
 
where Nspec = the patient number necessary to reach the desired specificity and SP = specificity 
(0.90).  This led to an estimate of 61 patients.   
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Immunofluorescence Microscopy 

FFPE samples were cut into 5 µm sections.   Sections were de-paraffinized and re-
hydrated by sequential incubation in a graded ethanol series.  After rehydration in PBS with 
0.02% Triton X-100 (Thermo-Fisher Sci., Waltham, MA), heat-mediated antigen retrieval in 
10 mM citric acid buffer (pH 6.0) was performed on sections.  Sections were then blocked using 
a blocking solution (10% dried milk in PBS) for 1 hr. at room temperature.  After blocking 
procedures, sections were incubated with 2 µg/mL of primary antibodies, rabbit anti-phospho-
Ser226-GLUT1 (Millipore-Sigma, cat. no. ABN991), mouse anti-PFKL (Santa Cruz, cat. no. sc-
393713) and/or anti-H2A.X (Abcam, cat. no. ab229914) diluted in 1% BSA in PBS overnight at 
4°C.  After incubation, the sections were washed with PBS.  Finally, the sections were incubated 
with fluorescent second step antibodies - donkey anti-rabbit IgG (cat. no. A10042) and goat anti-
mouse IgG (cat. no. A11029) for 1 hr., washed with PBS, and then mounted in Prolong 
Diamond Antifade medium (Thermo-Fisher Sci.) (5-7).  
 Fluorescence microscopy was performed as described (5-7).  Images were obtained 
with a Nikon TE2000 microscope (Nikon, Melville, NY) with a 20x (0.50 NA) objective, 1.5x 
optovar and a back-illuminated Andor iXon electron-multiplying charge-coupled device camera 
(Model DV-888; Andor Technology, Belfast,  Northern Ireland).  The 20x objective with or 
without a 1.5x optovar was used to permit the capture of micrographs containing information 
from the duct and the stroma to support prognostic analyses, as too high a magnification could 
miss features correlating with recurrences.  A moderate NA was chosen to provide the highest 
possible resolution while avoiding objective-mediated optical sectioning of the tissue section, 
which would lead to a loss of information.  Images were captured and processed with 
MetaMorph software (Molecular Devices, San Jose, CA).  To reduce shot noise, each 
micrograph was an average of 10-15 separate image acquisitions, with each image acquired for 
0.2 sec.  To reduce read noise, the EMCCD chip was cooled to -95° C.  Typical camera settings 
were multiplication gain, 100; vertical shift speed, 3.04 msec./pixel and 14-bit digitization at 10 
MHz.    

 
Computer Procedures 
Machine training 

We employ supervised machine learning to create computer models that recognize 
biomarker patterns within tissue sections originating from patients who will or will not exhibit 
subsequent cancer recurrences.  Custom Vision is Microsoft’s (Redmond, WA) computer vision 
application programming interface built atop convoluted neural networks.  The software was 
deployed as a multiclass (tags, recurrent or nonrecurrent) and general domain problem.  
Micrographs from 70 patients were available for computer training.  The computer was 
separately trained with micrographs of PFKL and phospho-Ser-226-GLUT1-stained tissues (6, 
7).  Prior to model building, micrographs were triaged.  Micrographs with poor focus were 
excluded.  Images containing artifacts such as tissue section folds, fluorescent label trapping or 
other artifacts were not used in training.  Sections that did not contain enough micrographs 
and/or ducts were discarded.  As peripheral biomarker labeling patterns were often observed for 
patients’ samples prior to cancer recurrences, but less frequently in nonrecurrent samples, 
machine training was based on tissues exhibiting peripheral or non-peripheral labeling patterns 
of these two glycolytic biomarkers.  Thus, to train the computer to recognize recurrent images, 
glycolytic biomarker clustering at the cell periphery of micrographs from recurrent patient 
samples were used.  On the other hand, to select images for non-recurrent training, 
micrographs without peripheral biomarker clusters of non-recurrent samples were selected 
whereas images from non-recurrent patients with peripheral biomarker clustering were not used 
in training.  This approach minimizes confounding errors by limiting the contribution of presumed 
false negatives (recurrent patients without peripheral labeling) and false positives (non-
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recurrence patients with peripheral protein labeling) from the training data.  This approach is 
justified by highly significant findings (P < 0.0001; see below).   
Cross-Validation Studies 

Computer model performance was assessed by calculating precision and recall using 5-
fold cross-over analyses. The precision is: 
 

Precision   =  ___TP___          Eq.   3 
  (TP+FP)  

 
where TP indicates true positives and FP indicates false positives.   The recall was calculated 
according to Eq. 4: 
 

Recall   =            TP          Eq.   4 
          (TP+FN) 

 
where FN indicates false negatives.  Data were evaluated using  precision-recall curves, which 
plot these variables across threshold values.  Precision-recall curves are much less sensitive to 
differences in the numbers of patients in each group than receiver operating characteristic plots 
(30).   
Overfitting 

Overfitting is a serious issue in medical machine learning.  Our protocol was designed to 
minimize overfitting of data. The application programming interface does not permit duplicate 
images, thereby reducing the potential for overfitting.  As the Azure platform uses low-rank 
filters for image classification with convoluted neural networks, computationally efficient models 
that avoid overfitting and generalize better are obtained (31). Operationally, the possibility of 
overfitting is minimized by using additional patient samples and by collecting multiple 
micrographs per section.  Image augmentation may also reduce overfitting by increasing the 
data set size.  By using fluorescence microscopy, which has a high signal-to-noise ratio, we 
reduce the possibility of overfitting noise.  As stroma and ductal regions of tissue are important 
in predicting recurrences (7-9), there is no extraneous image information to distract the 
classifier.  Very high levels of precision and recall are signs of overfitting, and the model should 
be discarded.  Overfitting was also avoided by limiting training time; thus, smaller data sets 
require less time than larger data sets.  Also, for each dataset, the performance of the ML model 
in classifying holdout data was noted for different training times.   
Data set tuning to improve recurrence predictions for African American women 
 In preliminary studies, we found that the classifiers did not perform well using 
micrographs obtained from African American DCIS tissue lesions.  To address this concern, 
micrographs from Caucasian and African American patients were evaluated by direct 
inspection.  After balancing the recurrent and non-recurrent data sets for blood vessel size and 
for lipid droplet content, we found that the performance of holdout samples of Caucasian and 
African American women was indistinguishable (see below).   
Computed outcome prediction   

Using our ML models, we compute well-calibrated cancer recurrence probabilities to 
stratify patient outcomes.  We tested a verification (holdout) data set containing micrographs of 
each patient (N=115) using the Custom Vision application.  In general, we sought to obtain 
roughly 25-50  micrographs per biomarker from each patient for computational analysis.  No 
patients in the holdout data set were included in the training data set.  The cut-point was set at a 
98% recurrence prediction.  In most cases, the computed probability of outcome was 0-3% for 
individual micrographs from non-recurrent patients and 98-100% computed probability of 
recurrence for micrographs deemed to be recurrent.   
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Statistical Tests of Outcomes for Verification Studies 
Computed predictions were statistically evaluated.  Two-by-two contingency tables were 

constructed using clinical patient outcomes and computed outcomes.  Fisher’s exact test was 
chosen because there is a small value in the FN cell.  Test accuracy is: 
 
  Accuracy =            TP+TN             Eq. 5 
          TP+TN+FP+FN 
 
Another means to evaluate classifier performance is the F1 score.  The F1 score is the 
harmonic mean of the precision and recall (Eq. 6).   
 

      F1 score    = 2 (precision) (recall)    Eq. 6 
     (precision + recall) 
     
Both accuracy and F1 score are widely used in ML studies.   
 We also employed the Matthews correlation coefficient (MCC) to evaluate the test (32) 
because it is not affected by unbalanced data sets.  It is calculated as: 
 

MCC   =                    [(TP)(TN)]  -  [(FP)(FN)]                 Eq. 7 
      √ (TP+FP) (TP+FN) (TN+FP) (TN+FN) 
 
Estimating Recurrence Parameters 
 As noted above, DCIS recurrences among patients treated with biopsy alone, Recbiopsy, 
is 47+21% (range 14-73%) (20-29).  As most patients undergo full or partial mastectomies, we 
estimate the impact of these procedures on patient outcomes.  We calculate test performance 
using two conditions:  1) we determine performance metrics assuming surgery has no effect on 
patient outcomes and 2) we evaluate test performance assuming surgery causes FPs due to the 
removal of cancerous tissue thus converting TPs to FPs. The impact of surgery on test 
performance is illustrated in Fig. 1.  As described above, we estimate that ~47% of the patients 
will recur; the remainder will not recur.  There are successful surgeries that are computationally 
recurrent, but clinically non-recurrent due to surgery; these will appear in data as FP.  Using 
NRecbiopsy and the observable recurrence rate after partial mastectomies (NRecpartial) of 10% 
(33), we estimate the impact of surgery (Nsurgery) as: 
 
   Nsurgery   =  NRecbiopsy  -  NRecpartial   (Eq.  8) 
 
We use Nsurgery to correct confusion matrices for the effect of surgeries on patient outcomes, 
which is ~37%.   
 
RESULTS 
Cross-Validation Studies of ML Models 

To verify the performance of phospho-Ser226-GLUT1 and PFKL ML models, we 
assessed their precision and recall in cross-validation studies.  Training data sets were 
randomly divided into five subsets.  In these five-fold cross-validation studies, computer training 
used 80% of the micrographs for each biomarker, and then the model was tested using the 
remaining 20% of the micrographs for each of the five subsets.  The performances of ML 
models are illustrated using precision-recall curves (Fig. 3A, B).  Both classifiers exhibit 
excellent performance in cross validation studies and are used to predict patient outcomes in 
holdout studies.  
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Clinical Verification using Holdout Data 
 Conventional diagnostic tests often rely upon a single variable, such as a 
spectrophotometric intensity, to identify a clinical condition.  Individuals within healthy or ill 
populations test at multiple levels, leading to overlapping curves.  The overlapping regions 
cause FN and FP.  This is not the case with our machine studies where we calculate recurrence 
probabilities to stratify samples.   
FFPE Source Comparison 
 This study uses two sources of FFPE DCIS tissue samples, the St. Louis Breast Cancer 
Registry and Beaumont Hospital.  To provide support for this strategy, we compared images 
using these tissue sources.  Fig. 1 shows immunofluorescence studies of samples from 
Beaumont Hospital (panel A) and the St. Louis Breast Cancer Registry (panel B).  These non-
recurrent tissue samples were labeled with anti-phospho-Ser226-GLUT1.  This biomarker was 
chosen because their internal sequestration is easily observed in samples from patients who will 
not recur.  In contrast, GLUT1 is found at the periphery of epithelial cells of all DCIS lesions (5).  
Phospho-Ser226-GLUT1 is found in the nuclear region of samples from both the St. Louis 
Breast Cancer Registry and Beaumont Hospital.  Additionally, we have previously used the 
National Disease Research Interchange to obtain DCIS and normal adjacent tissue for labeling 
(6).  In other studies, we have used FFPE tissue samples from Precision Medical, the 
Cooperative Human Tissue Network, Biochain, and others with this protocol.  Samples from the 
St. Louis Breast Cancer Registry and Beaumont Hospital were used in this study because the 
associated metadata met our inclusion criteria. 
Patient Scores and their Distributions 

Holdout verification studies were performed to determine the models’ clinical 
applicability.  Patient holdout studies were performed using biopsies from 115 women.  We 
computed the cancer recurrence probability for each micrograph to stratify patient data to 
predict outcomes.  The probability that a micrograph was linked to a cancer recurrence follows a 
bimodal distribution for phospho-Ser226-GLUT1 and PFKL (Fig. 3C, D).  The probability that a 
micrograph originated from a recurrent lesion was often high (~98-100%) or low (0-2%).  Fig. 3C 
shows a recurrence probability plot for phospho-Ser226-GLUT1 labeled micrographs vs. the 
number of micrographs at each probability.  Recurrence probability plots (panels C and D) 
quantitatively illustrate lesion heterogeneity. Roughly 20% of the microscope fields of recurrent 
lesions are computationally recurrent, whereas the remaining images are non-recurrent.  As the 
DCIS population data of Fig. 3C show, the recurrent group mode value is 47 and the 
background level is 1.15 ± 1.20 (mean ± SD).  The mode is 37 standard deviations above 
background noise, indicating a strong ability to detect cancer recurrences. 
 To complement phospho-Ser-226-GLUT1 assessments, we used PFKL, which 
undergoes spatial changes in DCIS lesions destined to recur (6).  Using a second ML model, 
the population distribution of individual PFKL scores for DCIS patients was obtained (Fig. 3D), 
which resembles that of phospho-Ser226-GLUT1 (panel C).  Recurrence determinations require 
that one or more micrographs of phospho-Ser-226-GLUT1 or PFKL have a >98% recurrence 
probability.  
 In addition to providing information about all patients, we also show individual patient 
score distributions in Fig. 3E and F to demonstrate clinical utility.  Panel E shows a TN (clinically 
non-recurrent and computationally negative) and panel F shows a TP (clinically recurrent and 
computationally positive); note the presence of a microscope field at a 98% recurrence 
probability in panel F.  To visualize these samples, Fig. 4 provides fluorescent micrographs of 
DCIS lesions labeled with anti-phospho-Ser226-GLUT1 that were scored as TP, FP, and TN by 
the ML model.  Accumulation of proteins at cell peripheries is an important indicator of recurrent 
cells (5-8).  However, this is neither a necessary nor sufficient condition for a recurrent 
prediction;  accumulation at the cell periphery correctly predicts about 70% of the patient 
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outcomes (5, 6) (see also following sub-section).  It should be noted that FP micrographs are 
very similar to TP micrographs, but not TN micrographs.  

A primary factor in outcome predictions was the computed status of phospho-Ser226-
GLUT1.  Most of the recurrent class projections for TP and FP samples were made with a single 
positive biomarker (e.g., either phospho-Ser226-GLUT1 or PFKL) and 30-40% exhibited 
positive computational results for both biomarkers.  However, PFKL also impacted the recurrent 
outcome predictions for those cases in which phospho-Ser226-GLUT1 computations were 
negative.  PFKL recurrent machine classifications were required for 4/115 TP predictions.  PFKL 
recurrence identifications reduced the total number of FN by 6/115 women.  PFKL trafficking is 
an important contributor to prognostic calculations because: it is a strong indicator of patient 
outcome (6) and the reduction of FN is important for clinical use. 
Non-Canonical Tissue Patterns 
 In this and previous studies (5-9), we focused upon presenting representative examples 
of recurrent and non-recurrent tissue labeling patterns.  For practitioners, however, it is 
important to know the rules and the exceptions to the rules.  It is therefore important to consider 
the properties of the entire population, including non-representative examples.  To illustrate 
unconventional findings, a true negative (clinically and computationally non-recurrent) is shown 
in Supplemental Fig. 1.  Supplemental Fig. 1A, B show the nucleolar biomarker histone HA2.x 
and phospho-Ser226-GLUT1.  HA2.X and phospho-Ser226-GLUT1 co-localize in nucleoli of 
non-recurrent DCIS lesions.  Although PFKL is found in nucleoli of non-recurrent DCIS lesions 
(6) and other tissues (14), this patient displayed peripheral PFKL labeling (Supplemental Fig. 
1C), which is observationally consistent with the recurrent phenotype.  Computational studies 
using both phospho-Ser226-GLUT1 and PFKL models predicted that the patient was non-
recurrent (> 200 micrographs were tested).  Thus, the ML models are more reliable than visual 
inspection.   
Samples from African American Women  

Preliminary studies showed that the ML models did not perform well for African 
American women.  Therefore, new classifiers were built and “tuned” as described under 
Methods.  To ensure that these new ML models performed well using African American women, 
the patient holdout group was composed of similar numbers of Caucasian and African American 
women.  The disease-free time to recurrence did not differ significantly (Caucasian 79 ± 65 
months and African American 68 ± 53 months (P=0.54).  Quantitative data on classifier 
performance are summarized in Table 1.  No FNs were observed.  No significant differences in 
assay performance were noted in comparing all women tested to African American women 
(e.g., the non-recurrent populations of all women tested and African American women tested 
demonstrated a P value of 0.55 using Fisher’s exact test).  To determine if assay performance 
varied with surgical procedures, we analyzed clinically non-recurrent patients (FP and TN) 
treated with either full or partial mastectomies (Table 1).  Fisher’s exact test showed that there 
were no significant differences among these groups (P=0.39). 
Computed Recurrence Percentages do not Differ for True Positives and False Positives 

We considered the possibility that cancer recurrences might be related to the density of 
recurrence-positive microscope fields (positive microscope fields per unit area), not to the 
presence of just one recurrence-positive microscope field.  In other words, FP could be 
qualitatively identical to TP, but the density of recurrence positive microscopic fields in FP 
samples could be too low to successfully support a subsequent recurrence after surgery.  To 
test this idea, the recurrence positive microscope fields and recurrence negative microscope 
fields were quantified for TP and FP patient samples.  The TP and FP distribution curves were 
skewed positively.   The TP samples exhibited 20.2 ± 19.5% (mean ± SD) recurrence positive 
microscope fields.  For FP samples, we found 19.3 ±16.5% recurrence positive microscope 
fields.  A value of P=0.38 was obtained for these data, which does not support the hypothesis 
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that cancer recurrences can be explained by the burden of recurrence positive microscope 
fields in DCIS lesions.   
Further Statistical Analyses of Predicted Outcomes 

We evaluated several statistical features of holdout data.  Data were evaluated with two 
assumptions: 1) that surgery has no effect on patient outcomes and 2) that surgery causes 
some FP by removing tissue that would have subsequently recurred.  Fisher’s exact test yielded 
P<0.0001 for both raw and corrected data (Table 1).  The F1 score and accuracy for raw data 
are 0.79 and 0.77, respectively.  The Matthews Correlation Coefficient (MCC) is 0.60 while the 
true positive rate (TPR) is perfect.  Raw data were corrected using the estimated value of Nsurgery 
= 37% (Fig. 2; Eq. 8), which reduced the number of false positives.  The corrected test accuracy 
and F1 score are 1 and 1, respectively.  At a cutline of 98%, there is no overlap between the 
recurrent and non-recurrent populations, thus, machine analysis constitutes an ideal test.  The 
TP rate is 1 for both raw and corrected data.  The MCC and the false positive rate are also 
improved by corrected data (Table 2).   Under both surgical assumptions, a population of TN 
(clinically non-recurrent and computationally non-recurrent) is identical and accounts for ~36% 
of the DCIS patients in these studies.  These findings support the prognostic inferences that 
satisfy the objectives of this study.   
 
DISCUSSION 
 DCIS may, or may not, lead to breast cancer recurrences.  Roughly, 50% of DCIS 
patients treated with biopsy alone will later develop recurrent breast cancer (20-29).  In the 
absence of an evidence-based tool to classify DCIS lesions as recurrent or non-recurrent, 
nearly all patients are treated with surgery (34-38).  We now report the first evidence-based tool 
using broadly generalizable ML models to identify DCIS lesions that do or do not precede 
recurrences.   
 An advantage of this machine test is the very low number of false negatives.  
Immunofluorescence microscopy has a superior signal-to-noise ratio (~100:1) and spatial 
resolution in comparison to immunohistochemistry.  It also has substantially greater specificity 
than H&E staining.  In contrast to many laboratory tests, these class-conditional probability 
calculations yield distributions of non-recurrent and recurrent populations that do not overlap 
(Fig. 3C-F), presumably due to the clear ability to use all the spatial biomarker information inside 
and around the epithelial cell.  Training was broadly performed using ipsilateral, contralateral, 
chest wall, DCIS and metastatic recurrences.  Cross-validation findings were strong for both 
classifiers (Fig. 3A, B).  As phospho-Ser-226-GLUT1 and PFKL are related to different signaling 
events (6), monitoring both biomarkers should miss fewer positive samples.  Previous in vitro 
studies report that exosomes and lncRNA transfer the cancerous metabolic phenotype to other 
cells (7).  Such intercellular trafficking events may contribute to low sampling error.  In 
unpublished studies we found that 75% of atypical ductal hyperplasia (ADH) recurrences were 
predicted by the phospho-Ser226-GLUT1 classifier (Schanen et al., unpublished).  The decision 
to recur may take place during ADH (a lesion likely preceding DCIS), thereby reducing 
uncertainty in DCIS tests.  

Our ML models show the presence of FPs in raw patient data (Table 1).  This was 
expected because 98% of the patients tested underwent full or partial mastectomies, and 
surgeries are expected to cure some patients.  Indeed, FPs would be anticipated because the 
number of recurrences among DCIS patients treated with biopsy alone (47 + 21%) is much 
greater than the observed number of recurrences after partial mastectomy (10%) (20-29, 33).  In 
these populations, one would infer that surgery cures many patients who would otherwise recur.  
Nonetheless, how do we know that this is true for the cohort of patients reported herein?  Six 
lines of reasoning support this proposal.  1) We have used 185 patients in this study, which 
indicates that the means are very well-known.  2) The underlying glycolytic transporter/enzyme 
patterns in FPs and TPs are indistinguishable (Fig. 4A, B).  3) Images of recurrent and non-
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recurrent DCIS tissue were mathematically deconstructed and patterns unique to recurrent and 
non-recurrent samples were found that did not distinguish between TP and FP.  For clinical 
recurrences, the two classifiers in tandem perform without error.  It is likely that the classifiers 
perform equally well in the analysis of FP micrographs.   4) Moreover, a cutline of 98% suggests 
that FP lesions contain robust recurrent tissue.  5) The percentage of recurrence positive 
microscope fields in TP lesions is indistinguishable from that of FP lesions, which suggests that 
the nature of FP lesions cannot be explained quantitatively by the number of positive 
microscope fields.  6) The properties of FP in the present study are also supported by ongoing 
studies of ADH, a lesion similar to DCIS that was not treated with surgery.  When evaluated with 
the phospho-Ser-226-GLUT1 ML model, the FP were reduced to only 10% of the TN population 
in comparison to ~50% of the TN for surgery-treated DCIS.   Thus, population-based data in the 
literature and our ML analyses suggest that full and partial mastectomies contribute to the FPs 
observed.  However, it remains possible that some of FPs were TNs because a downstream 
step in cancer aggressiveness was not functional, and thereby blocked cancer recurrences.   

To our knowledge, this is the first prognostic test designed to perform well using samples 
from African American women.  We underscore the need to build machine classifiers without 
racial bias.  African American women must be included in computer training and patient holdout 
groups.  Machine classifiers should be constructed such that morphological features correlating 
with race, but not cancer recurrences or non-recurrences, are present in both training data sets.  
For example, reduced blood vessel elasticity in African Americans (39) likely impacts machine 
predictions.  By balancing sample features in machine training, outcome predictions are 
improved.   

Prognostic tests must display clinical utility and patient benefits (40).  Clinical utility is 
supported by the fact that patient outcomes will be improved.  For recurrent patients, this test 
will reduce the uncertainty of cancer recurrence and help plan treatments.  If ML findings show 
that normal adjacent tissue is positive for glycolytic activation patterns (6), a full mastectomy 
should be considered.  Patients predicted to be non-recurrent will benefit from a reduction in the 
unnecessary burdens of surgery, financial costs, disfigurement, pain, sensory disturbances, and 
psychological damage (41-43).  It is also possible that radiotherapy could cause secondary 
tumors in normal breast tissue.  Instead, negative patients could be safely monitored by 
mammography. This tool will alert physicians to future recurrences and reduce the impact of 
overdiagnosis. 

In addition to patient management, this work contributes to our understanding of the 
Warburg Effect.  Although the Warburg Effect has been studied for many years, our 
fundamental understanding of this effect has lagged.  The Warburg Effect may exist because it 
produces ATP faster than respiration (44), although it is much less efficient.  Nonetheless, we 
still do not clearly understand how the system up-regulates glucose transport.  This work 
provides insight into the biochemical mechanism of Warburg’s Effect.  We suggest that 
trafficking of phospho-Ser-226-GLUT1 and PFKL from the nucleus to the cell periphery in 
recurrent (or aggressive) cancer increases the rate of glucose equilibration across the epithelial 
cell surface and the formation of PFKL’s products, which is accomplished with reduced 
feedback inhibition.  As phospho-Ser-226-GLUT1 and PFKL mobilization appear to be early 
steps in the recurrence mechanism, stabilization of nucleoli would seem be a potentially useful 
route in drug discovery. 

ML will become an in-silico research tool.  As TP and FP classes contain computed 
recurrent and non-recurrent microscopic fields, it may be difficult to characterize these lesions 
with non-microscopic tests.  Genomic changes in DCIS recurrences may be identified by 
combining our machine tool with single cell genomics (45).  Our ML models in conjunction with 
composite DCIS micrographs containing image features from both recurrent and non-recurrent 
samples suggest that recurrences are promoted by phospho-Ser226-GLUT1 of epithelial cells, 
blood vessels, and cancer associated fibroblasts (8), as judged by the abilities of these image 
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features to convert non-recurrence into recurrence-positive images (8).  Computed saliency 
maps will also permit identification of cells and organelles contributing to cancer recurrences.  
Thus, we may now ask more detailed questions about the mechanism of breast cancer 
recurrences, and it may become possible to better control patient outcomes.  There is little 
doubt that ML will promote new approaches in cancer research, improve healthcare, and 
expand personalized medicine. 

 
Conclusions 

Our ML models identify women at a low risk for cancer recurrence and women at a high 
risk of recurrence whose tissues display patterns of glycolytic elements that correlate with 
enhanced glycolytic activity.  In addition to providing insights and a prognostic test relevant to 
the long-standing problem of overdiagnosis, these data support a biophysical/biochemical 
mechanism of breast cancer recurrences that may contribute to a new generation of drugs that 
are specifically directed against cancer recurrences.   
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Figure 1 

 
Fig. 1.  The Effect of Mastectomies on Observed Cancer Recurrence and Non-Recurrence 
Rates.  Up to 50% of the patients diagnosed with DCIS, but not treated with full or partial 
mastectomies, will recur; the remainder will not recur (20-29).  After partial mastectomy, roughly 
10% of the population will recur (TP) (33).  This suggests that many patients who were 
computationally recurrent (with relevant changes to the glycolytic apparati) with non-recurrent 
outcomes became non-recurrent due to surgical intervention (FP).  Thus, ~10% of patients 
treated with partial mastectomies will recur (TP), and the remainder is computationally positive 
but clinically non-recurrent (FP) or computationally negative and clinically non-recurrent patients 
(TN).   
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Figure 2 

 
Fig. 2.  Comparison of Tissue Labeling Using Different Sources of DCIS Tissue.  Tissue 
sections of DCIS lesions were prepared then stained with anti-phospho-Ser226-GLUT1 and 
then with a fluorescent second-step antibody.  Both panels show non-recurrent tissue sections.  
Panel A shows a micrograph of an image derived from a sample from Beaumont Hospital.  
Panel B shows a similar micrograph of a sample from the St. Louis Breast Tissue Registry.  
There is no discernable difference in the appearance of the images.  (Bar=200µm).   
 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.08.23285648doi: medRxiv preprint 

https://doi.org/10.1101/2023.02.08.23285648


16 
 

Figure 3 

 
Fig. 3.  Computer Findings and Prognoses.  Panels A and B show the performances of the 
phospho-Ser226-GLUT1 and PFKL classifiers.  In these cross-validation studies, the training 
data sets were randomly divided into five subsets.  The computer was trained using 80% of the 
micrographs for each biomarker and outcome, and then evaluated against the remaining 20%.  
This process was repeated for all subsets to estimate an overall precision (TP/(TP+FP)) and 
recall (TP/(TP+FN)) of each classifier’s training data set.  Panel A shows the precision-recall 
curve of the phospho-Ser226-GLUT1 model.  Panel B shows the precision-recall curve of the 
PFKL model.  The phospho-Ser226-GLUT1 model showed an AUC (area under curve) of 0.96 
whereas that of PFKL is 0.86.  Both classifiers showed excellent performance on individual 
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micrographs.  Panels C and D show the summed distributions of recurrence predictions for 
holdout patients (number of micrographs at ordinate and probability of recurrence at abscissa).  
C) This study uses ML models to assess the probability that a microscopic field originates from 
a recurrent patient.  This panel plots data from DCIS microscope fields of phospho-Ser226-
GLUT1-labeled tissue sections for all patient holdout micrographs.  The number of micrographs 
at each % probability is plotted against the % probability of recurrence.  The separation of the 
non-recurrent and recurrent mode values along the x-axis is very large.  The mode values also 
demonstrate a high signal-to-noise ratio.  Substantial improvements in sample analyses 
compared to conventional tools are obtained.  D) Parallel studies of PFKL-labeled DCIS tissue 
sections are shown.  Panels E and F show the distributions of recurrence predictions for a non-
recurrent patient and a recurrent patient, respectively (number of micrographs at ordinate and 
probability of recurrence at abscissa; note that the range of the ordinate in these graphs is much 
smaller than panels C and D).  E) The computed probabilities of recurrence determined by 
machine analysis of micrographs from a clinical and computed non-recurrent patient are shown.  
All image recurrence probabilities are low (<15%).  F) In contrast to panel E, quantitative data 
for a clinical and computed recurrent patient sample is shown.  In addition to the spike at low 
probabilities, several intermediate probability levels and one high probability of recurrence 
observation (98% recurrence probability) are apparent.  A single microscope field at this level is 
sufficient for the computed prediction of a recurrence.  
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Figure 4 

 

 
Fig. 4.  Representative Micrographs of True Positive, False Positive, and True Negative 
Samples  Tissue sections of DCIS lesions were prepared then stained with anti-phospho-
Ser226-GLUT1 and then with a fluorescent second-step antibody.  Panel A shows a true 
positive sample (clinical recurrence, computed recurrence).  Panel B shows a false positive 
micrograph (clinical non-recurrence, computed recurrence).  Panel C shows a true negative 
micrograph (clinical non-recurrence, computed non-recurrence).  From observation alone, the 
false positive is much more akin to the recurrent than the non-recurrent sample.  (Bar=200µm).   
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Table 1.  Summary.  Holdout Experiments1,2 
         
A B C D E F G H I J K 
Clinical Outcome 
Post-
Mastectomy1 

Computed 
Outcome at Time 
of Surgery 

Class All Women 
Tested 

Uncorrected 

African-
American 
Women 

Uncorrected 

Women with 
Unreported 
Race 

All Women 
After Full 
Mastectomy 
Uncorrected 

All Women 
After Partial 
Mastectomy 
Uncorrected 

Biopsy-
No Other 
Surgery 

All  Women 
Corrected 

Comments 

Recurrence Recurrence TP 51 11 
 

 16 35 1 79 highly 
accurate 

detection of 
recurrences 

Non-
Recurrence 

FN 0 0  0 0  0 no ill 
patients 
missed 

           
Non-

Recurrence 
Recurrence FP 28 20  11 12  0 outcomes 

improved 
by surgery 

Non-
Recurrence 

TN 36 20 4 9 17 1 36 patients do 
not require 
intervention 

           
Fisher’s 

Exact Test 
  <0.0001 0.0035 - 0.046 <0.0001 - <0.0001  

 
1)  All outcomes were >10 years after surgery.  For the confusion matrices of columns D, G, E, H, and J, 
P values were calculated with Fisher’s exact test then listed at the bottom of the column.  Holdout studies 
consisted of all women (N=115) including African American women (N=51) and a those who did not 
report race (N=4).   The experiments included recurrent (N=51) and non-recurrent (N=64) patient 
samples.  Columns D-I show raw data, uncorrected for surgical intervention.  Column J shows data 
corrected for the expected effects of surgical intervention.  To mimic clinical laboratory tests, no metadata, 
micrographs, etc. from the patient holdout group were used in computer training.  This design avoids the 
potential complication that the computer could learn a unique image feature of a specific recurrent patient, 
and then use this one image feature to identify other micrographs from the same patient as recurrent.  
The ML approach works well in identifying patients who will have a future cancer recurrence.  As columns 
D shows, there were no FNs among these DCIS patients.  All 51 clinically recurrent patients were 
properly identified by the classifiers (TPs).  The clinical and machine class of non-recurrent patients (TN) 
contained 36 women.  The FP population contains patients requiring surgery because they were 
computationally positive with glycolytic biomarker trafficking (Fig. 2).  Importantly, column E shows, that 
the ML models work well in identifying recurrent and non-recurrent cancer among African American 
women. 
2)  For each of the columns listed from Table 1, 2x2 contingency tables and Fisher’s exact test were used 
to determine the association of two factors in patient data.   
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Table 2.  Performance Metrics of Patient Holdout Studies with and without Correction for 
Surgical Intervention 

 

Test Equation Surgery has no 
Effect on Outcomes1 

Surgery Causes 
False Positives2 

    
Precision 3 0.65 1 
    
Recall 4 1 1 
    
Accuracy 5 0.77 1 
    
F1 score 6 0.79 1 
    
Mathews Correlation 
Coefficient 

7 0.60 1 

    
TPR3  1 1 
    
FPR3  0.56 1 
    
 

1)   Data are from Table 1, column D. 

2)   These data are the raw data of Table 1, column J corrected for FP caused by surgical 

intervention, as illustrated by Eq. 9.   

3)   More conventional metrics of assay performance are the true positive rate (TPR) or 

sensitivity is TP/(TP+FN).  The false positive rate (FPR) or specificity is TN/(TN+FP).   
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Supplementary Figure 1.  An example of a non-representative DCIS case that was clinically 
non-recurrent and computationally non-recurrent.  Panel A shows a DCIS lesion stained with 
anti-H2A.X antibodies.  Panel B shows the same sample stained with anti-phospho-Ser226-
GLUT1.  Panel C shows anti-PFKL labeling of this patient sample.  As H2A.X is a nucleolar 
marker, panels A and B suggest that phospho-Ser226-GLUT1 is in the vicinity of the nucleus in 
DCIS lesions of non-recurrent patients.  The central location of phospho-Ser226-GLUT1 has 
been previously noted (5-9).  On the other hand, PFKL was found at the periphery of ductal 
epithelial cells (panel C).  Although peripheral PFKL is consistent with a cancer recurrence (6), 
All phospho-Ser226-GLUT1 and PFKL micrographs (>200) were computationally negative.  This 
suggests that computer vision is a more sensitive detector of cancer recurrences than human 
inspection of micrographs.   
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